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on. In addition, the degradation of some minerals and rocks 
on the slopes could also lead to an increase in fluoride ions 
in the aquatic environment, resulting in endemic fluorosis 
[4]. Therefore, it was crucial to create an effective and accu-
rate procedure for F− detection. In 1996, Kimura discovered 
that H2S may be an endogenous neuromodulator present in 
the human brain [5, 6], which plays a significant role in the 
circulatory, respiratory, digestive, and central neurological 
systems [7–9]. H2S was discovered in a variety of meals and 
was produced spontaneously by organic sulfur-rich foods 
such as meat, eggs, fruits, and vegetables [10]. The research 
showed that appropriate, low-concentration H2S had a posi-
tive effect on food. H2S, for instance, could increase the 
metabolic rate of the antioxidant enzymes, thus extend-
ing the time that food could be stored [11]. Nevertheless, 
H2S in industrial wastes might harm mucous membranes, 
impair olfaction, and even kill people [12]. H2S detection 
techniques have drawn a lot of discussion in recent years. 
The fluorescence detection approach was more effective 
at detecting H2S than previous techniques due to its high 
sensitivity, non-invasive nature, ease of use, and other ben-
efits [13–18]. As a result, it was essential to develop a new, 
accurate, and straightforward approach for H2S analysis and 
detection in order to increase food security.

Intensity-varying fluorescent probes typically had a 
single emission peak and were prone to interference from 
ambient factors, instrument parameters, and light bleach-
ing during the detection process. This could lead to inac-
curate detections, so they were unsuitable for cell imaging 

Introduction

Fluorescent anion sensors have vital applications in food 
safety, biological monitoring, biomedicine, and other areas. 
Among the common anions, F− performed a crucial role in 
industry, biology, and human daily life due to its smallest 
atomic radius, largest electronegativity, and strong Lewis 
basic properties [1]. For example, not only could it be used 
as an ingredient in toothpaste to treat osteoporosis, but it 
could also be used to purify uranium for nuclear weapons 
production. However, fluorine contamination was inevi-
tably produced during the production processes, which 
disrupted many cell signaling processes and impeded the 
production of biological materials [2, 3]. Long-term con-
sumption of high-fluorine water, food, and air by residents 
in high-fluorine areas would induce related diseases, such as 
fluorosis of the bones, cancer, neurological diseases, and so 
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and food safety testing [19, 20]. In comparison to the switch 
model, the proportional sensing approach may provide 
an acceptable solution to the above problems because it 
could perform accurate analysis and testing by collecting 
the intensity ratio of the fluorescence probe’s two emis-
sion peaks and its unique response. However, a substantial 
emission peak displacement was usually required to obtain 
good ratio measurement performance, as this could well 
divide the two simultaneous emission peaks and prevent 
luminescence spectra from overlapping [21–23]. Therefore, 
the presence of near-infrared (NIR) fluorescent probes was 
deemed more favorable because of their greater penetration, 
lower autofluorescence background, and less photodam-
age to biological materials [24–30]. Hence, the creation of 
ratiometric fluorescent probes possessing features of near-
infrared emission has long been the center of our attention.

Benzothiazole and its derivatives play a significant role 
in fluorescent probes, drugs, functional molecules, dyes, 
sensors, and so on due to their strong rigid structure, robust 
optical support, and therapeutic efficacy. Additionally, ben-
zothiazole derivatives also possessed an excellent quantum 
yield and an immense Stokes shift, so benzothiazole deriva-
tives had been widely used by researchers to construct fluo-
rescent probes [31–35].

F− and H2S were two important small molecules, but 
there were few probes that had a recognition response to 
both F− and H2S. Based on this, a new tetraphenylethyl-
ene and iminocoumarin-based naked-eye colorimetric 

fluorescent probe, TPICBT, was successfully synthesized 
by Knoevenagel condensation reaction in this work, which 
could realize dual recognition of F− and H2S (Scheme 1). 
TPICBT could detect F− and H2S in DMSO solution in a 
ratio-type, respectively, with a large red shift greater than 
90 nm, and was already successfully utilized on test paper 
strips. In addition, the probe displayed strong cell-mem-
brane penetration and may be used for identifying H2S in 
active cells.

Experimental Section

General Methods

The agents were presented in the supporting information 
ESI.

Synthesis of TPICBT

The synthesis methods of Compound 1 and Compound 2 
were shown in Schemes S1 and S2, and the relevant struc-
tural characterizations were listed in Figs. S1-S4. The syn-
thesis route of TPICBT was shown in Scheme 2. After 
dissolving Compound 2 (0.376 g, 1 mmol) and benzothi-
azol-2-acetonitrile (0.174 g, 1 mmol) in anhydrous ethanol, 
they were agitated for 0.5 h at room temperature in argon. 
Then piperidine was dropped and heated under an argon 

Scheme 2 Synthetic route of 
TPICBT
 

Scheme 1 The mechanism of 
TPICBT identification of F− and 
H2S
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atmosphere for reflux for 5 h to obtain the crude product. 
Rinse with anhydrous ethanol to finally obtain compound 
TPICBT (0.315 g, 83.8%). 1H NMR (500 MHz, DMSO-
d6) δ 9.06 (s, 1H), 8.65 (s, 1H), 8.13 (d, J = 5.0 Hz, 1H), 
8.04 (d, J = 10.0 Hz, 1H), 7.60 (d, J = 5.0 Hz, 1H), 7.54 
(t, J = 7.5 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.21–7.14 (m, 
9H), 7.07–7.03 (m, 4H), 6.99 (d, J = 5.0 Hz, 2H), 6.85 (d, 
J = 10.0 Hz, 1H), 6.75 (s, 1H). 13C NMR (126 MHz, CDCl3) 
δ 156.4, 151.8, 147.1, 146.7, 142.5, 142.0, 142.0, 141.8, 
138.4, 134.4, 132.5, 130.3, 130.2, 130.2, 127.0, 127.0, 
126.8, 126.7, 126.6, 126.2, 125.9, 125.9, 122.1, 121.6, 
118.1, 116.9, 116.6, 116.0, 110.6. ESI-MS (m/z): calcd for 
C36H24N2OS: 533.1606 [TPICBT + H]+, found: 533.1676 
(Fig. S5-S7).

Results and Discussion

Optical Properties of Fluorescent Probe TPICBT

The photophysical properties of TPICBT in the free state 
(pure THF solution) and the concentrated state (solid state) 
were studied through ultraviolet absorption spectroscopy 
and fluorescence spectroscopy (C = 2.0 × 10− 5 mol L− 1, 
λex = 390 nm, slide = 5 nm / 5 nm), the fundamental spectral 
parameters shown in Fig. 1, and the basic spectral parame-
ters were shown in Table 1. In pure THF solution, TPICBT 
had two absorption peaks at 323 nm (ɛ = 1.66 × 104 L mol− 1 
cm− 1) and 410 nm (ɛ = 4.23 × 104 L mol− 1 cm− 1). The π-π* 
transition was responsible for the weak peak at 323 nm, 
while the formation of the strong absorption peak at 410 nm 
was primarily driven by the intramolecular charge transfer 

(ICT) of electrons between TPE and benzimidazole, which 
act as electron donors and acceptors, respectively [36]. In 
the solid state, TPICBT’s absorption peak was primarily 
at 341 nm (ɛ = 5.16 × 104 L mol− 1 cm− 1). Furthermore, as 
shown in Fig. 1A, when the λex was 390 nm, the fluores-
cence spectrum of TPICBT in pure THF solution exhib-
ited yellow-green fluorescence at 545 nm, and there was a 
large Stokes shift (Δλ = 135 nm). It showed that TPICBT 
has low background interference and strong sample pen-
etration, which could be better applied in cell imaging. In 
the solid state, the fluorescence emission peak of TPICBT 
displayed a bright yellow-green luminescence and was 
measured at 554 nm. Compared with TPICBT in pure THF 
solution, the solid emission peak showed a redshift of 9 nm 
and exhibited a larger Stokes shift (Δλ = 213 nm). The vari-
ance between the two could be attributed to the variable 
fluorescent molecule accumulation patterns and fluorescent 
molecule interactions in the free-concentrated state [37]. In 
addition, the fluorescence decay curve in the substance state 
was also displayed in Fig. 1B, where a double exponential 
function value (τ) = 1.30 ns was calculated. Compared with 
the fluorescence lifetime index in the free state (τ) = 1.05 
ns, this result further proved that TPICBT in the solid state 
could release energy in a fluorescent way due to molecular 
aggregation in solids and limited molecular motion [38, 39]. 
The comparison between the solid state and the free state 
showed that TPICBT had the properties of AIE.

Table 1 Optical characterization of TPICBT in THF and solid state
Compound Solution (THF) Solid

λmax (nm)a λem (nm)b τ (ns)c λmax (nm)a λem (nm)b τ (ns)c

TPICBT 323, 410 545 1.05 (fw = 0%) 341 554 1.30
a Absorption wavelength
b The wavelength of the emission maximum
c The fluorescence lifetime

Fig. 1 (A) The absorption and 
fluorescence spectra of TPICBT 
in the free state (pure THF solu-
tion) and the concentrated state 
(solid state), and (B) fluorescence 
decay curve of TPICBT in the 
solid state
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characteristics of TPICBT. At a water percentage of 0% 
and 99%, the fluorescence lifetimes of TPICBT were 1.05 
ns and 1.18 ns, respectively, as shown in Fig. 3A. Follow-
ing that, Eqs. (1) and (2) were used to compute the average 
lifetime (τ) and quantum yield (Φ) in order to get the radia-
tive rate constant (kr) and non-radiative rate constant (knr). 
The calculated findings revealed that the kr value grew from 
0.014 ns− 1 (fw = 0%) to 0.049 ns− 1 (fw = 99%), whereas 
the knr value fell from 0.938 ns− 1 to 0.797 ns− 1. The fluo-
rescence enhancement was triggered by a rise in radiative 
rate constants and a fall in non-radiative rate constants. The 
results of fw = 0% and fw = 99% were consistent with the 
above conclusions. Further evidence from these findings 
pointed to the fact that constrained intramolecular rotation 
in aggregates impedes the non-radiative decay process and 
increases fluorescence.

τ−1=kr+knr (1)

kr= φ/τ  (2)

Finally, we also carried out the DLS experiment in a mixed 
solution (fw = 99%) to investigate the size of TPICBT. As 
shown in Fig. 3B, the average size of TPICBT nanoag-
gregates was 120 nm. This result indicated that TPICBT 
has the ability to self-assemble into nano-agglomerates in 
an aqueous solution, which strongly supports the material’s 
AIE characteristics.

Aggregation-induced Emission (AIE) Properties of 
the Fluorescent Probe TPICBT

To further investigate the likely AIE characteristics of 
TPICBT, the UV-vis absorption and fluorescence spectra 
in the THF/H2O mixture were studied at room tempera-
ture. Due to the formation of nanoaggregates and the Mie 
effect, the TPICBT’s absorption spectra, as displayed in 
Fig. 2A, had nearly identical absorption, and a noticeable 
level-off tail emerged in the long wavelength area [39]. In 
the fluorescence spectrum, it could be seen that TPICBT 
was incredibly low in pure THF, and the fluorescence yield 
of the quantum (Φf) was just 0.015. However, when the fw 
gradually increases, the fluorescence intensity also gradu-
ally grows, and an abrupt increase in emission intensity was 
observed when the f w was above 90%. And when the fw 
was at 99%, the Φf of the solution was 0.058, which was 
about four times higher than that of pure THF. Addition-
ally, when exposed to a 365 nm UV portable lamp, the 
fluorescence color of TPICBT could be found to change 
from yellow-green to bright yellow (inset: Fig. 2B). These 
occurrences might have resulted from TPICBT’s creation 
of nano-aggregates when the system’s fw was raised, which 
triggered the limitation of the intramolecular rotation (RIR) 
effect [40], thereby causing the high emission of the THF/
H2O mixture. The above results showed that TPICBT had 
a typical AIE effect.

Furthermore, since the fluorescence lifetime measure-
ment was uncorrelated with the chromophore concentration 
and intensity of excitation, it could better illustrate the AIE 

Fig. 3 (A) Fluorescence decay 
curve of TPICBT in THF/H2O 
(fw = 0, 99%, C = 2.0 × 10− 5 
mol L− 1) solution; (B) dynamic 
light scattering of TPICBT (fw 
= 99%)

 

Fig. 2 (A) The absorption and 
fluorescence spectra of TPICBT 
(λex = 390 nm) in THF/H2O mix-
tures (C = 2.0 × 10− 5 mol L− 1) 
with different fw, and (B) the fluo-
rescence intensities of TPICBT 
in different fw at 560 nm (inset: 
TPICBT photos taken under 
365 nm UV light)
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disappeared after the addition of F− and H2S. Additionally, 
new emission peaks appeared at 657 nm and 653 nm in the 
near infrared, respectively, with a redshift of about 100 nm. 
And the fluorescence color changed from yellow to deep 
red and dark red when exposed to UV light (Fig. 4C). How-
ever, upon the addition of more ions, the TPICBT solution 
remained mostly unchanged (Fig. S8). These results showed 
that the probe TPICBT could achieve specific recognition 
of F− and H2S. In addition, we further assessed the anti-
interference capabilities of TPICBT. As shown in Fig. S9A, 
when other ions were added to the solution for simultaneous 
existence with F−, the fluorescence intensity did not change 
significantly. When other ions co-existed with H2S, only the 
presence of F− would enhance the fluorescence intensity as 
a whole, while the purity of other ions had no significant 
effect on the fluorescence intensity of Fig. S9B. The results 
showed that the probe had good anti-interference ability. 
Therefore, TPICBT was an outstanding near-infrared fluo-
rescence probe for F− and H2S detection.

Selectivity and Anti-interference Ability of the 
Fluorescent Probe TPICBT

Firstly, in order to explore the selectivity of TPICBT for 
F− and H2S, the interaction between TPICBT and various 
anions was analyzed, including F−, HS−, CO3

2−, SCN−, 
HCO3

−, HSO3
−, SO4

2−, Cl−, NO3
−, I−, H2PO4

−, HSO4
−, 

Br−, NO2
−, and S2O3

2−. As depicted in Fig. 4A, a peak at 
388 nm was seen in the UV absorption spectrum of the 
probe TPICBT. However, until F− was introduced, the ini-
tial absorption peak at 388 nm dropped, and a new peak 
appeared at 570 nm. Under sunlight, the color of visible 
light could be observed to range from yellow to bluish-
purple (Fig. 4C). Besides, TPICBT would exhibit a novel 
absorption peak at 553 nm, and visible light would turn lav-
ender instead of yellow in the presence of H2S (Fig. 4C). 
But it could be found that the UV absorption wavelength of 
probe TPICBT combined with F− was redshifted by 17 nm 
compared with H2S. Moreover, the visible color difference 
between F− and H2S identified by TPICBT could be clearly 
distinguished with the naked eye. Therefore, this could be 
used as a standard to distinguish the two.

Then, as shown in Fig. 4B, when it was excited at 390 nm, 
the original fluorescence emission peak at 557 nm both 

Fig. 4 (A) Absorption spectra; 
(B) fluorescence spectra of 
TPICBT (C = 2.0 × 10− 5 mol 
L− 1) in the presence of contend-
ing anions; (C) comparison plot 
of TPICBT recognizing F− and 
H2S
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ppm, would gradually weaken and migrate to 9.05 ppm with 
the addition of F−, but it did not fully disappear. The reason 
why the = NH proton did not deprotonate was caused by 
the extremely electronegative F− engaging with it to form a 
hydrogen bond [44, 45]. Additionally, the maximum emis-
sion intensity of the [TPICBT] + [F−] complex at 657 nm 
was seen when the mole fraction of [TPICBT]/([TPICBT] 
+ [F−]) was around 0.5, demonstrating a 1:1 stoichiomet-
ric ratio between TPICBT and F− (Fig. S11). Finally, 
mass spectrometry was used to confirm the mechanism 
even further. The mass spectrum changes were depicted 
in Fig. 6, and the [TPICBT + H+]+ mass spectrum signal 
at m/z = 533.1676 increased to 552.1620 ([TPICBT + F− 
+ H+]+) (calcd. 552.1593) with the addition of F−. These 

Concentration Response and Detection Limit of 
Probe TPICBT on F−

Moreover, to assess the dose-dependent response of 
TPICBT, the fluorescence and UV-vis response of TPICBT 
to F− were measured by concentration titration at room tem-
perature. When 0-2.6 eq. F− were gradually added to the 
TPICBT solution, the absorption peak gradually decreased 
at 398 nm and increased at 562 nm (Fig. S10A). As shown in 
Fig. S10B, a wonderful linearity between absorbance ratios 
(A562/A398) and F− concentration was acquired in the range 
of 1-4.5 µM (Y = 0.23881*X - 0.15517, R = 0.99452). At the 
same time, with the addition of F−, the fluorescence peak at 
657 nm gradually increased, while that at 557 nm gradually 
decreased (Fig. 5A). A clear isoborption point was observed 
at 620 nm, and the fluorescence quantum yield increased 
from 0.020 (TPICBT) to 0.042 (TPICBT + F− complex), 
indicating that the probe TPICBT reacted with F−. In addi-
tion, the radiation ratio (I657/I557), an important feature 
of the ratio response, increased from 0.41 to 13.6. In the 
range of 0.5-3.0 M, the emission ratio (I657/I557) versus the 
F− concentration displayed an excellent linear correlation 
(Y = 0.513*X + 0.057, R = 0.97106) (Fig. 5B), indicating 
that the probe TPICBT may be able to accurately quantify 
F−. Based on the reported mean value, the detection limit of 
TPICBT was computed to be 6.01 µΜ, which was far less 
than the World Health Organization’s maximum pollutant 
level for F− in drinking water (1.5 mg L− 1, about 80 mM) 
[41–43]. These findings demonstrated the potential of the 
TPICBT probe to be a ratio metric fluorescence probe for 
the visual identification of F−, offering a quick and practical 
way to detect F−.

Detection Mechanism of Fluorescent Probe TPICBT 
for F−

Additional evidence of the probe TPICBT’s binding to F− 
in DMSO-d6 was provided by the 1H NMR study (Fig. S12). 
The 1H NMR contrast map showed that the chemical signal 
belonging to hydrogen on = NH, which was placed at 9.08 

Fig. 6 Comparison of mass spectra of [TPICBT + H+] + and 
[TPICBT + F−+ H+]+

 

Fig. 5 (A) The fluorescence vari-
ation of TPICBT (C = 2.0 × 10− 5 
mol L− 1) induced by F−, and (B) 
the linear relationship between 
the ratio of two fluorescence 
intensities (I657/I557) and F− con-
centration in DMSO solution
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Detection Mechanism of Fluorescent Probe TPICBT 
for H2S

In order to learn more about the chemical process between 
probe TPICBT and H2S, 1H NMR and mass spectra of the 
probe TPICBT were measured. Upon the addition of H2S, 
the chemical shift at 8.11 ppm (Ha) disappeared due to H2S 
attacking the C = C, while new signal peaks appeared at 
4.38 ppm (C-H, Hb), 3.16 ppm (C-H, Hc), and 1.56 ppm 
(-SH) (Fig. S14). These results demonstrated that H2S 
nucleophilic addition attacked the alkenyl group [49], which 
changed the fluorescence of the probe. Lastly, mass spec-
trometry was used to confirm the mechanism even further. 
The mass spectrum changes were depicted in Fig. 8, and the 
[TPICBT + H+]+ mass spectrum signal at m/z = 533.1676 
increased to 567.3679 ([TPICBT + HS− + H+]+) (calcd. 
567.3679) with the addition of HS−.

indicated that F bound to H in = NH and the deprotonation 
process did not occur.

Concentration Response and Detection Limit of 
Probe TPICBT on H2S

According to previous literature, when an alkene C = C 
was coupled to an electron-withdrawing group, a Michael 
addition reaction involving nucleophilic mercaptans could 
directly start the reaction [46, 47]. Therefore, we conjec-
tured that TPICBT could recognize H2S by binding to 
C = C bonds. In order to test the recognition sensitivity of 
TPICBT to H2S, concentration titration experiments were 
also performed. Upon gradually adding H2S, a new peak at 
548 nm and an isosbestic point at 450 nm appeared when 
the absorption intensity at 389 nm decreased. The absorp-
tion spectrum reached equilibrium following the addition of 
8.0 eq. H2S (Fig. S13A). It was discovered that the absorp-
tion intensity ratio (A548/A389) and the H2S content had a 
linear connection in the 0–16 µM range (Y = 0.11785*X - 
0.24479, R = 0.98272) (Fig. S13B). Additionally, Fig. 7A 
displays the TPICBT’s fluorescence spectra in reactions 
with various H2S concentrations. The fluorescence emission 
peak of TPICBT at 557 nm progressively declines as H2S 
is introduced, whereas it gradually increases at 653 nm, and 
an isorption point develops at 619 nm. Moreover, the emis-
sion ratio (I653/I557) against the H2S concentration in the 
region of 6–15 µM displayed an excellent linear relation-
ship (Y = 0.341*X - 1.536, R = 0.98412) (Fig. 7B). Using 
the equation LOD = 3σ/k, the detection limit of TPICBT 
toward H2S was calculated to be 8.68 µM based on the slope 
of the curve and the standard deviation of the blank solution. 
The detection limit of the TPICBT probe was lower than 
the nationally permissible upper concentration of H2S in the 
workplace of 10 ppm (15 mg/m3) [48]. The above results 
showed that TPICBT was a sensitive H2S detector.

Fig. 8 Comparison of mass spectra of [TPICBT + H+] + and 
[TPICBT + HS−+ H+]+

 

Fig. 7 (A) The fluorescence vari-
ation of TPICBT (C = 2.0 × 10− 5 
mol L− 1) induced by H2S; (B) the 
linear relationship between the 
ratio of two fluorescence intensi-
ties (I653/I557) and H2S concentra-
tion in DMSO solution
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the probe to the spoilage degree of raw meat was carried 
out. In this experiment, the color and fluorescence changes 
of the original meat sample strips were recorded. In the 
blank control group (Fig. S15), because the raw meat was 
stored at 0 ℃, it did not deteriorate and produce H2S within 
72 h, so the fluorescence and visible color of the test strip 
did not change within 72 h. According to Fig. 10, when raw 
beef was exposed to room temperature for 72 h, it partially 
decomposed and created H2S, changing the color of the 
test paper from yellow to light purple and the fluorescence 
from bright yellow to light red. It showed that the test paper 
could sensitively detect H2S gas emitted from rotten raw 
meat. The above results showed that TPICBT had a specific 
response to H2S and might be applied as a method to evalu-
ate raw meat freshness using simple dipstick assays.

Cell Imaging of the Fluorescent Probe TPICBT

To further evaluate whether TPICBT has practical applica-
tion in organisms, we identified the cytotoxicity of TPICBT 
using the MTT method and observed whether fluorescence 
imaging of H2S could be performed in HeLa cells. It was 
evident that after being exposed to TPICBT at doses of 
0–20 µmol for 24 h, HeLa cells maintained at least 85% 
of their metabolic viability. In accordance with the find-
ings, TPICBT exhibited high biocompatibility and low 
cytotoxicity (Fig. S16). Following that, the confocal laser 
scanning microscope (CLSM) was used to observe the abil-
ity of TPICBT to identify exogenous H2S in HeLa cells 
(λex = 390 nm). The uniform distribution of the green fluores-
cence signal in the cells (Fig. 11B2) indicates that TPICBT 
successfully penetrated the cell membrane of HeLa cells. 
After the cells had been exposed to TPICBT (20 µM) and 
NaHS (50 µM) for 30 min, the cells thereafter displayed red 
fluorescence (Fig. 11C2). The outcomes demonstrated the 
TPICBT probe’s potential for imaging H2S in living cells.

Table S1 listed some of the fluorescent probes that had 
been reported for the recognition of F− and H2S [50–59]. 
It was found that most of the fluorescent probes using TPE 
as a parent were almost off-on-type probes, rarely involv-
ing ratiometric-type probes. In comparison, the ratiometric 
probe was more accurate than the off-on probe, and these 
probes could not detect both F− and H2S simultaneously. 
In this work, TPICBT fluorescent probes could not only 
realize F− and H2S in ratiometric recognition but also the 
fluorescence emission peak at more than 650 nm. In the 
near-infrared region, it could be observed that the large red-
shifts (˃ 90 nm) and near-infrared probe could effectively 
reduce the interference of background, which was a good 
advantage in detection.

Practical Application of the Fluorescent Probe 
TPICBT

To evaluate the analytical application potential of TPICBT 
probes, filter paper was soaked in a DMSO solution contain-
ing TPICBT, dried in air, and deionized aqueous solutions 
of various ions were dropped on the test strip. As shown in 
Fig. 9, the test strip with other ions added did not change 
appreciably, but when F− was added, the apparent color 
changed from light yellow to brilliant purple, as well as its 
fluorescent color switching from yellow to bright red. In 
addition, compared with the test strip for detecting F−, the 
H2S test strip’s visible light color changed to dark purple, 
and the fluorescence color changed to dark red. The above 
phenomenon was similar to the fluorescence and ultravio-
let test comparison diagram in Fig S8, and could be used 
as a proof to distinguish F− and H2S. According to these 
findings, the probe TPICBT could be utilized as a portable 
solid-state device for F− and H2S detection.

One of the primary volatile ingredients in the degrada-
tion of raw food was thought to be H2S, a sulfur-containing 
bacterial metabolite. High H2S residual concentrations from 
spoiled food could have negative health consequences for 
people [11, 60–63]. Therefore, the response experiment of 

Fig. 9 Fluorescence and visible 
color change of different anions 
added to test strips, sunlight (up), 
and a 365 nm UV lamp (down)
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design approach could serve as an inspiration for the cre-
ation of more potent dual-responsive fluorescence probes 
for F−/H2S and other biomolecules.
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