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Abstract
Three d10 metal complexes, ZnL(OAc)2 (1), CdL(OAc)2 (2) and [CdL2(NO3)2]·CH3CN (3) were synthesized using the ligand 
(E)-N-(3-methoxy-4-methylphenyl)-1-(quinolin-2-yl)methanimine (L) and characterized by FT-IR spectra, NMR spectra, 
and CHN elemental analysis. Single-crystal X-ray diffraction analysis revealed that complexes 1 and 2 are isostructural, 
with the central metal adopting a hexacoordinate octahedral geometry, while complex 3 adopts a triangular dodecahedron 
geometry. Thermal gravimetric analysis showed that these complexes exhibit good thermal stability. Solid-state fluorescence 
spectroscopy measurements demonstrated that complexes 1–3 exhibit bright yellow-green fluorescence (λem = 564 nm for 
1; 524 nm for 2; 542 nm for 3), suggesting their potential as photoluminescent materials. Furthermore, DFT calculations, 
including frontier molecular orbitals, energy levels, and surface electrostatic potential, provided insights into the structural 
and electronic spectral properties of complexes 1–3.
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Introduction

Schiff base ligands are obtained by condensation of the 
aldehydes and amines, which are widely used to prepare 
non-transition metal complexes and transition metal 
complexes [1–5]. Due to the advantages of Schiff base 
ligands, such as simple synthesis, good stability, and 
complexation ability, organic ligands ranging from rigid 
to flexible can be constructed by changing the structure 
of aldehydes and amines. They serve as molecular 
building blocks (similar to porphyrins) and coordinate 
with metals to synthesize new materials with outstanding 
potential [6, 7]. Among them, zinc/cadmium Schiff base 

complexes have been widely studied, mainly because 
they can be assembled into supramolecular functional 
materials with catalytic [8], biological imaging [9], 
thin film [10] and photophysical properties [11]. Metal 
complexes, resulting from the coordination of metal 
ions, balancing anions, and organic ligands, exhibit 
advantages such as tunable excitation and emission 
properties, straightforward synthesis methodologies, 
and a wide range of structural designs. These attributes 
offer the potential to produce intriguing supramolecular 
architectures and luminescent characteristics.

It is well-known that quinoline derivatives can construct 
luminescent metal–organic materials with various metal 
ions due to their large conjugated system and good coor-
dination ability [12–14]. Keasberry et al. presented a study 
on the synthesis of the [Zn(NNS)2] complex, employing 
the ligand quinoline-2-formaldehyde-4-methyl-3-thiosem-
icarbazone (HNNS), and single-crystal X-ray diffraction 
analysis showed that the central metal zinc exhibited a dis-
torted octahedral configuration. The antibacterial activity 
of [Zn(NNS)2] was evaluated, and the results indicated that 
it possessed stronger antibacterial activity compared to the 
HNNS ligand [15]. Salah et al. synthesized two novel zinc 
and cadmium complexes using quinoline derivatives, which 
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exhibited solvatochromic behavior with a red shift in π → π* 
transition as the solvent polarity increased [16]. Demissie 
and colleagues synthesized a zinc(II) complex using the 
ligand 2-(2-hydroxyethyl)aminoquinoline-3-carboxaldehyde 
(H2L) as the starting material in a methanol solution with 
a metal-to-ligand ratio of 1: 2. Compared to the ligand, the 
metal complex exhibited intense fluorescence intensity and 
a blue shift in emission [17]. The fluorescence properties of 
these d10 metal complexes are extremely important due to 
their versatile applications in chemical sensors, photochem-
istry, and electroluminescent displays [18, 19].

Based on the above discussion, in our study, a Schiff base 
ligand (E)-N-(3-methoxy-4-methylphenyl)-1-(quinolin-2-yl)
methanimine (L) with N2 coordination sites was synthesized 
using quinoline-2-carboxaldehyde and 3-methoxy-4-meth-
ylaniline, and the corresponding metal complexes 1–3 were 
synthesized under reflux conditions. The structures and pho-
tophysical properties of complexes 1–3, as well as the rela-
tionship between their structure and fluorescence properties, 
were discussed in detail. The bright fluorescence emission 
of complexes 1–3 suggests potential applications in photo-
luminescent materials.

Experimental

Materials and Measurements

All the solvents and reagents (analytical grade) were used as 
received. All the materials for synthesis were purchased from 
Haohong Scientific Co., Ltd. (Shanghai, China). Elemental 
analyses of C, H and N were conducted using a Vario EL 
elemental analyzer. 1H and 13C NMR spectra of L and com-
plexes 1–3 were obtained using a Bruker Avance–400 MHz 
spectrometer in DMSO-d6 at 298 K. FT–IR spectra were 
recorded using a TENSOR II (Bruker) spectrophotometer 
using a KBr pellet in the range of 4000–400 cm–1. Ther-
mal gravimetry analysis (TGA) experiments were conducted 
with Versa Therm TGA instrument with a heating rate of 
10 °C min−1 from 40 to 800 °C under a nitrogen atmosphere. 
Sample preparations for the TGA were carried out under air. 
UV − vis spectra were recorded by using a Shimadzu UH5300 
(Japan) spectrophotometer in the range of 200–800 nm at 
room temperature. Fluorescence spectra were obtained using 
a Hitachi F-7100 FL spectrophotometer equipped with a 150 
W xenon lamp as the excitation and emission source at room 
temperature, and the slit width of the acetonitrile solution 
fluorescence spectra was 5.0 nm both the excitation and emis-
sion, and that for the solid-state fluorescence spectra was 
5.0 nm for excitation and 1.0 nm for emission. The sample 
concentration for UV − vis and fluorescence spectra testing 
was 2 × 10–5 mol L–1 in CH3CN.

Synthesis of Complexes 1–3

The Schiff base (E)-N-(3-methoxy-4-methylphenyl)-1-
(quinolin-2-yl)methanimine (L) was synthesized following 
a previously reported method [20]. Complexes 1–3 were 
synthesized along the reaction route depicted in Scheme 1. 
A mixture of the ligand L (0.0536 g, 0.2 mmol) and the 
corresponding metal salts of either (Zn(OAc)2·2H2O 
(0.0456 g, 0.2 mmol), Cd(OAc)2·2H2O (0.0535 g, 0.2 mmol) 
or Cd(NO3)2·4H2O (0.0312 g, 0.1 mmol)) in 25 mL CH3CN 
was refluxed at 80 ℃ for 4–5 h. After several days, yellow 
crystals of complexes 1–3 were collected by slow evaporation.

(E)‑N‑(3‑methoxy‑4‑methylphenyl)‑1‑(quinolin‑2‑yl)metha‑
nimine (L)  Yield: 84.60%, Color: Yellow. Anal. calc. for 
C18H16N2O: C, 78.24; H, 5.84; N, 10.14. Found: C, 78.29; H, 
6.03; N, 10.01. 1H NMR (400 MHz, DMSO-d6, δ): 8.86 (s, 
1H, CH = N), 8.50 (d, J = 8.8 Hz, 1H, Quinoline–H3), 8.32 (d, 
J = 8.4 Hz, 1H, Quinoline–H6), 8.16 (d, J = 8.4 Hz, 1H, Qui-
noline–H2), 8.07 (d, J = 8.0 Hz, 1H, Quinoline–H9), 7.86 (t, 
J = 7.2 Hz, 1H, Quinoline–H8), 7.70 (t, J = 7.6 Hz, 1H, Quino-
line–H7), 7.22 (d, J = 7.6 Hz, 1H, Phene–H5), 7.06 (s, 1H, Phene–
H2), 6.95 (d, J = 8.0 Hz, Phene–H6), 3.90 (s, 3H, –OCH3), 2.20 
(s, 3H, –CH3) ppm. 13C NMR (100 MHz, DMSO-d6, δ): 160.21, 
158.38, 155.04, 149.76, 147.90, 137.34, 131.19, 130.62, 129.65, 
128.89, 128.53, 128.27, 125.29, 118.57, 113.85, 104.10, 55.81, 
16.25 ppm. UV–vis (λmax, CH3CN): 252, 298, 348 nm.

ZnL(OAc)2 (1)  Yield: 81.50%, Color: Orange. Anal. calc. for 
C22H22N2O5Zn: C, 57.47; H, 4.82; N, 6.09. Found: C, 57.55; 
H, 4.73; N, 6.16. 1H NMR (400 MHz, DMSO-d6, δ): 8.87 (s, 
1H, CH = N), 8.54 (d, J = 6.8 Hz, 1H), 8.28 (d, J = 8.8 Hz, 
1H), 8.17 (d, J = 7.2 Hz, 1H), 8.08 (d, J = 8.0 Hz, 1H), 
7.85 (t, J = 7.2 Hz, 1H), 7.70 (t, J = 7.6 Hz, 1H), 7.22 (d, 
J = 7.6 Hz, 1H), 7.08 (s, 1H), 6.98 (d, J = 6.8 Hz, 1H), 3.86 
(s, 3H, –OCH3), 2.16 (s, 3H, –CH3), 1.79 (s, 6H, –OOCCH3) 
ppm. 13C NMR (100 MHz, DMSO-d6, δ): 177.34, 167.76, 
160.10, 158.48, 149.29, 131.24, 130.98, 130.96, 129.56, 
129.12, 128.63, 125.61, 114.10, 104.31, 55.88, 22.87, 
16.32 ppm. UV–vis (λmax, CH3CN): 244, 290, 354 nm.

CdL(OAc)2 (2)  Yield: 85.12%, Color: Lemon-yellow. Anal. calc. 
for C22H22N2O5Cd: C, 52.14; H, 4.38; N, 5.53. Found: C, 52.20; 
H, 4.40; N, 5.49. 1H NMR (400 MHz, DMSO-d6): 8.93 (s, 1H, 
CH = N), 8.59 (d, J = 7.2 Hz, 1H), 8.27 (d, J = 8.4 Hz, 2H), 8.10 
(d, J = 8.4 Hz, 1H), 7.87 (t, J = 7.2 Hz, 1H), 7.72 (t, J = 7.2 Hz, 
1H), 7.23 (d, J = 7.6 Hz, 1H), 7.15 (s, 1H), 7.04 (d, J = 6.4 Hz, 
1H), 3.86 (s, 3H, –OCH3), 2.17 (s, 3H, –CH3), 1.81 (s, 6H, –
OOCCH3) ppm. 13C NMR (100 MHz, DMSO-d6, δ): 178.45, 
165.67, 160.16, 158.37, 148.39, 143.55, 131.23, 131.08, 130.85, 
129.62, 128.63, 126.50, 114.16, 110.43, 106.11, 101.92, 55.90, 
22.18, 16.33 ppm. UV–vis (λmax, CH3CN): 252, 300, 354 nm.
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[CdL2(NO3)2]·CH3CN (3)  Yield: 50.33%, Color: Orange. Anal. 
calc. for C38H35N7O8Cd: C, 54.98; H, 4.25; N, 11.81. Found: 
C, 54.83; H, 4.28; N, 11.75. 1H NMR (400 MHz, DMSO-
d6): 8.82 (s, 1H, CH = N), 8.50 (d, J = 8.8 Hz, 1H), 8.28 (d, 
J = 8.8 Hz, 1H), 8.11 (d, J = 7.6 Hz, 1H), 8.06 (d, J = 8.4 Hz, 
1H), 7.83 (t, J = 7.6 Hz, 1H), 7.68 (t, J = 7.2 Hz, 1H), 7.20 (d, 
J = 7.6 Hz, 1H), 7.02 (s, 1H), 6.94 (d, J = 7.6 Hz, 1H), 3.84 (s, 
3H, –OCH3), 2.15 (s, 3H, –CH3), 2.05 (s, 1.5H, CH3CN) ppm. 
13C NMR (100 MHz, DMSO-d6, δ): 160.34, 160.08, 158.38, 
156.89, 152.35, 147.84, 147.79, 131.24, 130.82, 129.61, 
128.63, 128.45, 118.56, 113.98, 110.75, 104.14, 55.87, 16.31, 
11.24 ppm. UV–vis (λmax, CH3CN): 248, 230, 374 nm.

Molecular Structure Determination

Crystallographic data were collected on a Rigaku R–AXIS 
RAPID IP diffractometer with graphite-monochromatized 
Cu·Kα radiation (λ = 1.54178 Å) at 298 K for complexes 
1–3. The structures were solved by the direct methods and 
refined with full-matrix least-squares on F2 [21]. All non-
hydrogen atoms were refined anisotropically, and hydrogen 
atoms were added theoretically. The structural information 
and results were stored in the Cambridge Crystallographic 
Data Centre (numbers: 2307441 for 1; 2,330,760 for 2; 
2,307,440 for 3).

Computational Details

Gaussian 09 program [22] was employed for DFT calcula-
tions. Density functional theory (DFT) calculations were 
performed using Beck's three-parameter hybrid exchange 

functional [23] and Lee, Yang and Parr correlation func-
tional [24] B3LYP/6–31G (d). The calculated electronic 
density plots were prepared using the Gaussview 5.0.8. The 
Multiwfn [25] and VMD [26] software were used for more 
detailed analysis.

Results and Discussion

Description of Crystal Structures

The relevant crystallographic parameters for complexes 
1–3 is summarized in Table 1. The complexes ZnL(OAc)2 
(1) and CdL(OAc)2 (2) are crystallized in P21/n space 
group of monoclinic system and P1 space group of tri-
clinic system, respectively. According to X-ray crystal-
lography analysis, the structures of complexes 1 and 2 
are isomorphic, as shown in Fig. 1. The central metal is 
hexacoordinate, coordinated with quinoline nitrogen (N1), 
imine nitrogen (N2) and four oxygen atoms (O2, O3, O4, 
O5) from acetate anions. In the crystal structure of 1, the 
geometry around the Zn(II) ion is that of an octahedron, 
the equatorial plane of which is best described by the 
plane (N1/N2/Zn/O3/O5) and apical sites are taken by two 
oxygens (O2, O4) of two acetate anions (Fig. S1). In the 
crystal structure of 2, the octahedral configuration around 
the Cd(II) ion features an equatorial plane occupied by 
one nitrogen (N2) and three oxygens (O2, O3 and O5), 
with the apical positions taken up by one nitrogen (N1) 
and one oxygen (O4). In both molecular structures, the 
maximum axial angles of complexes 1 (∠O2–Zn1–O4) 
and 2 (∠N1–Cd1–O4) are 150.97(15)° and 136.27(10)°, 

Scheme 1   Synthetic routes for 
complexes 1–3 
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respectively, indicating that the central metal atom is situ-
ated in a distorted octahedral environment. Tables S1–S4 
present the important bond distances and angles parameters 
for the two complexes 1 and 2. Notably, the N2–C10 bond 
distances are 1.264(3) Å for complex 1 and 1.267(4) Å for 
complex 2, which are consistent with the imine bond in the 

literature structural data [27, 28]. The M–N bond lengths 
have significantly differ in the two complexes due to the 
difference in the radii of zinc and cadmium. Obviously, the 
bond distances of Zn1–N1 and Zn1–N2 in complex 1 are 
2.104(2) Å and 2.142(2) Å, respectively, which are shorter 
than those of in complex 2, with Cd1–N1 of 2.326(3) Å and 

Table 1   Crystal data and structure refinement for complexes 1–3 

a  R1 = ∑||Fo| – |Fc||/∑|Fo|; wR2 = [∑[w (Fo
2 – Fc

2)2]/∑[ w (Fo
2)2]]1/2

Identification code 1 2 3

Empirical formula C22H22N2O5Zn C22H22N2O5Cd C38H35N7O8Cd
Formula weight 459.78 506.81 830.13
Temperature/K 293(2) 293(2) 293(2)
Crystal system Monoclinic Triclinic Triclinic
Space group P21/n P1 P1

a/Å 8.0208(2) 7.8323(3) 8.43270(10)
b/Å 20.2646(4) 11.4855(4) 12.7759(2)
c/Å 12.7898(3) 12.2964(5) 17.9385(3)
α/˚ 90 81.462(3) 82.7550(10)
β/˚ 93.323(2) 76.277(3) 81.4230(10)
γ/˚ 90 79.081(3) 76.8510(10)
Volume/Å3 2075.34(8) 1048.89(7) 1852.35(5)
Z 4 2 2
ρcalc/g·cm–3 1.472 1.605 1.488
μ/mm–1 1.956 1.077 5.245
F(000) 952 512 848
Crystal size/mm3 0.34 × 0.32 × 0.3 0.34 × 0.32 × 0.3 0.34 × 0.32 × 0.3
Radiation CuKα (λ = 1.54178) MoKα (λ = 0.71073) CuKα (λ = 1.54178)
Θ range for data collection/˚ 4.092 – 68.340 3.431 – 29.250 2.502 – 68.207
Index ranges –9 ≤ h ≤ 9, –24 ≤ k ≤ 20, –12 ≤ l ≤ 15 –10 ≤ h ≤ 10, –15 ≤ k ≤ 13, 

–16 ≤ l ≤ 16
–10 ≤ h ≤ 8, –15 ≤ k ≤ 15, –21 ≤ l ≤ 20

Reflections collected/unique 10,791/3614 9063/4781 18,533/6544
Data/restraints/parameters 3614/0/311 4781/0/275 6544/0/492
Goodness-of-fit on F2 1.089 1.042 1.037
Final R indexes [I > 2σ(I)]a R1 = 0.0590, wR2 = 0.1474 R1 = 0.0410, wR2 = 0.0829 R1 = 0.0642, wR2 = 0.1613
Final R indexes [all data]a R1 = 0.0626, wR2 = 0.1515 R1 = 0.0518, wR2 = 0.0875 R1 = 0.0659, wR2 = 0.1636
Largest diff. peak/hole /e·Å–3 0.355/–1.094 1.783/–0.454 1.329/–3.146
CCDC number 2,307,441 2,330,760 2,307,440

Fig. 1   ORTEP view of the 
molecular structures of com-
plexes 1 (left) and 2 (right) with 
ellipsoid probability level 30%. 
Only metal atoms and heter-
oatom is labeled
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Cd1–N2 of 2.351(3) Å. As shown in Fig. S2, the dihedral 
angles between the quinoline ring (C1-C9/N1) and benzene 
ring (C11-C16) are 5.494° and 33.981° in complexes 1 and 
2, respectively, indicating that the two rings in complex 1 
are almost coplanar. Molecules with good coplanarity often 
possess specific chemical properties and reactivity [29–31].

In the crystals of these two complexes, the intermo-
lecular hydrogen bonding interactions (listed in Table 2) 
further connect the mononuclear molecules to generate a 
supramolecular architecture. In the supermolecular assem-
bly of 1, no classic hydrogen bonds were found and only 
weak interactions exhibited intermolecular C–H···O bonds 
interactions, which played vital role in stabilizing the crystal 
structure [32, 33]. As shown in Fig. 2, molecules of com-
plex 1 were linked by two hydrogen bonds C3–H3···O4 and 
C10–H10···O2 to form the different dimers. These dimers 
were further linked by C7–H7···O3 hydrogen bonding to 

give rise to 3-D supramolecular structure in space. The 
molecular packing in the crystals of complex 2 was very dis-
tinct from that of complex 1. Two C–H···O hydrogen bonds 
C10–H10···O3 and C22–H22C···O4 linked adjacent mol-
ecules to form a one-dimensional T-shaped chain arrange-
ment along c-axis (Fig. 2).

X-ray crystallography analysis has revealed that 
complex [CdL2(NO3)2]·CH3CN (3) forms a 2:1 ligand 
to metal stoichiometry, and crystallizes in the triclinic 
system with P1 space group and consists of one Cd(II) 
ion, two ligand L, and two nitrate anions participating in 
coordination (Fig. 3). In addition, the asymmetric unit of 
complex 3 contains a crystalline acetonitrile molecule. 
Some important bond distances and angles of complex 
3 are listed in Tables S5 and S6. Each cadmium ion was 
associated with two quinoline nitrogen atoms (N1, N3), 
two imine nitrogen atoms (N2, N4) in the ligand, and four 

Table 2   Hydrogen bond lengths 
(Å) and angles (◦) for complexes 
1–3 

Complex D–H···O d(D–H)/ Å d(H···A)/ Å d(D···A)/ Å ∠(DHA)/ (◦)

1 C3–H3···O4 0.930 2.581 3.343 139.411(1)
C7–H7···O3 0.930 2.583 3.289 133.116(1)

C10–H10···O2 0.930 2.500 3.326 148.167(1)
2 C10–H10···O2 0.930 2.533 3.386 152.754(5)

C22–H22C···O4 0.960 2.512 3.459 168.569(4)
3 C16–H16···O4 0.930 2.542 3.362 147.238(2)

C30–H30···O3 0.930 2.484 3.381 161.832(2)

Fig. 2   Intermolecular hydro-
gen bonds with selective atom 
numbering scheme, view of 3-D 
supramolecular assembly of 1 
(up) and 1-D chain of 2 along 
ab-plane (down)
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oxygen atoms (O4, O5, O7, O8) from the nitrate ions. The 
central metal cadmium(II) ion of complex 3 can be best 
described as a triangular dodecahedron (Fig. 3). Due to 
the participation of two ligand L molecules in coordina-
tion, the structure of complex 3 is relatively distorted, 
with the dihedral angles between the quinoline ring and 
the benzene ring being 49.507° (Fig. S3) and 51.396° 
(Fig. S4), respectively.

In the supermolecular assembly of 3, two C–H···O 
hydrogen bonds C16–H16···O4 and C30–H30···O3 
linked adjacent molecules to form a one-dimensional 
chain arrangement along b-axis (Fig.  4). In addition, 
one-dimensional chains were further linked into a two-
dimensional layered structure through π–π stacking. For the 
π–π stacking interaction, the centroid–centroid distance of 
the two rings (N3/C19-C27) and the two rings (N1/C1-C9) 
were 3.744 Å and 3.725 Å, respectively. These rings were 
stacked with a dihedral angle close to 0 ◦.

TGA, FT‑IR and NMR Analysis

The thermal stabilities of complexes 1–3 were examined 
under an N2 atmosphere from 40 to 800 °C, as depicted in 
Fig. 5. This investigation aimed to verify the crystalline sol-
vent content and assess the structural stability of these com-
plexes. For complex 1, its TGA curve showed weight loss 
only when the temperature reached 217 °C, and the product 
above 600 °C might be ZnO (found: 17.41%; calcd: 17.38%). 
Similarly, complex 2 began to undergo structural collapse 
and ligand decomposition at temperatures above 188 °C, and 
the product above 600 °C should be CdO (found: 25.72%; 
calcd: 25.63%). For complex 3, the crystallized solvent mol-
ecule acetonitrile was released in the temperature range of 
78 to 153 °C (found: 4.90%; calcd: 4.95%), and a second 
weight loss occurred above 238 °C along with structural 
collapse and ligand decomposition. The final product above 
600 °C may be CdO (found: 15.62%; calcd: 15.65%). From 

Fig. 3   ORTEP view of the 
molecular structure of complex 
3 (left) with ellipsoid probabil-
ity level 30%. Only metal atoms 
and heteroatom is labeled. The 
coordination geometry of com-
plex 3 (right)

Fig. 4   Packing diagram of 3 
along b-axis through intermo-
lecular hydrogen bonds and π–π 
interactions. Acetonitrile mol-
ecules are omitted for clarity
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the results of the analysis, complex 3 containing crystalline 
solvent (238 °C) exhibited higher thermal stability compared 
to complexes 1 (217 °C) and 2 (188 °C).

The FT-IR spectra of the free ligand L and complexes 1–3 
(Figs. S5–S8) provide the significant information about the 
binding of ligand L to the metal atom. Table 3 presents the 
stretching frequencies for υ(Ar–H), υ(–CH3), υ(C = N), υ(C–O), 
and δ(–CH3) modes of ligand L with corresponding shifts. 
In this paper, the Schiff base ligand L can form coordination 
bonds with Zn(II)/Cd(II) ions via the quinoline nitrogen and 
imine groups. In complexes 1–3, the stretching bands in the 
3046–3079 cm–1 region are assigned to the (C–H) of aromatic 
ring, bands at 1609–1618 cm–1 signify the (C = N) of imine 
group, 1228–1234 cm–1 represent the (C–O) corresponding to 
the methoxy group [34, 35]. Moreover, the stretching vibration 
and the deformation vibration peaks of –CH3 were found in 
the FT-IR spectra of complexes 1–3. Due to the formation of 
complexes, the IR bands of complexes 1–3 were slightly shifted 
compared with those of ligand L. Notably, at 1628 cm−1, the 
ligand L has a a characteristic C = N stretching band, which 
is shifted to lower frequencies by 10–19 cm–1 in complexes 
1–3, implying the coordination of the imine nitrogen and 
Zn(II)/Cd(II) ions [36, 37]. In addition, the new non-ligand 
stretching bands in the low-frequency regions 519–522 cm–1 
are attributed to υ(M–N) [38, 39], which can also be evidence 
for the formation of M–N coordination bond.

The 1H NMR spectra of the non-magnetic zinc/cadmium 
complexes provide further evidence for the ligand L bonding 
mode (Figs. S9–S12). The 1H NMR spectra of L and 1–3 were 
recorded in DMSO–d6 at room temperature. Compared with the 
1H NMR data of ligand L (δ 8.86 ppm), the proton signals of the 
imine (–CH = N) group appear as singlets at δ 8.87, 8.93, and 

8.82 ppm for complexes 1–3, respectively. The chemical shifts of 
imine proton hydrogen are slightly changed due to the coordination 
of imine nitrogen with Zn(II)/Cd(II). The proton hydrogens located 
on the quinoline ring and benzene ring of complexes 1–3 exhibit a 
precise one-to-one correspondence with their respective chemical 
structures. Detailed data of NMR spectra, including the chemical 
shifts, peak patterns, coupling constants of different hydrogen/
carbon are listed in Section 2.2. In addition, the proton signals of 
the methoxy (–OCH3) group appear as singlets at δ 3.86, 3.86, 
and 3.84 ppm, protons of the methyl (–CH3) group attached to the 
phene ring as singlet at δ 2.16, 2.17, and 2.15 ppm in complexes 
1–3, respectively. In contrast to the ligand L, the presence of the 
protons of the acetate (–OOCCH3) group signals was observed 
in complexes 1 and 2, located at 1.79 and 1.81 ppm, respectively. 
Additionally, the proton peaks of crystallized acetonitrile molecules 
(δ 2.05 ppm) appeared in complex 3, which is consistent with 
the structure analyzed by single-crystal X-ray diffraction. The 
integration values of different proton are consistent with the 
number of proton atoms in the structure of complexes 1–3, and no 
organic impurities were observed [40, 41].

In the 13C NMR spectra of the ligand L and complexes 
1–3 (Figs. S13–S16), the peaks were consistent in accord-
ance with the total number of carbon atoms in the structure. 
The peaks corresponds to characteristic imine (–CH = N) car-
bons, which appeared at 160.21, 177.34, 178.45, 160.34 ppm 
in L and 1–3, respectively. Peaks are observed in the ranges 
of 55.81–55.90 ppm and 16.25–22.87 ppm, corresponding to 
–OCH3 carbon and –CH3 carbon in the structure respectively. 
To sum up, 1H and 13C chemical shifts in the NMR spectra 
of complexes 1–3 display the expected shifts of those reso-
nances due to proton and carbon atoms close to N donor atoms 
involved in bonding to zinc/cadmium.

Fig. 5   The TGA curves for complexes 1–3 

Table 3   Important IR data 
(cm–1) of L and its complexes 
1–3 

a  The IR data of ligand L were obtained from literature [20]

Compound υ(Ar–H) υ(–CH3) υ(C = N) υ(C–O) δ(–CH3) υ(M–N)

La 3056 2972, 2829 1628 1237 1451, 1371 –
ZnL(OAc)2 (1) 3046 2945, 2838 1618 1232 1462, 1381 519
CdL(OAc)2 (2) 3062 2965, 2838 1609 1228 1469, 1382 520
[CdL2(NO3)2]·CH3CN (3) 3079 2974, 2838 1616 1234 1459, 1382 522
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UV–Vis Spectroscopy

The electronic spectra of the ligand L and its complexes 1–3 
(2 × 10–5 mol L–1) were recorded in acetonitrile solution. As 
shown in Fig. 6, the absorption bands of complexes 1–3 are 
similar to those of L. The ligand L shows three peaks at 252, 
298 (sh), and 348 nm. The high-energy bands at 252 and 
298 (sh) nm belong to the π → π* transition of the quinoline 
ring, and the low energy bands at 348 nm are mainly caused 
by n → π* transitions of imine group (–CH = N) [42, 43]. 
the UV–Vis absorption data are summarized in Table  4. 
The extinction coefficients of these bands fall into the range 
104–105  M−1  cm−1. The red shift of peaks in complexes 
1–3 is mainly due to ligand-based transitions, displaying 
that the quinoline nitrogen atom and imine nitrogen atom 
are coordinated with Zn(II)/Cd(II) ions [44, 45]. Due to the 
presence of d10 electron configuration in Zn(II)/Cd(II), no low-
energy d → d transition was observed in 1–3 [46, 47].

Fluorescence Properties

As we mentioned before, the Zn(II)/Cd(II) complexes 
can serve as potential luminescent materials for organic 
light-emitting diode (OLED) applications [48]. Therefore, 

we investigated the solid-state luminescent properties of 
complexes 1–3 at room temperature. As shown in Fig. 7, the 
ligand L and complexes 1–3 exhibit similar fluorescence 
emission bands, with maximum emission peaks are located 
at 518, 564, 524, and 542 nm, respectively. These values 
exhibit a red shift relative to the position of the maximum 
emission peak in acetonitrile solution. The fluorescence 
data are summarized in Table 4. The photoluminescence 
properties of the Zn(II)/Cd(II) complexes are primarily 
attributed to intramolecular ligand emissions, which are 
due to the presence of the d10 electronic configuration 
[49, 50]. Compared to the free ligand L, the fluorescence 
emission peaks of complexes 1–3 exhibit a significant 
red shift and an increase in fluorescence intensity. This 
can be attributed to the enhanced structural rigidity of 
complex resulting from coordination [51]. In addition, the 
differences in fluorescence intensity among complexes 1–3 
may be related to the heavy atom effect of cadmium [52]. 
Under the irradiation of a 365 nm UV lamp, the Zn(II) 
complex 1 exhibits bright orange-yellow fluorescence 
(Fig. 7), which may be related to the good coplanarity of 
its structure (the dihedral angle is 5.494°, close to 0°). The 
fluorescence of complexes 1–3 in acetonitrile solution is 
weak (Fig. 7), which may be due to solution quenching [53, 
54]. These results show that complexes 1–3 can be used as 
a potential luminescent materials.

DFT Studies

We calculated the HOMO and LUMO of ligand L and com-
plexes 1–3 using the B3LYP method with the 6–31G(d)/
LANL2DZ basis set. The optimized geometries are derived 
from the single-crystal structures of complexes 1–3. The 
electron clouds of the highest occupied molecular orbital 
(HOMO) of L and 1–3 are primarily distributed over the 
benzene rings and C = N double bonds, whereas the electron 
clouds of the lowest unoccupied molecular orbital (LUMO) 
are localized on the quinoline rings. Consequently, the tran-
sitions observed in complexes 1–3 can be ascribed to metal-
perturbed ligand internal π → π* transitions. As depicted in 
Fig. 8, the energy gaps between HOMO and LUMO of L and 
1–3 are 3.53, 3.02 eV, 3.08 eV and 3.30 eV, respectively. A 
smaller energy gap implies a longer maximum absorption 
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Fig. 6   UV–Vis spectra of ligand L and complexes 1–3 in acetonitrile 
solution

Table 4   UV–Vis absorption and fluorescence emission data of L and its complexes 1–3 

Compound Absorption/nm (ε/M−1 cm−1, CH3CN) Assignements Fluorescence/nm Assignements

Solid sate CH3CN

L 252 (45,978), 298sh (19,250) 348 (19,018) π → π*, n → π* 518 412 π → π*, π → π*
ZnL(OAc)2 (1) 244 (38,769), 290sh (14,982) 354 (4528) π → π*, n → π* 564 415 π → π*, π → π*
CdL(OAc)2 (2) 252 (28,778), 300sh (10,685) 354 (11,503) π → π*, n → π* 524 460 π → π*, π → π*
[CdL2(NO3)2]·CH3CN (3) 248 (40,800), 330sh (9131) 374 (8118) π → π*, n → π* 542 468 π → π*, π → π*
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wavelength [55], which is generally consistent with their 
experimental spectroscopic results.

ESP Analysis

The electrostatic surface potential (ESP) pertains to the 
distribution of electrostatic potential across a specific 
surface enveloping a molecule. It is intimately associated 
with the electronegativity, electron density, partial charges, 
dipole moment, and chemical reactivity inherent to the 
molecule [56, 57]. ESP stands as a pivotal instrument in 
the elucidation and anticipation of molecular reactions. 

Divergent colors are employed to visualize the magnitudes 
of electrostatic potential across distinct surface areas, 
thereby offering a precise representation of the electrostatic 
potential distribution on the molecular surface [58]. When 
the ESP exhibits blue on the molecular surface, it denotes 
the presence of a negative electrostatic potential, thereby 
implying a tendency towards the occurrence of electrophilic 
reactions [59]. As seen from Fig.  9 in ligand L and 
complexes 1–3, the regions exhibiting negative potential 
are situated around the benzene rings and nitrogen atoms, 
suggesting that hydrogen bonds can readily form in this 
particular region [27].

Fig. 7   Fluorescence emission 
spectra of the ligand L and 
complexes 1–3. Left: in the 
solid-state (λex = 365 nm, Ex 
slit: 5.0 nm, Em slit: 1.0 nm); 
right: in acetonitrile solu-
tion. The solid-state (left) and 
liquid-state (right) fluorescence 
photos under 365 nm UV lamp 
irradiation

Fig. 8   Frontier molecular orbitals of the free ligand L and complexes 1–3 and their LUMO–HOMO gaps
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Conclusions

In this study, we studied the synthesis, characterizations and 
crystal structures of three Zn(II) and Cd(II) complexes of a 
Schiff base, (E)-N-(3-methoxy-4-methylphenyl)-1-(quinolin-
2-yl)methanimine. In complexes 1–3, intermolecular C-H···O 
hydrogen bonds and π–π stacking interactions connect mol-
ecules to form different supermolecular structures, which 
further stabilize the crystal structures. Further, fluorescence 
analysis of complexes 1–3 showed that the coordination inter-
action between the metal and ligand enhances the fluores-
cence emission intensity and leads to a red shift in emission. 
The solid-state fluorescence emissions of 1–3 were observed 
at 564, 524, and 564 nm, respectively, exhibiting bright yel-
low-green fluorescence, suggesting their potential as lumi-
nescent materials. In addition, the mechanism of fluorescence 
enhancement in complexes was verified through theoretical 
calculations.
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