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Abstract
Solvent environment on third-order nonlinear optical (TNLO) features of triarylmethane dye namely, basic blue 7 in dif-
ferent solvents is reported herein using 650 nm diode laser with continuous wave mode. The basic blue 7 dye is dissolved 
in different solvent media including ethanol, methanol, dimethyl formamide (DMF) and dimethyl sulfoxide (DMSO). The 
influence of solvent characteristics such as solvent polarizability and dipole moment on solute molecule is discussed. TNLO 
characteristics such as nonlinear optical index of refraction, nonlinear optical coefficient of absorption, real and imaginary 
components of the TNLO susceptibility are measured to be the order of  10‒7  cm2/W,  10‒3 cm/W,  10‒6 esu and  10‒7 esu, 
respectively. The dye exhibits large TNLO susceptibility by dissolving in DMSO. The TNLO susceptibility of basic blue 
7 dye is measured to be the order of  10‒6 esu. The overall results revealed that the basic blue 7 dye is suitable material for 
optoelectronics applications.
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Introduction

Nonlinear optics is the thrust area in physics which is widely 
applied in optical switching and limiting, optical data stor-
age, optical computing, optical communication, 3D image 
photography, three photon microscopy, etc. [1–5]. Nonlinear 
optical (NLO) materials are the key role for above mentioned 
applications. Verity of materials including organic dyes 
[6–10], single crystal [11], semiconducting materials [12], 
nanomaterials [13], graphene [14], polymer nanocomposites 
[15], natural pigments [16–18], etc., are used recently for 
NLO study. Among these materials, organic dyes are always 

increasing the interest of the researchers due to high TNLO 
susceptibility, large molecular polarizability, high stabil-
ity, structural flexibility, etc. [19, 20]. Variety of dyes with 
corresponding families such as azo [21], triphenylmethane 
[22], triarylmethane [23], indigo [24], anthraquinone [25], 
thiazine [26], cyanine [27], styryl [28] and xanthene [29] are 
involved in TNLO study. Basic blue 7 dye is a triarylmeth-
ane family which is predominantly used in textile dyeing, 
including wool, silk, cotton, and leather.

Various experimental techniques are used to quantify the 
TONLO features of the compounds such as degenerate four-
wave and three-wave mixing, ellipse rotation, beam distor-
tion, Z-scan technique, etc. [30–34]. Among the available 
experimental techniques, Z-scan is the most sensitive and 
simple tool to calculate the TONLO characteristics of the 
materials [35]. This technique has wide advantages includ-
ing easy experimental procedure, sign and magnitude of the 
NLO index of refraction and NLO coefficient of absorption 
is simultaneously measured from closed and open aperture 
techniques, simple calculation, real and imaginary features 
of the sample is simultaneously measured from the experi-
ments, etc.

NLO features of solute molecules changes with respect 
to molecular surrounding environment [36]. The TNLO 
properties of organic molecules increases with decrease 
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in energy gap between highest occupied molecular orbit 
(HOMO) and lowest unoccupied molecular orbit (LUMO). 
The HOMO–LUMO energy gap is decreased by two ways; 
one is structural modification and another one is solute– 
solvent interaction. The interaction between solvent and sol-
ute molecule can change the physical, chemical and biologi-
cal behaviors of the sample and are divided into non-specific 
and specific interaction. Specific interactions include hydro-
gen bond and intermolecular charge transfer, whereas non-
specific interactions comprises of dielectric enrichment [37]. 
The solvent effect on the solute molecules is calculated by 
solvatochromism and solvent polarity index [37].

This paper reports the TNLO features of basic blue 7 
dye in different solvents such as ethanol, methanol, acetone, 
1-proponal, DMF and DMSO.

Materials and Methods

All the chemicals and basic blue 7 dye are purchased from 
Sigma Aldrich and used as such. The dye is dissolved into 
ethanol, methanol, DMF and DMSO with 0.01 mM con-
centrations. The molecular structure of the dye is shown 
in Fig. 1. Table 1 represents the spectral properties of the 
used solvents and linear absorption coefficient of basic blue 
7 dye.

Z‒Scan Technique

The Z–scan experimental method is shown in Fig. 2. A semi-
conductor diode laser with a CW output power of 5 mW 
operating at a wavelength of 650 nm is used for the studies. 
A convex lens with 50 mm focal length is placed before the 
cuvette. A 1 mm thick cuvette is filled with the basic blue 
7 dye in various solvents is placed on the micrometer stage 
and translate from -Z to + Z positions. The closed aperture 
and open aperture techniques are used to measure the  n2 and 
β of basic blue 7 dye. To measure the beam transmittance, a 
power meter is positioned at far from the source. The condi-
tion for thin sample is validated because the measured Ray-
leigh length is greater than sample length  (ZR >  > L).

Results and Discussions

UV–Visible Absorption Study

Figure 3 shows the UV–Visible absorption spectrum of basic 
blue 7 dye. The absorbance of basic blue 7 dye in ethanol, 
methanol, DMF and DMSO is 612 nm, 619 nm, 605 nm 
617 nm, respectively. Furthermore, the maximum absorb-
ance of basic blue 7 dye is observed when the dye sample 
is dissolved in DMF. The absorption maximum of the dye 
sample is shifted towards the red region of the spectrum by 
increasing the solvent polarizability. The may be due to the 
result of π-π* transition where the excited states is more 
polarized than the ground state [38]. This is known as red 
shift or bathochromic shift. 

TNLO Study

The open aperture (OA) and closed aperture (CA) Z‒scan 
techniques are used to calculate the TONLO susceptibility 
(χ(3)) of the sample. In the CA approach, an aperture is posi-
tioned in front of the detector with an appropriate opening 
so that only the center portion of the Gaussian beam enters 
into the detector. In OA method, a converging lens is used to 

Fig. 1  Molecular structure of basic blue 7 dye

Table 1  Linear optical 
properties of basic blue 7 dye 
and spectral parameters of polar 
solvents

Solvent Linear 
refractive 
index
(n0)

Dielectric 
constant
(ε)

Hydrogen 
bond donor
(α)

Hydrogen 
bond acceptor
(β)

Polarizability
(π*)

Linear 
absorption 
coefficient
(α0/cm)

Methanol 1.329 32.7 0.98 0.66 0.60 2.09
Ethanol 1.361 24.50 0.86 0.75 0.52 5.50
DMF 1.430 38.00 0.00 0.69 0.88 5.79
DMSO 1.479 46.68 0.00 0.76 1.00 5.09
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collect the beam transmittance, which is positioned in front of 
the detector. Closed and open aperture techniques are used to 
calculate the sample's nonlinear index of refraction and non-
linear coefficient of absorption, which are directly related to 
the real component and imaginary part of χ(3) respectively. 
Figure 4(a–d) illustrates the open aperture result of basic blue 
7 dye in ethanol, methanol, DMF and DMSO at 0.01 mM 
concentration. In Fig. 4(a–d), the nonlinear absorption (NLA) 
curve of basic blue 7 dye shows both negative and positive 
nonlinear absorption due to saturable absorption (SA) and 
reverse saturable absorption (RSA) features of the dye sam-
ple. The transmittance curve of basic blue 7 dye dissolved 
in DMF and DMSO shows RSA character, while the sample 
displays SA features in ethanol and methanol. SA arises from 
high light intensities at the focus and therefore the photon 

absorption significantly increasing before attaining to the 
ground state. Conversely, basic blue 7 dye is dissolved in DMF 
and DMSO displays RSA, due to strong interaction between 
the light intensity and the dye sample at the focus. The excited 
state absorption cross-section is larger than ground state is 
the consequence of RSA. Furthermore, the five level model 
gives the information about the nonlinear absorption mecha-
nism of organic sample [19]. This model consists of various 
energy levels which contain singlet and triplet states with cor-
responding vibrational energy levels as shown in Fig. 5. A 
process that transforms a singlet ground state to excited state 
simultaneously by absorbing two photons of the same or dif-
ferent energies is known as two-photon absorption. Saturable 
absorption is the process in which transition from singlet state 
to triplet state through intersystem crossing (ISC). Transition 
from first singlet state to excited singlet state or first triplet 
state to excited triplet state is called excited-state absorption 
(ESA) or RSA.

The RSA is the predominant NLA mechanism in organic 
dyes, and it may be improved if the electrons from  S1 were 
moved to  T1 via an ISC from where  T2 would take place. 
Due to absorption of CW laser irradiation at a wavelength 
of 650 nm, the ESA may also contribute to the NLA process 
[19]. As a result, the reported NLA of basic blue 7 dye in DMF 
and DMSO is ESA assisted RSA. The nonlinear absorption 
transmittance in the open aperture approach is provided by,

where

(1)T(z, s = 1) =

∞
∑

m=0

[

−qo(z)
]m

[m + 1]
3

2

, for|
|

qo(0)
|

|

< 1

(2)q0 =
�IoLeff

(

1 + Z2
∕Z2

0

)

Fig. 2  Experimental setup for 
the Z–scan measurement

Fig. 3  UV–Visible absorption spectrum of basic blue 7 dye
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where  Leff = effective length of the sample and  Zo = sample 
diffraction length. The nonlinear absorption coefficient (β) 
is given by,

The sign and magnitude of nonlinear refractive index 
are determined using the CA method. The nonlinear refrac-
tion measured from closed technique includes the influ-
ence of NLR and NLA [35].Therefore, the pure portion of 
NLR is obtained by dividing the relevant open aperture 
data from the closed aperture data. Figure 6(a–d) shows 
the pure nonlinear refraction curve of basic blue 7 dye in 
ethanol, methanol, DMF and DMSO. The curve exhib-
its pre focal peak followed by post focal valley transmit-
tance in all the solvents is the outcome of self-defocusing. 
Self-defocusing is arises from thermal nonlinearity which 
arises from the continuous absorption of used light source. 
Thermal lensing results from a change in the sample's 

(3)� =
2
√

2ΔT

I0Leff

�

cm

W

�

Fig. 4  Open aperture Z‒scan results of basic blue 7 dye in a Ethanol b Methanol c DMF d DMSO
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Fig. 5  Five-level energy diagram
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internal temperature brought on by the continuous wave 
(CW) laser irradiation. The sample acts as a defocusing 
lens when its temperature rises and its index of refrac-
tion turns negative. The origin of nonlinear refraction in 
materials may be electronic, molecular, electrostatic or 
thermal nonlinearity [35]. In organic samples thermal non-
linearity is the leading mechanism which is confirmed by 
peak-valley separation. The peak-valley separation is 1.7 
times the Rayleigh length is the clear indication of thermal 
nonlinearity [35]. The normalized transmittance of the dye 
sample is given by,

where X = Z/Z0.

(4)T(z) = 1 − Δ∅o

4X

(X2 + 1)(X2 + 9)

The nonlinear index of refraction  (n2) is calculated by using 
the relation

where Δ∅0 = On-axis phase shift, λ = Wavelength of the 
light source and  I0 = Intensity of the light beam at the focus.

The measured value of nonlinear refractive index of basic 
blue 7 dye in ethanol, methanol, DMF and DMSO solvents is 
tabulated in Table 2. The real and imaginary components of 
χ(3) is given by,

(5)n2 =
Δ∅0�

2�I0Leff

(

m2

W

)
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Fig. 6  Pure nonlinear refraction results of basic blue 7 dye in a Ethanol b Methanol c DMF d DMSO
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where c = velocity of light in vacuum and ε0 = vacuum per-
mittivity. The TONLO susceptibility of basic blue 7 dye is 
given by,

The calculated value of TONLO susceptibility χ(3) of 
basic blue 7 dye is presented in Table 2. It is noted from 
Table 2 that, the dye sample exhibits large nonlinear optical 
susceptibility in DMSO than other polar solvents.

The solvent effect on the solute molecules was deter-
mined by solvent polarity scale or solvatochromism. The 
solvent environment plays a major role between solute and 
solvent interaction and it influences the TONLO charac-
teristics of the materials [36]. Solvent parameters such as 
solvent hydrogen bond donor, solvent hydrogen bond accep-
tor, dipole moment and polarizability are the major spectral 
factors that affecting the TONLO properties of the sample. 
Figure 7(a) & (b) shows the TONLO susceptibility of basic 
blue 7 dye as a function of polarizability and dipole moment 
of the polar solvents. It is noticed in Fig. 7(a) & (b) that the 

(7)Im
[

� (3)
]

(esu) =
�0c

2n2
0
�

10
2
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�
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2
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TONLO susceptibility of basic blue 7 dye increases with 
increase in solvent polarizability and dipole moment. Fur-
thermore, the nonlinear absorption coefficient of basic blue 
7 dye switchover from saturable absorption to reverse satu-
rable absorption due to increase in solvent polarizability and 
dipole moment.

Conclusion

In conclusion, the TONLO features of basic blue 7 dye in 
ethanol, methanol, DMF and DMSO at 0.01 mM concen-
tration was studied using single beam Z‒scan technique. 
The UV–Vis absorption spectrum revealed that the dye sam-
ple possesses positive solvatochromism by increasing the 
polarity of the solvent. TONLO features of the dye sample 
was studied using 5 mW power laser working at 650 nm 
wavelength. The open aperture curve of the dye sample in 
different solvents exhibits both SA and RSA properties and 
closed aperture transmittance revealed the character of self-
defocusing. The self-defocusing effect is the result of ther-
mal nonlinearity. The order of TONLO susceptibility χ(3) of 
basic blue 7 dye in polar solvents was found to be  10─6 esu. 
The basic blue 7 dye exhibit large optical nonlinearity when 

Table 2  TONLO characteristics 
of basic blue 7 dye

Solvent n2 X  10–7

(cm2/W)
β X  10–3

(cm/W)
Re (χ3) X  10–6

(esu)
Im (χ3) X  10–7

(esu)
χ(3) X  10–6

(esu)

Methanol –1.39 –4.69 –0.45 –0.59 0.45
Ethanol –2.79 –3.37 –0.51 –0.37 0.52
DMF –3.02 2.64 –1.13 0.51 1.13
DMSO –3.62 5.94 –1.45 1.23 1.46

Fig. 7  TONLO susceptibility ( �3 ) of basic blue 7 dye as a function of a polarizability and b dipole moment of the solvents
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it dissolved in high polar solvent such as DMF and DMSO. 
The results suggest that the dye sample studied here is a 
potential material for future NLO applications.
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