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Abstract
Employing the Molecular Electron Density Theory, [3 + 2] cycloaddition processes between 4-chlorobenzenenitrileoxide 
and linalool, have been applied using the DFT/B3LYP/6–311(d,p) method, activation, reaction energies and the reactivity 
indices are calculated. In an investigation of conceptual DFT indices, LIL-1 will contribute to this reaction as a nucleophile, 
whilst NOX-2 will participate as an electrophile. This cyclization is regio, chemo and stereospecific, as demonstrated by the 
reaction and activation energies, in clear agreement with the experiment's results, in addition, ELF analysis revealed that the 
mechanism for this cycloaddition occurs in two steps. Furthermore, a docking study was conducted on the products studied, 
and the interaction with the protein protease COVID-19 (PDB ID: 6LU7), our results indicate that the presence of the –OH 
group increases the affinity of these products, moreover, adsorption study by chromatography was made on silica gel as 
support; our outcome reveals that the –OH group creates an intramolecular hydrogen bond in the product  P2, while in the 
product  P3 will create a hydrogen bond with the silica gel which makes the two products  P2 and  P3 are very easy to separate 
by chromatography, this result is in excellent agreement with the  Rf retention value. The study might provide a fundamental 
for developing natural anti-viral compound in promoting human health.
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Introduction

Heterocyclic synthesis is a field of chemistry that involves the 
production of cyclic molecules that include atoms other than 
carbon in the ring [1–4]. Heterocyclics are frequently used 
in many chemicals, including drugs, pigments, and flavors, 
making them important for many industrial and scientific 

applications [5–8]. There are several methods for synthesizing 
heterocyclic, the most interesting of which is intermolecular 
cyclization [9–11], as an example 1,3-dipolar cycloaddition 
reaction, in this a chemical reaction in which two molecules, 
add together to form a ring [12–14]. This reaction is character-
ized by the formation of a covalent bond between two distant 
atoms in the reactants, resulting in the formation of a new ring. 
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1,3-dipolar cycloaddition reactions are very useful for the syn-
thesis of complex molecules like isoxazolines [15–17].

The isoxazolines includes a group of organic compounds 
that have in common the presence of an isoxazoline ring in 
their chemical structure (Fig. 1). Isoxazolines can be pro-
duced by different methods, such as oxazole-nation reaction 
or condensation of carbaldehydes with amines and 1,3-dipo-
lar cycloaddition reaction [18–21]. Isoxazolines are used in 
many industrial applications, such as herbicides, insecti-
cides, and drugs. Due to their unique properties, such as 
stability, and biological activity, isoxazolines are becoming 
increasingly popular in organic synthesis and to improve 
the biological activity of isoxazolines [22–25], their group 
is replaced by monoterpenes such as linalool.

Linalool is a colorless mono-terpene alcohol molecule, 
produced by several plants including lavender, basil, mint, 
and coriander, and is widely used in perfumery; linalool 
has also been studied for its potential medicinal proper-
ties and has been found to have analgesic, anxiolytic and 
anti-inflammatory effects [2], There is a lot of potential 
for linalool to be used as a secure and natural therapeu-
tic substitute. Many studies concentrate on the bioactive 
properties of linalool, including their modes of action and 
their anticancer, antibacterial, neuroprotective, anxio-
lytic, antidepressant, anti-stress, hepatoprotective, kidney 

protective, and lung protective activity. Additionally, the 
possibility of encapsulating linalool and the medicinal 
potential of linalool are examined. Through oxidative 
stress, linalool can cause cancer cells to die while simul-
taneously protecting healthy cells. Cell membrane disrup-
tion is how linalool exerts its antibacterial properties. The 
anti-inflammatory properties of linalool are what cause it 
to have beneficial effects on the liver, kidneys, and lungs. 
Linalool can be utilized as an adjuvant to antibiotics or 
anti-cancer medications due to its protective properties 
and minimal toxicity [2]. To increase the properties of 
this molecule, several reactions have been made as exam-
ple the 1,3-dipolar cycloaddition reaction, the dipole used 
is 4-chlorobenzenenitrileoxide which leads to two prod-
ucts. (Fig. 2).  (Rf formula is given supporting information 
(Fig. S1).

The molecular electron density theory (MEDT) abil-
ity to consistently that the molecular reactivity is con-
trolled by an electron density, in the context, numerous 
chemical reactions, including the [3+2] [26–35] and 
[4+2] cycloadditions [36, 37], the epoxidation reac-
tion [38–41], and the nitration reaction [42], have been 
explored, also, we have revealed that the MEDT theory 
offers more details than the FMO theory (Frontier Molec-
ular Orbital Theory) [43].

Within the framework of the theory (MEDT), we used 
the most educated and reliable method Density functional 
theory DFT/B3LYP/6-311(d,p) [38–46], to explain the 
cycloaddition reaction of Linallol and Chlorobenzene-
nitrile-oxide experimentally explored by Rouani et al [44] 
and its mechanism, chemoselectivity, regioselectivity, and 
stereoselectivity (Fig. 2), moreover, we performed out a 
docking evaluation for the potential products of this reac-
tion (Fig. 3) and we also performed a silica gel adsorption 
study of the two products P2 and P3 to understand why the 
two products are very easy to separate by chromotography 
on silica gel.

Fig. 1  Structures of isoxazolines and isoxazole

Fig. 2  Cycloaddition reaction 
between 4-ChlorobenzeneNi-
trileOxide and linalool  (Rf: 
retention value. (Rf formula is 
given supporting information 
(Fig. S1))
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Quantum Calculation Methods

All the computations are processed in Gaussian 09 [47] utilizing 
DFT/B3LYP/6–311(d,p) [44, 45] and GaussView5 to visualize 
reagents and products. The IRC (Intrinsic Reaction Coordinate) 
has been utilized to survey the reaction path from its initial state 
to its final state and the influence of the reaction solvent is 
counted by the Tomasi model (PCM). (Polarizable Continuum 
Model) [48–53]. The electronic chemical potential is desig-
nated:� =

EL+EH

2
 . The Chemical hardness is defined 

by:� = EL − EH , using the energies of the HOMO (Highest 
Occupied Molecular Orbital) and LUMO (Lowest Unoccupied 
Molecular Orbital) boundary molecular orbitals, are given by 
 EH and  EL. The global electrophilicity index (w) is a quantity 
used in chemistry to measure the tendency of a molecule to react 
as an electrophile is defined by the following formula: ω =

�
2

2�
 

[54], contrary to the index of electrophilicity, the index of nucle-
ophilie (N) is a concept useful to check the tendency of a mol-
ecule to react as a nucleophile, i.e. to give electrons to another 
molecule to form a chemical bond, defined as: E =  EHOMO 

(Nu)-EHOMO (TCE) [55]. Parr functions have been employed to 
find local indices, which are basic spin wave functions that are 
used in quantum chemistry to describe the electronic spin dis-
tribution in molecules [56, 57]. The electron localization func-
tion was described employing a Topmod software (ELF), this 
ELF is used to provide a representation of the distribution of 
electrons and electron cavities in the reagents [58, 59].

Adsorption Analysis Using Mds

MDs are an especially useful method to inspect the exact 
configuration for absorbates (two organic molecules)-substrate  
(silica surface) systems and determine the most stable adsorption 
configurations [60]. In this current research work, the Molecular 
dynamics computer simulations were executed in BIOVIA 
Materials Studio®Dassault Systèmes (formerly  Accelrys)  
software (2020 v20.1.0.2728) [61]. At the beginning of two 
P2&P3 molecules, in the gas phase. Because the COMPASS 
force field takes into account different types of interactions, 
such as covalent bonds, electrostatic interactions, van der Waals 

Fig. 3  a docking evaluation for 
the potential products
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interactions, etc. moreover, the positions and velocities of atoms 
are tracked over time to understand the dynamic behavior of 
a system. It is based on empirical parameters derived from 
experimental and theoretical data in order to best reproduce 
the properties and molecular behaviors observed the reason 
why the geometrically optimized by utilizing COMPASS 
force field in Forcite module. The purpose of these Molecular 
dynamics computer  simulations is to look at how the two 
products  P2 and  P3 interact with a Silicon dioxide surface 
in the gas phas. Thereafter geometry optimization by 
BIOVIA Materials Studio®Forcite model of the constructed 
solution slab was performed. Since the Silicon dioxide 
 (SiO2(110)) surface(Silica gel surface) has a tightly packed 
structure and is more energetically stable than other planes, 
it was chosen for this investigation instead of Silicon dioxide 
 (SiO2(110)). After that, the optimized constructed solution slab 
is placed above the  (SiO2(110)) surface maintaining a 10 Å 
vacuum slab as blank space at the uppermost layer to obtain a 
simulation model of (54,052*85,095*39,119Å). Before running 
MDs, the geometry of the built-in simulation model was tuned 
to prevent undesirable molecule configurations and produce an 
energy-optimal simulation setup. The stabilization of the energy 
and temperature fluctuation curves proved that the optimization 
approach had been effective. The Forcite module in BIOVIA 
Materials Studio®-Dassault Systems was employed to perform 
the Molecular dynamics computer simulations utilizing the 
COMPASS force field and NVT ensemble with a time step 
of (1 fs) for (100 ps) at 298 K. The MDs results showed that 

the targeted two products P2 and P3 become spontaneously 
interacting with  (SiO2(110)) surface atoms after the was 
completed. The following equation was used to calculate the 
interaction energy  (Einteraction) of  P2 and  P3 with  (SiO2(110)) 
surface [60].

Whereas  Etotal represents the total energy for adsorbate–substrate,
Esurface represents the energy surface of  (SiO2(110)) con-

taining the adsorbate (Simple organic molecules (two products 
P2 and P3) and  Eadsorbate represents the energy of the adsorbed. 
Again, the binding energy  (Ebinding) is the negative value of 
 Einteraction and it is determined as follows:

Results and Discussion

Computation of the CDFT Indices for the Reagents

Evaluating the reactivity indices providing inside CDFT is 
an effective procedure for understanding the reactivity of 
organic compounds, as revealed by numerous studies on 
chemical reactions [26–31]. Electrophilicity, nucleophilic-
ity, chemical hardness, and electronic chemical potential, 
which are the global indices listed in Table 1, are explored 
in order to predict the reactivity of Linollol (LIL-1) and 
nitriloxide (NOX-2) in the cycloadition reaction.

Table  1 demonstrates that the electronic chemical 
potential of linalool (LIL-1) (μ = -2.88 eV) is minor, in 
absolute value, then that of nitriloxide (NOX-2) (μ = -4.04 
eV), the global electron density transfer (GEDT) will pro-
ceed from LIL 1 to NOX-2.

Linalool (LIL-1) electrophilicity and nucleophilicity 
indices are calculated as w = 0.65 eV and N = 3.47 eV, 

(1)ΔE
interaction

(Kcal∕mol) = E
Total

− E
adsorbate

− E
substrate

(2)Ebinding = −Einteraction

Table 1  Nucleophilicity N, electrophilicity, Electrochemical potential 
and chemical hardness, values of NOX 2, as determined in B3LYP/6-
31G(d), all in electron volts (eV)

System η µ ω N

LIL-1 6.33 -2.88 0.65 3.47
NOX-2 4.85 -4.04 1.68 3.06

Fig. 4  B3LYP/6–311(d,p) Parr 
functions P+

k
 of Linalool 1 
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respectively. As a result, this substance can be categorized 
as being both a strong nucleophile and a moderate elec-
trophile. Since NOX-2 has an N nucleophilicity of 3.06 
eV and an w electrophilicity of 1.68 eV, it is classifiable 
as a strong nucleophile and a strong electrophile. Clearly, 
NOX-2 will involve in this reaction as an electrophile and 
LIL-1 will engage in this reaction as a nucleophile.

Due to the similar properties of both reactants, we shall 
categorize them using transition state charge transfers, 
from LIL-1 to NOX-2 transition state charge transfer will 
take place, the fact that LIL-1 will act as a nucleophile 
and NOX-2 will behave as an electrophile.

Because this 32CA reaction is non-polar, many studies 
show that the formation of the first bond in cycloaddition 
reactions takes place on the more electrophilic center of 
ethylene derivatives [26]. The electrophilic Parr functions 
of LIL-1 have been represented in Fig. 4.

Fig. 5  The ELF localization domains and valence basin populations

Fig. 6  Possible reaction routes 
in the cycloaddition process 
between linalool (LIL 1) and 
Chlorobenzenenitrileoxide 
(NOX 2) in ethanol
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Figure 4 shows that the Mulliken atomic spin densities 
 P+ of linalool are localized on the double bond  C1 =  C2 
(0.33; 0.21); and almost less area around the double bond 
 C5 =  C6 (0.17;0.17). This result showed that the double 
bond  C1 =  C2 is the most reactive part of linalool, which 
confirms the full chemoselectivity observed in experiment.

ELF Study of the Reagents

Electron location function (ELF) is important in chemistry 
because they determine the physical and chemical character-
istics of atoms and molecules, such as their reactivity, polar-
ity and molecular geometry. They are employed to explain 
the formation of chemical bonds, the reactivity of molecules 
and the interactions between molecules in chemical reactions, 
in order to identify the electrical structure of the reactants, 
(Linalool and Nitrile oxide); a topological ELF study of the 
two reactants was realized. The ELF localization domains 
and valence basin populations are arranged in Fig. 5.

ELF examination of the linalool reveals the exist-
ence of two bisynaptic basins linked to the C1-C2 and 
C6-C7 atoms with a value of V(C1, C2) = 3.53e and 
V(C6,C7) = 3.80e respectively, two other bisybaptic basins 
of value V(O,C3) = 1.25e and V(C5,C6) = 1.98e.

Analysis of Energy

The two reactants are asymmetric and we have two dou-
bles bond in linalool, so we will have eight cycloaddi-
tion reaction pathways, we will study five pathways, two 
pathways to prove the stereoselectivity and three others 
to explain the regio and chemioselectivity. Consequently 
we have located eight transition states named Ts-1, Ts-2, 
Ts-3, Ts-4 and Ts-5 the cyclic products corresponding 
to each transition state have been also characterized. The 
reactions activations relative energies are arranged in 
Fig. 6, Fig. 5 represents the profile of free energy and the 
different transition state geometries are given in Fig. 7, 

Fig. 7  Enthalpy profile, for the 
reaction pathways studied of the 
cycloaddition reactions between 
linalool (LIL 1) and Chloroben-
zenenitrileoxide (NOX 2) in 
ethanol
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while the supplemental file contains the total calculation 
(Table S1).

The transition states Ts-1, Ts-2, Ts-3, Ts-4, and Ts-
5 have respective values of 17.69 kcal/mol, 9.95 kcal/
mol, 14.70 kcal/mol, 21.05 kcal/mol, and 19.08 kcal/mol, 
designating that P1 product is kinetically more favora-
ble. The exothermic characters of these products are: P1 
(35.13kcal/mol), P2 (41.20 kcal/mol), P3 (40.23 kcal/
mol), P4 (31.74 kcal/mol), and P5 (34.64 kcal/mol), It 
reveals that the item P2 is thermodynamically favorable, 

thus the product P2 is gained under kinetic and thermo-
dynamic control.

Entropy is negative to the bimolecular process, causes 
the free Gibbs relative energies to increase intensely when 
the term TS is taken into account in comparison to the rel-
ative enthalpies of 13–14 kcal/mol, Fig. 5 illustrates that 
the free activation energy of the 2 + 3 cycloaddition reac-
tion paths between linalool (LIL 1) and Chlorobenzeneni-
trileoxide (NOX 2) in ethanol are: Ts-1 (31.64 kcal/mol), 
Ts-2 (22.96 kcal/mol) Ts-3 (27.51 kcal/mol), Ts-4 (34.62 

Fig. 8  The different transi-
tion state geometries that were 
localized in the cycloaddition 
reaction between linalool (LIL 
1) and chlorobenzenenitrileox-
ide (NOX 2)
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kcal/mol) and Ts-5 (33.35 kcal/mol), which indicates 
that pathway 2 is more favorable, so P2 is the favored 
product, consequently the 2 + 3 cycloaddition reaction 
between linalool (LIL-1) and Chlorobenzenenitrileoxide 
(NOX-2) is regiospecific, in addition, the energetic dif-
ference between Ts-2 and Ts4 is very great (11.66 kcal/
mol), difference between Ts-2 and Ts3 is (4.55 kcal/mol) 
indicates that the 2 + 3 cycloaddition reaction between 
linalool (LIL-1) and chlorobenzenenitrileoxide (NOX-2) 
is stereo- and chemo-selective, this outcome is consistent 
with the experiment.

Figure 8 illustrates the geometries of the transition 
states corresponding to the five chemical pathways.

The geometric parameters of the transition states shown 
in Fig. 5 allow for significant conclusions:

 (i) According to the bond lengths, evidently, the new 
single bonds are created in an asynchronous manner.

 (ii) The polar character of these cycloadditions reac-
tions was evaluated by analyzing the values of the 
GEDT (Global Electron Density Transfer) at the cor-
responding TS at 0.03 TS-1, 0.04; at TS-2, 0.04; at 
TS-3, 0.04; at TS-4, and 0.03 at TS-5 these values 
clearly indicate that these cycloaddition reactions 
have a non-polar character.

BET Study

Bond evolution theory is a theory in chemistry that 
describes how chemical bonds between atoms are evolving 
during a chemical reaction. This theory was developed to 
provide an explanation of how molecules are formed and 
change in chemical reactions. According to this theory, 
chemical bonds evolve from transition states that form 
during a chemical reaction. This theory is widely used to 

understand the mechanisms of chemical reactions; in part 
evolutions of new bonds have been controlled and followed 
using Topmod software. Figure 9 illustrates the locations of 
the associated ELF basin attractors, while Table S2 displays 
information on the populations of the most important ELF 
valence basins that were contributing to the formation of 
C–C and C-O single bonds in the selected structures.

The C1 structure contains two monosynaptic basins 
carried by oxygen O1 of nitrileoxide of total value 
V(O1)=5.65e and two bisynaptic basins located between 
C1-N and N1-O1 of values respectively V(C1-N)= 5.93e 
and V(N-O1)= 1.64e, another bisynaptic basins located 
between C2-C3 of value V(C1-N)=3. 41e, which indicates 
this structure corresponding to the structures of the sepa-
rate reactants, these two basins vary from structure C1 to 
structure C4, in structure C5 appearance of a monosynap-
tic basin carried by the carbon C1 of value V(C1)=0. 05e, 
this value increases and becomes 0.43e in structure C7 in 
the same structure we observe the appearance of two other 
monosynaptic basins carried by the oxygen O1 of value 
V(O1) = 0.11e and another carried by the carbon C2 of 
value V(C2)=0. 26e, these values become V(C1)=0.65e 
and V(C2) = 0.45e in the C9 structure, the two monosyn-
aptic basins V(C1) and V(C2) are going to form the first 
C1-C2 bond at a distance of 2.002A, at this distance we 
have the formation of 61% of the C1-C2 bond.

In the C10 structure, we have the appearance of a 
monosynaptic basin carried by the C3 carbon of value 
V(C3)= 0.12e, this value becomes 0.16e in the C11 
structure and the value of the basin V(O1) becomes 
0.40e, the basins V(O1) and V(C3) are going to form 
the second single bond at a distance 1.753A at this dis-
tance 39% of the O1-C3 bond has been formed. This 
ELF study clearly shows that the cycloaddition reaction 
between Linallol and Chlorobenzene-nitrile-oxide fol-
lowed a two-step mechanism.

Fig. 9  The locations of the corresponding ELF basin attractors
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Fig. 10  3D and 2D interaction 
diagrams of P1-P5 compounds 
with SARS-CoV-2 receptor 
PDB ID:6LU7
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Docking Survey

Coronavirus Disease-2019 (COVID-19) is a respira-
tory disease caused by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) which shares a 
close relation to RNA viruses [62–66]. Herein, theoreti-
cal approaches for the discovery of new antiviral drugs 
for COVID-19 were carried out using molecular dock-
ing studies with the SARS-CoV-2 main protease (PDB 
ID: 6LU7).

Molecular docking was performed to examine the anti-
viral properties of the title compound on the SARS-CoV-2 
main protease protein. The P1-P5 ligands were converted 
to “PDB” using Gaussian 09 to study the protein–ligand 
interactions [47]. Autodock 4.2.6 program along with the 
graphical interface AutoDockTools (ADT) version 1.5.6 
[67] has been used to analysis the binding modes of P1-P5 
ligands with SARS-CoV-2 main protease (PDB code: 
6LU7) which was collected from the RCSB Protein Data 
Bank (http:// www. rcsb. org) to study the interactions of 
compounds with the active site of receptor. Before docking 
protocol, water molecules and the co-crystallized ligand 
were removed from the 6LU7 protein using Discovery Stu-
dio Software [68]. Polar hydrogen atoms were added to the 
crystal structures of the protein, followed by the addition 
of Kollman and Gasteiger charges atoms. Finally, pdbqt 
files of ligands and protein were generated. The grid box 
with radius of 60 × 60 × 60 Å3 in x, y and z directions was 
generated and the dimensions of the active site coordinates 
are -10.729 Å, 12.418 Å and 68.816 Å by the ligand loca-
tion in the protein.

Molecular docking investigation of P1-P5 ligands was 
enhanced with bond lengths in Å units using the PyMol 
software [69]. Figure 10 depicts the 3D and 2D interaction 
diagrams between the target 6LU7 protein and the investi-
gated P2-P5 ligands.

The Fig. 10 revealed that conventional hydrogen bonds 
formed between the H atom of the O–H group and GLU166, 
GLN189, GLU166, HIS163, and ARG188, respectively. The 
H atoms show the interactions with the GLU166, GLN189, 
GLU166, HIS163, and ARG188 with the distance of 8.6 Å, 
1.9 Å, 4.6 Å, 1.8 Å, and 5.1 Å, respectively. From the 2D plot 
in Fig. 10, the P1, P4, P5 derivatives presented in blue color 
interact with ASP187 (5.4 Å, ASP187 (5.9 Å), ASP187 (3.6 
Å) through the halogen (Cl, Br, I) bonds, respectively.

Details of the protein–ligand interaction patterns such 
as binding energy, inhibition constant and intermolecular 
energy of the P1-P5 derivatives with the 6LU7 targeted 
protein were depicted in Table 2. The binding energies 
with drug activeness against the targeted 6LU7 protein 
are found to be in the order of P5 > P4 > P3 > P2 > P1. The 
most active compound, P5, gave the highest binding energy 
(-7.83 kcal/mol), while the other compounds P1, P2, P3, 
and P4 created interaction energies of -7.33 kcal/mol, -7.40 
kcal/mol, -7.55 kcal/mol, and -7.57 kcal/mol, respectively. 
The docking analysis of the P1-P5 derivatives with SARS-
CoV-2 reveals that the compound P5 should show signifi-
cant SARS-Cov-2 inhibitory activity.

We have revealed that the reaction between LIL and OX 
is highly regio, stere and chemoselective, we also tested the 
products formed against coronavirus, in the next section we 
will examine the adsorption of the products P2 and P3 on 
a silica gel to understand why these two products are easy 
to separate by chromatography.

Molecular Dynamic 
Simulation‑Chromatography Study

Silica gel adsorption is a commonly employed process 
in chromatography to separate components of a mixture. 
Silica gel is a porous material, often in the form of small 

Table 2  The obtained docking 
parameters of the P1-P5 
derivatives

Derivatives Bonded 
residues

Bond 
Distances

Inhibition 
Constant

Intermolecular 
energy

Binding energy

(Å) (�M) (kcal/mol) (kcal/mol)

P1 GLU166 8.6 4.26 -9.12 -7.33
ASP187 5.4

P2 GLN189 1.9 3.76 -9.19 -7.40
P3 GLU166 4.6 2.94 -9.34 -7.55
P4 HIS163 1.8 2.83 -9.36 -7.57

ASP187 5.9
P5 ARG188 5.1 1.81 -9.62 -7.83

ASP187 3.6

http://www.rcsb.org
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Fig. 11  The system's energy and temperature fluctuation curves for SiO2-P2 and SiO2-P3 during NVT dynamics run
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beads or powder, which has a large internal surface area. 
The components of a mixture can be separated using dif-
ferences in their affinities for silica gel, which acts as the 
adsorbent in this case, in silica gel chromatography; the 
mixture to be separated is placed on the silica gel column. 
Molecular dynamic simulation MDs has developed as a 
cutting-edge approach for studying adsorbate–adsorbate 
interactions [70]. It also aids in visualizing the single  (P2 
and  P3) molecules actual adsorption arrangement. The sys-
tem's energy and temperature fluctuation curves provided 
evidence that the system had successfully attained equi-
librium (Fig. 11).

It is evident that the  P2 and  P3 system's energy and 
temperature fluctuation curves converged to a persistent 
value with small oscillations at the end of the NVT MDs-
runs; indicating that the both systems have reached the 
equilibrium condition. The most-stable adsorption con-
figuration of two products  P2 and  P3 on the silicon dioxide 
surface (110) in the gas phase after NVT runs are illus-
trated in Fig. 12.

The Fig.  13 presented the resulting interaction 
 (Einteraction) owing to the interaction of each organic mol-
ecules  P2 &  P3 with the surface of  (SiO2(110)) in the gas 
phase. According to Molecular dynamics computer simu-
lations results, the two products  P2&P3 can interact with 
the  (SiO2(110)) surface and subsequently adsorb on the 
 (SiO2(110)) surface. The obtained interaction value of two 
products  P2 &  P3 suggests that  P3 interacts more than  P2 

(Fig. 11). The calculated binding or interaction energy 
follows the order  P3 >  P2 (Fig. 13).

Molecular dynamics computer simulations result 
revealed that the two products  P2 and  P3 are horizontally 
adsorbed on the  (SiO2(110)) surface. The parallel adsorp-
tion of the of two products  P2 and  P3 is caused by the inter-
action of the heteroatoms present in the of two molecules 
 P2 and  P3 with surface  (SiO2(110)). The horizontal fashion 
of adsorption of the two products  P2 and  P3 covers a greater 
surface area. Again, the adsorption configuration of two 
products  P2 and  P3 revealed that the both molecules are 
horizontally disposed over the surface  (SiO2(110)). The 
horizontal adsorption orientation becomes feasible by the 
interaction of  (SiO2(110)) surface and heteroatoms present 
in the  P2 and  P3 skeleton. Increased surface coverage on 
the  (SiO2(110)) surface occurs from of two products  P2 and 
 P3 horizontal mode of adsorption. In comparison to of two 
products  P2 and  P3 adsorption becomes more feasible for 
 P3. Now from the molecular point of view,  P3 possesses one 
vacant site and by using that vacant cite of two products 
 P2 and  P3 may adsorb on the silicon dioxide substrate. The 
study of adsorption by MDs reveals that the –OH group 
creates an intramolecular hydrogen bond in the product 
 P2, while in the product  P3 will create a hydrogen –H bond 
with silica gel, which makes both the products  P2 and  P3 
very easy to separate by chromatography. Both  Einteraction 
values determined from MDs are well corroborated with 
the experimental findings.

Fig. 11  (continued)



1925Journal of Fluorescence (2024) 34:1913–1929 

1 3

Fig.12  The configuration of  P2 and  P3 on  SiO2(110) surface in horizontal configuration calculated by MDs.  SiO2-P2 Complex: 
 Eads = -18,252 kJ/mol
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Conclusion

The B3LYP/6–311(d,p) on density functional theory 
was used to analyze the cycloloaddition reaction [3 + 2] 
between linallol and chlorobenzene-nitrile-oxide. The 
analysis of reactivity indices, reaction energy, and activa-
tion shows that the cycloloaddition reaction follows five 
distinct paths. An exploration of conceptual DFT indices 
indicates that Linallol (LIL 1) will engage in this reac-
tion as a nucleophile, whereas chlorobenzene-nitrile-oxide 
(NOX 2) will contribute so as an electrophile. The reaction 
and activation energies clearly show that this cyclization 
is regio- chemo and stereospecific, which is in perfect 
agreement with the outcomes of the experiment. The BET 
analysis reveals clearly that this reaction follows a two-
step reaction mechanism. In addition adsorption study by 
MDs reveals that the –OH group creates an intramolecu-
lar hydrogen bond in the product  P2, while in the product 
 P3 will create a hydrogen –H bond with silica gel, which 
makes both the products  P2 and  P3 very easy to separate by 
chromatography. The inquiry into Mpro-COVID-19 sup-
pression by pyrazoline compounds has produced promis-
ing findings. For the fight against the COVID-19 virus, it 
would be worthwhile to do more precise studies on this 
family of products.
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