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Abstract
A series of α-cycloamine substituted 2,2’-bipyridines 3ae’-3ce’ was obtained via the one-pot approach based on ipso-sub-
stitution of a cyano-group in 1,2,4-triazines, followed by aza-Diels–Alder reaction in good yields. Photophysical properties, 
including fluorosolvatochromism, were studied for 3ae’-3ce’ and were compared with α-unsubstituted 2,2’-bipyridines. In 
addition, dipole moments differences in ground and excited states were calculated by both Lippert-Mataga equation and 
DFT studies and were compared to each other. The correlation between the size of cycloamine unit and the dipole moments 
differences value (based on Lippert-Mataga equation) was observed. In addition charge transfer indices (DCT, Λ, H and t) 
were calculated to demonstrate influence of molecular structure on the intramolecular charge transfer degree.

Keywords 2,2’-bipyridines · Cycloamines · Fluorosolvatochromism · Lippert-Mataga equation · CT-indices · DFT studies

Introduction

Fragments of cyclic amines (cycloamines) play a versatile 
role as units of heterocyclic compounds. They act as phar-
macophore units in many drugs [1], with cycloamine units 
might play a key role in the biological activity of the targeted 
compounds. For example, the presence of piperidine deriva-
tives significantly enhanced hTRPV1 antagonistic activities 
[2], piperazine derivatives can be used as pharmacophores 

for cholinesterase inhibitors [3], while due to azepan moiety  
it is possible to provide urokinase inhibition activity, as well 
as antimetastasis activity [4]. Morpholine and thiomorpho-
line are important pharmacophore units as well [5–8]. Many 
cycloamine containing heterocycles have found an applica-
tion as pesticides, herbicides, antifungal agents, etc. [9–13]. 
Some of pyrrolidine and morpholine containing quinoline 
derivatives form a quinoline-DNA complex using calf thy-
mus DNA [14]. 4,7-Dipyrrolidinyl-1,10-phenanthroline can 
be used as a ligand for N -arylation in an aqueous medium, 
unlike pyrrolidine-free 1,10-phenanthroline derivatives [15]. 
Cyclic amines have found great application in the synthesis 
of luminescent molecules, especially in donor–acceptor ones 
[16–18]. Introducing of cycloamines into 2,2’-bipyridine  
resulted in amine structure dependent solvatochromism, 
solid state fluorescence and halochromic fluorescence 
switching due to the donor–acceptor nature of the molecule 
[19]. It was also possible to obtain luminescent tests for for-
maldehyde, which can be found in living cells, animals and 
brain tissues [20]. In addition, modification of d-luciferin 
with a fragment of azetidine, azepan and thiomorpholine 
yielded higher photon flux compare to original d-luciferin 
[21].

Among the existing preparation methods for obtaining 
cycloamine containing heterocycles, a Pd-catalyzed Buchwald- 
Hartwig amination is an outstanding one [22, 23]. It is a 
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versatile and efficient amination tool, however, requiring  
pre-functionalization of a heterocycle with a halogen atom. 
In addition, there are many examples of nucleophilic sub-
stitution reactions of various leaving groups [24–28]. Par-
ticularly, construction of bipyridines bearing an amine 
residue at α-position via cross-coupling reactions [29], as  
well as direct functionalization of 2,2'-bipyridine [30] or its 
N-oxide [31] by amine residues. It is worth noting the group 
of Professor Belskaya, who proposed one-pot approach for 
the insertion of various cycloamines at the C(5) position in 
1,2,3-triazoles during its construction [32].

In addition, the approach based on preparation of 
2,2'-bipyridines via their 1,2,4-triazine analogs [33–35], 
consisting of the nucleophilic substitution of hydrogen or 
easily leaving groups in 1,2,4-triazine followed by trans-
formation of the triazine ring into the pyridine one, has to 
be mentioned. As part of this strategy, 2,2'-bipyridines con-
taining carborane [36], alcohols [37], anilines [38], etc. at 
the α-position were previously obtained. It is necessary to 
note the single example of the preparation of α-pyrrolidine-
2,2’-bipyridine derivative described by our research group 
[39]. In this case, the aza-Diels–Alder reaction was realized 
in pressure flask under increased pressure and temperature 
conditions, since it could not be carried out under milder 
conditions. In this work, we used this approach to obtain a 
series of 5-aryl-2,2'-bipyridines containing various cyclic 
amines residues at the C6 position of pyridine, and studied 
their photophysical properties.

Experimental

General Information

Unless otherwise indicated, all common reagents and sol-
vents were used from commercial suppliers (Sigma-Aldrich, 
Acros Organics or Alfa Aesar) without further purification. 
All workup and purification procedures were carried out 
using analytical-grade solvents. 1H NMR and 13C NMR 
spectra were recorded at room temperature at 400 and 
100 MHz, respectively, on a Bruker DRX-400 spectrometer 
using  CDCl3 or DMSO-d6 as the solvent. 13C NMR DEPT 
135 spectra were recorded at room temperature at 151 MHz 
on Bruker AVANCE NEO spectrometer using  CDCl3 as the 
solvent Hydrogen chemical shifts were referenced to the 
hydrogen resonance of the corresponding solvent (DMSO-
d6, δ = 2.50 ppm or  CDCl3, δ = 7.26 ppm). Carbon chemical 
shifts were referenced to the carbon resonances of the sol-
vent  (CDCl3, δ = 77.16 ppm). Peaks were labeled as singlet 
(s), doublet (d), triplet (t), doublet of doublets (dd), doublet 
of doublets of doublets (ddd), and multiplet (m). Mass spec-
tra were recorded on a MicrOTOF-Q II (Bruker Daltonics), 
electrospray as a method of ionization. Elemental analysis 

was performed on a PerkinElmer PE 2400 elemental ana-
lyzer. Melting points were obtained with Stuart SMP10 
apparatus and are uncorrected. UV–vis absorption spectra 
were recorded on a Shimadzu UV-1800 spectrophotometer, 
and emission spectra were measured on a Horiba Fluoro-
Max-4 by using quartz cells with a 1 cm path length at room 
temperature. Absolute quantum yields of the luminescence 
of target compounds in solution were measured by using the 
integrating sphere Quanta-φ of the Horiba FluoroMax 4 at 
room temperature. The quantum chemical calculations were 
carried out at the B3LYP/6-31G* level of theory with the 
help of the Gaussian-09 [40] program package. No symme-
try restrictions were applied during the geometry optimiza-
tion procedure. The hole-electron analysis was carried out in 
Multiwfn program (version 3.7) [41]. The Cartesian atomic 
coordinates for all optimized model structures are presented 
in the attached xyz-files.

Synthesis and Characterization

5-Cyano-6-aryl-3-(pyridine-2-yl)-1,2,4-triazines were pre-
pared according to the literature [42].

Typical Procedure for the Synthesis of Correspond‑
ing Cycloamine‑containing 2,2’‑bipyridines 3aa’‑3ce’

A mixture of a corresponding 5-cyano-1,2,4-triazine 
1a-c (0.5 mmol, 1 eq.) and a corresponding cycloamine 
(0.5 mmol, 1 eq.) was mixed in a pressure flask at 150 ℃ 
under argon for 8 h. Then 2,5-norbornadien (4 eq.) and 
1,2-dichlorobenzene (10 mL) were introduced. The reac-
tion mixture was mixed at 225 ℃ under argon for 8 h. Then 
extra portion of 2,5-norbornadien (4 eq.) was introduced and 
the reaction mixture was mixed at 225 ℃ under argon for 
another 8 h. The solvent was removed under reduced pres-
sure, and a solid was triturated by acetonitrile. The resulted 
precipitate was filtrated and recrystallized from acetonitrile.

Synthesis of 4‑phenyl‑1‑(pyridin‑2‑yl)‑3‑(pyrrolidin‑
1‑yl)‑6,7‑dihydro‑5H‑cyclopenta[c]pyridine 4

A mixture of 5-cyano-6-phenyl-1,2,4-triazine 1a (130 mg, 
0.5 mmol, 1 eq.) and pyrrolidine (0.5 mmol, 0.04 mL, 1 eq.) 
was mixed in a pressure flask at 150 ℃ under argon for 
8 h. Then 1-morpholinecyclopentene (0.4 ml, 5 eq.) was 
introduced and the reaction mixture was stirred at 200 ℃ 
for 2 h. After that extra portion of 1-morpholinecyclopen-
tene (0.4 ml, 5 eq.) was introduced and the reaction mixture 
was stirred at 200 ℃ for another 2 h. The reaction mixture 
was triturated by acetonitrile (4 mL) and the precipitate was 
filtrated. The product was recrystallized from acetonitrile.
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Results and Discussion

5-Cyano-6-aryl-3-(pyridine-2-yl)-1,2,4-triazines were used 
as starting compounds 1a-c obtained by the described pro-
cedure [42]. Interaction of 1a-c with cyclic amines was 
realized via ipso-substitution of the cyano group and per-
formed under solvent-free conditions at 150 ℃ in a pressure 
flask (Scheme 1). The resulted 1,2,4-triazines 2aa'-2ce'  
were used on the next step without isolation and purifi-
cation with the one-pot approach. The target 2,2’-bipyridines  
3aa'-3ce' were formed as a result of the aza-Diels–Alder 
reaction using 2,5-norbornadiene as a dienophile at 225 
℃ in a 1,2-dichlorobenzene under argon atmosphere 
(Scheme 1). It is worth noting the possibility of using of 
1-morpholinecyclopentene as a dienophile at this step 
under solvent-free conditions at 200 ℃ to obtain product 
4. Overall yields for this one-pot two-step approach were 
in range of 60–75% for 3aa’-3ce’ and 62% for 4.

The structures of the target compounds were confirmed 
by 1H and 13C NMR spectroscopy, mass spectrometry and 
elemental analysis.

Photophysical Studies

The photophysical properties of the obtained fluorophores 
3aa’-3ce’ were studied (Fig. 1, Table 1). UV/Vis absorp-
tion spectra contained two absorption bands with maxima 
in the ranges of 250–273 nm and 338–360 nm, which can 
be attributed to the corresponding π-π* and n-π* transi-
tions. The maxima of the longest wavelength absorption 
bands changed in the range of 12–15 nm with a change 
in the size and nature of the cycloamine unit, however, no 
relationship was observed in this case. In addition, no dif-
ferences were observed between morpholine and thiomor-
pholine containing fluorophores, while shifts in absorption 
maxima were detected in case of pyrrolidine, piperidine and 

Scheme 1  One-pot synthesis of 2,2'-bipyridines 3aa'-3ae' and 4 

Fig. 1  Normalized UV/Vis absorption and normalized fluorescence emission of 3aa'-3ae' (a), 3ba'-3be' (b) and 3ca'-3ce' (c) in MeCN at rt 
(C =  10−5 M)
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azepane containing ones. As expected, the introduction of 
the methyl or methoxy groups into the phenylene fragment 
did not lead to significant changes in absorption spectra. It 
is necessary to note the bathochromic shift of absorption 
maxima for 2,2'-bipyridines 3aa'-3ce' in comparison with 
α-unsubstituted 2,2'-bipyridines, i.e., without a cycloamine 
unit [43]. In this case, the difference was up to 59 nm, and the  
reason could be attributed to the contribution of the lone pair 
of electrons of the nitrogen atom of the cycloamine fragment 
to the n-π* transition.

Introduction of cycloamine units influenced signifi-
cantly on the fluorescence of 3aa'-3ce'. In most cases, the 
spectra were represented by one intense and wide emission 
band in the range of 350–600 nm with a maxima varying 
in the range of 432–456 nm (Fig. 1, Table 1), which are 

45–97 nm redshifted than the fluorescence maxima for sim-
ilar α-unsubstituted 2,2'-bipyridines [43]. No relationship 
was observed between the size and nature of the cycloamine 
unit and fluorescence; there was only a moderate change 
in the emission maxima in the range of 8–36 nm. In addi-
tion, the introduction of cycloamine fragments increased the 
Stokes shift values. It is worth noting a significant increase 
in the luminescence quantum yields values upon the intro-
duction of cycloamine fragments in the series 5-phenyl- 
and 5-tolyl-2,2'-bipyridines, especially when comparing 
5-phenyl-6-(azepan-1-yl)-2,2'-bipyridine 3a,b' (86.1%) with 
5-phenyl-2,2'-bipyridine (3.2%, [43]). In the case of 4-meth-
oxyphenyl derivatives, the quantum yields of compounds 
3ca'-3ce ' were lower than for 4-methoxyphenyl-2,2'-bipy-
ridine (89.0%, [43]).

Table 1  Photophysical 
properties of 2,2'-bipyridines 
3aa'-3ce' and 4 in MeCN

a UV/Vis absorption spectra were measured at rt in range from 250 to 600 nm
b Fluorescence emission spectra were measured at rt (excitation at the maximum of the absorption)
c Absolute quantum yields were measured using the Integrating Sphere of the Horiba-Fluoromax-4 at rt

N
N

R

R'

Compound R’ λ
abs

max
λ
EM

max
εM,  M−1 ×  cm−1 Stokes Shift, 

 cm−1 (nm)
Ф, %

R = H
[43] H 298 357 - 5546 (59) 3.2
3aa’ Pyrrolidine-1-yl 273, 357 446 62,700 5590 (89) 30.1
3ab’ Piperidine-1-yl 256, 344 454 56,700 7043 (110) 86.1
3ac’ Azepane-1-yl 260, 358 454 46,700 5674 (92) 50.2
3ad’ Morpholine-1-yl 260, 338 448 49,600 7264 (110) 57.2
3ae’ Thiomorpholine-1-yl 253, 338 446 65,900 7164 (108) 57.3
4 Pyrrolidine-1-yl 259, 360 450 42,100 5556 (90) 41.9
R = Me
[43] H 302 360 - 5335 (58) 17.0
3ba’ Pyrrolidine-1-yl 261, 360 398sh, 448 38,300 5456 (88) 40.9
3bb’ Piperidine-1-yl 259, 346 454 30,400 6875 (108) 42.6
3bc’ Azepane-1-yl 250, 345 432 30,500 5837 (87) 39.4
3bd’ Morpholine-1-yl 256, 340 448 42,500 7090 (108) 52.0
3be’ Thiomorpholine-1-yl 257, 339 446 50,100 7077 (107) 41.2
R = MeO
[43] H 309 399 - 7300 (90) 89.0
3ca’ Pyrrolidine-1-yl 321sh, 347 397sh, 420 35,600 5065 (73) 41.5
3cb’ Piperidine-1-yl 263, 347 456 35,600 6889 (109) 47.4
3 cc’ Azepane-1-yl 272, 359 456 55,800 5848 (97) 44.9
3 cd’ Morpholine-1-yl 255, 339 449 39,700 7227 (110) 56.0
3ce’ Thiomorpholine-1-yl 254, 339 444 49,300 6976 (105) 63.1
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Fluorosolvatochromism

Compounds 3aa'-3ce' are representatives of D-A push–pull 
fluorophores since they consist of a cycloamine donor (D) 
fragment and the 2,2'-bipyridine acceptor (A) one. There-
fore, they should exhibit intramolecular charge separation 
(or intermolecular charge transfer, ICT) during photoexci-
tation with appearance of long-wavelength emission band. 
To confirm this, absorption and fluorescence spectra were 
obtained for the fluorophores 3aa'-3ce' in solvents of dif-
ferent polarity (Table S1). The UV/Vis spectra, as expected, 
showed only minor changes with peaks varying within a 
few nanometers for all 3aa'-3ce' fluorophores. The fluores-
cence spectra turned out to be more dependent on the solvent 
polarity, and the expected bathochromic shift of the emission 
maxima was observed with increasing solvent polarity. The 
correlation between emission maxima and solvent polarity 
and the Dimroth/Reichardt [44, 45] and Kosover [46, 47] 
scales (based on the empirical parameters Z and E T (30), 
respectively) turned out to be linear (Fig. 2, Tables S2-S4) 
for all fluorophores except 3ca' and 3cb'  (R2 = 0.25 and 
0.50, respectively). In these cases, the emission maxima in 
the most polar methanol turned out to be blue-shifted due to 
proticity of methanol.

Moreover, the differences in dipole moments in the 
ground and excited states (Δμ) for fluorophores 3aa'-
3ce' were calculated by Lippert-Mataga equation [48–50] 
(Eqs. 1–3) and corresponding plots (Fig. 3).

Equation (1). Lippert-Mataga equation, where νA and νF 
are the wavenumbers  (cm−1) of the absorption and emis-
sion, respectively; h is Planck's constant; c is the speed of 
light in vacuum; a is the radius of the cavity in which the 
fluorophore resides (Onsager radius [51]), μE and μG are the 
excited and ground state dipole moment, respectively.

Equation (2). Onsager radius [51], where VvdW – van der 
Waals volume.

Equation (3). Theoretical calculations of van der Waals 
volume, where, NB is the number of bonds, RA is the number 

(1)ν
A
− ν

F
=

2

hc

(

ε − 1

2ε + 1
−

n2 − 1

2n2 + 1

)

(

�
E
− �

G

)2

a3

(2)a
3
= V

vdW

3

4�

(3)
V
vdW

=

∑

(all atom contributions) − 5.92N
B
− 14.7R

A
− 3.8R

NA

Fig. 2  The variation of the fluorescence emission maximum with the empirical solvent polarity parameter  ET (30) for 3aa'-3ae' (a), 3ba'-3be' 
(b) and 3ca'-3ce' (c) in cyclohexane, toluene, 1,4-dioxane, ethyl acetate, THF, DCM, MeCN and MeOH

Fig. 3  Lippert-Mataga plot for 3aa'-3ce' in cyclohexane, toluene, 1,4-dioxane, ethyl acetate, THF, DCM, MeCN and MeOH
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of aromatic rings, and RNA is the number of non-aromatic 
rings.

For all the fluorophores, Δμ values were less 10D that 
could be explained by weak cycloamine donor unit and, 
therefore, weak charge separation in excited state. How-
ever, an unexpected correlation was determined for fluo-
rophores 3aa’-3ac’, 3ba’-3bc’ and 3ca’-3 cc’, that is the 
larger cycloamine unit, the greater Δμ value (Table 2) with 
the single exception – compound 3bc’ with the Δμ value of 
6.91 D. This correlation was not obvious due to the presence 
of σ-orbital overlapping only between  CH2-units that had to 
have no influence on charge separation state. For compounds 
with morpholine and thiomorpholine units (3ad’-3ae’, 3bd’-
3be’ and 3 cd’-3ce’), this correlation was not discovered 
due to the role of heteroatom (O or S). Comparison of Δμ 
values calculated by Lippert-Mataga equation with the ones 
calculated by B3LYP/6-31G* level of theory with the help 
of Gaussian-09 (Table S5) reveals differences in Δμ values 
(Table 2). Moreover, no clear correlation between the size 
of cycloamine unit and Δμ value was observed according to 
DFT calculations. These differences could be explained by 
the role of the solvents in Lippert-Mataga equation that was 
not included in DFT calculations.

DFT Studies and Charge Transfer Indices

As a next step, HOMO–LUMO spatial distributions, 
energy gap values ΔE, as well as oscillator strength for all 
3ae’-3ce’ fluorophores were calculated by B3LYP/6-31G* 
level of theory with the help of Gaussian-09 (Table 2, 
Figs. S1-S3). The HOMO-orbitals were distributed mainly 
on the cycloamine unit, central pyridine and the aromatic 

substituent, while the LUMO-orbitals distributed only 
along the 2,2’-bipyridine domain. The lowest ΔE cor-
respond to morpholine- and thiomorpholine-containing 
molecules 3ad’, 3ae’, 3bd’, 3be’, 3 cd’ and 3ce’ asso-
ciated with the most energetically favorable conjugated 
structures. Meanwhile, the largest values of the oscillator 
strength correspond to  S0-S1 π-π* transitions of morpho-
line-containing compounds 3ad’, 3bd’ and 3 cd’, which 
also confirms the high degree of charge transfer (Table 2).

To gain a deeper understanding of the influence of 
molecular structure on the intramolecular charge transfer 
degree, additional calculations of charge transfer indices 
(CT-indices) have been carried out. These DCT, Λ, H and 
t indices were initially proposed by Le Bahers et al. [52] 
and adapted by Lu and Chen [41]. Based on their work, the 
respective indices (DCT, Λ, H and t) have been calculated 
for all fluorophores (Eqs. S1-S9, ESI) and are presented in 
Table 2. Thus, the analysis of CT-indices made it possible 
to predict a significant overlap between the centroids of 
the positive donor cycloamine fragment and the negative 
acceptor 2,2’-bipyridine domain of the D-A fluorophores. 
Based on the combination of high DCT values close to H 
values, the lowest Λ index and t > 0, it was possible to 
obtain a series of the most promising compounds with 
intramolecular charge transfer: 3 cd’, 3ce’, 3bd’, 3be’, 
3ad’ and 3ae’, which correlates with the experimental 
values of the Stokes shift and dipole moment difference 
calculated by the Lippert-Mataga mathematical model. 
Therefore, DFT calculations and the values of CT indi-
ces allowed not only to compile a series, but to arrange it 
according to the significance of CT fluorophores: 3 cd > 
3bd > 3ad > 3ce > 3be > 3ae.

Table 2  Summary of dipole 
moment differences (Δμ), 
energy gap values (ΔE), 
CT-indices and oscillator 
strength for the molecules 
3aa'-3ce' 

Compound Δμ, D (LM) Δμ, D (DFT) ΔE, eV DCT, Å Λ, a.u H, Å t, Å S0 → S1 S0 → S2

3aa' 7.34 2.33 3.94 2.193 0.59 2.927 -0.039 0.2404 0.0051
3ab' 7.42 2.54 4.02 2.304 0.57 2.969 0.052 0.2263 0.0267
3ac' 7.50 2.60 3.99 2.390 0.56 2.886 0.174 0.1922 0.0173
3ad' 7.22 2.51 3.86 2.534 0.53 2.961 0.530 0.1677 0.0194
3ae' 6.91 1.59 3.89 2.753 0.51 3.036 0.784 0.1524 0.1600
3ba' 7.33 2.62 3.91 2.354 0.59 2.948 0.102 0.2712 0.0061
3bb' 8.09 2.75 4.01 2.352 0.58 3.029 0.068 0.2677 0.0470
3bc' 6.91 2.72 3.99 2.479 0.57 2.911 0.270 0.2161 0.0232
3bd' 7.33 2.58 3.85 2.561 0.54 2.999 0.546 0.1969 0.0245
3be' 7.21 1.91 3.89 2.742 0.52 3.069 0.780 0.1807 0.1988
3ca ' 5.54 2.97 3.89 2.679 0.59 3.003 0.285 0.3042 0.0276
3cb' 6.55 3.11 3.95 2.769 0.59 3.125 0.238 0.3237 0.0719
3 cc' 7.61 3.08 3.96 2.771 0.57 2.955 0.459 0.2410 0.0447
3 cd' 7.27 2.65 3.83 2.802 0.55 3.030 0.666 0.2345 0.1039
3ce' 7.22 2.24 3.87 2.914 0.54 3.087 0.845 0.2205 0.2172
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Conclusion

In summary, a series of α-cycloamine substituted 2,2’-bipyr-
idines 3ae’-3ce’ has been obtained via the one-pot approach 
based on ipso-substitution of a cyano-group in 1,2,4-tria-
zines, followed by aza-Diels–Alder reaction in good yields. 
Studies of photophysical properties demonstrated positive 
influence of cycloamine unit both on absorption and emis-
sion maxima, as well as luminescence quantum yields 
compare to α-unsubstituted 2,2’-bipyridines. Fluorophores 
3ae’-3ce’ demonstrated red-shifted emission (fluorosolva-
tochromism) with increasing of solvent polarity. Dipole 
moments differences in ground and excited states were cal-
culated by both Lippert-Mataga equation and DFT studies, 
and are in range of 6.55–8.09 D and 1.91–3.11 D, respec-
tively. An unexpected correlation was determined for fluo-
rophores 3aa’-3ac’, 3ba’-3bc’ and 3ca’-3 cc’, that is the 
larger cycloamine unit, the greater Lippert-Mataga Δμ value 
with the single exception (3bc’). In addition, CT-indices 
(DCT, Λ, H and t) were calculated. Thus, these data con-
firm charge-separation in fluorophores 3ae’-3ce’, while the 
method of their synthesis could find a potential application 
in design and construction of functional materials.
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