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have advantages such as high sensitivity, specificity, fast 
response, and technical simplicity [22–28].

Pyridine can endow cations with a binding site through 
a lone pair electron of nitrogen atom [29–31]. Also, fluo-
rophores including pyridine moiety are known to exhibit 
strong fluorescence [32]. Triphenylamine has various 
properties such as high fluorescence quantum yields, vis-
ible region wavelength, strong UV-vis and luminescent 
properties, which are useful characteristics for developing 
chemosensors [33–39]. Chalcone structure is known for 
optically active structure [40–42]. Also, a conjugate 

π
-elec-

tronic system of this structure provides the chelating ability 
for metal ions [43–45]. Due to these properties, the chal-
cone structure is useful to develop chemosensors detecting 
metal ions [45, 46]. Pd2+ is known as a fluorescent quencher 
[47–49]. This property is useful for the development of a 
sensor that detects Pd2+ through quenching [50]. Therefore, 
we expected that the combination of the pyridine and the 
chalcone structure having triphenylamine might produce a 
sensor that detects Pd2+ with turn-off.

Herein, we present a fluorescent and colorimetric chemo-
sensor DiPP for detecting Pd2+. DiPP was the first chalcone-
based chemosensor to detect Pd2+ through both fluorescence 
and color change methods. Chemosensor DiPP was able to 
detect Pd2+ with low detection limits (0.67 µM and 0.80 
µM) by fluorescence turn-off and colorimetric variation of 
yellow to purple. Also, the test strip absorbed with DiPP 

Introduction

Palladium is a widely used transition metal in various fields 
such as pharmaceutical synthesis, electrical and electronic 
industries, medical devices, automobiles, and catalysts [1–
3]. A large number of palladium ions are released as they are 
used for various purposes, and the released palladium ions 
have a harmful effect on the environment and the human 
body [4–7]. Therefore, it is required to develop methods 
capable of easily and quickly detecting palladium ions [8, 
9].

To detect Pd2+, there are various analytical methods like 
inductively coupled plasma mass spectrometry, X-ray fluo-
rescence (XRF), solid-phase micro-extraction coupled high-
performance liquid chromatography, and atomic absorption 
spectrometry [10–12]. However, these analytical methods 
require expensive equipment, trained professionals, and 
prolonged sample preparation time [13–17]. Due to these 
shortcomings, chemosensors are attracting attention as 
an alternative analytical method [18–21]. Chemosensors 
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could detect Pd2+ easily and quickly through fluorescence 
turn-off and color change. The binding feature of DiPP to 

Pd2+ was addressed by UV-visible titrations, ESI-mass, 1 H 
NMR titration, DFT calculations and Job plot.

Experimental Section

General

Chemicals were commercially acquired from Alfa Aesar 
and TCI. 13 C and 1 H NMR spectra were gained with a Var-
ian spectrometer. With Perkin Elmer spectrometers, emis-
sion and absorption data were recorded. A Thermo MAX 
instrument provided ESI-MS spectra.

Synthesis of Sensor DiPP ((E)-3-(4-(Diphenylamino)
Phenyl)-1-(Pyridin-2-yl)prop-2-en-1-one)

DiPP was synthesized according to the literature method 
[51]. 2-Acetylpyridine (342 µL, 3.0 × 10− 3 mol) and 5 mL 
of 10% NaOH were added in 15 mL of MeOH. The solution 
was stirred for 50 min. 4-(Diphenylamino)benzaldehyde 
(558 mg, 2.0 × 10-3 mol) was added to the solution. The 
mixture was stirred at 20 oC for 16 h. An orange powder was 
washed with ether several times and dried in the oven. The 

Fig. 3 Analysis of the detection limit for Pd2+ by DiPP (2 µM) based 
on the fluorescence intensity at 527 nm (λex = 418 nm). The standard 
deviations are represented by the error bar (n = 3)

 

Fig. 2 Fluorescent variations of DiPP (2.0 µM) with varied amounts 
of Pd2+ (λex = 418 nm)

 

Fig. 1 Fluorescent intensity variations of DiPP (2.0 µM) with cations 
(15 equiv; λex = 418 nm)

 

Scheme 1 Synthesis of DiPP 
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dried powder was dissolved in chloroform and purified by 
column chromatography using chloroform. Yield: 436 mg 
(58%). 1 H NMR in CD3CN: 8.79–8.77 (d, 1 H), 8.13–8.08 
(m, 2 H), 8.06–8.02 (t, 1 H), 7.81–7.77 (d, 1 H), 7.71–7.66 

(m, 3 H), 7.40–7.36 (m, 4 H), 7.18–7.11 (m, 6 H), 6.92–
6.90 (d, 2 H). 13 C NMR in deuterated DMSO:188.5 (1 C), 
153.8 (1 C), 150.0 (1 C), 149.2 (1 C), 146.3 (2 C), 144.1 
(1 C), 137.8 (1 C), 130.5 (2 C), 130.0 (4 C), 127.6 (1 C), 

Fig. 4 (a) UV-vis absorbance variations of DiPP (5.0 µM) with varied cations (3.6 equiv). (b) Color changes of DiPP (5.0 µM) with cations (3.6 
equiv)
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Quantum Yields of DiPP and DiPP-Pd2+

Standard fluorophore fluorescein (ФF = 0.79) was used for 
quantum yield [47].

ΦF(X) = ΦF(S)(ASFX/AXFS) (nX/nS)2

(ФF: fluorescence quantum yield, s: standard, A: absor-
bance, n: refractive index of the solvent, F: area of fluores-
cence emission curve and x: unknown)

Job Plot

A stock solution of sensor DiPP (1 mM) was prepared in 10 
mL of THF. Pd2+ solution (1 × 10− 3 M) with nitrate salt was 
acquired in 10 mL of THF. 3–27 µL of the DiPP stock was 
transferred to several quartzes. 27 − 3 µL of the Pd2+ stock 
was added to diluted DiPP. THF was added to each quartz 
up to 3,000 µL. Fluorescence spectra of the solutions mixed 
were taken in 10 s.

1 H NMR Titration

Two NMR tube of DiPP (3.8 mg, 1 × 10− 5 mol) dissolved 
in CD3CN (250 µL) was prepared. In one tube, 250 µL of 
CD3CN was added to make a 20 mM DiPP sample. In the 
other tube, Pd(NO3)3 (2.3 mg, 1 × 10− 5 mol) dissolved in 
CD3CN (250 µL) was added to prepare a 20 mM DiPP-Pd2+ 
sample. 1 H NMR data were recorded in 10 s.

Calculations

To investigate the detecting mechanism of DiPP to Pd2+, the 
Gaussian16 program [53] was used for calculations. They 
were based on m06 density functional [54–56]. 6-31G(d,p) 
[57, 58] and Lanl2DZ [59] basis sets were employed for cal-
culations of Pd2+ and elements. The solvent effect on THF 
was considered by employing IEFPCM [60]. With the opti-
mized features of DiPP and DiPP-Pd2+, 20 of the lowest 
singlet-singlet transitions were calculated with TD-DFT to 
study the transition states of DiPP and DiPP-Pd2+.

Results and Discussion

Molecule DiPP was gained through the aldol condensation 
of 4-(diphenylamino)benzaldehyde with 2-acetylpyridine 
(Scheme 1). DiPP was affirmed by 1 H NMR, 13 C NMR, 
and ESI-MS (Figs. S1-S3).

Fluorescent selectivity of DiPP was studied with diverse 
cations (K+, Ag+, Cu2+, Co2+, Zn2+, Cd2+, Ca2+, Mn2+, 
Mg2+, Pb2+, Ni2+, Hg2+, Cr3+, Ga3+, Na+, In3+, Fe3+, Al3+, 
and Pd2+) in THF. As exhibited in Fig. 1, DiPP and DiPP 
with most metals represented strong fluorescence at 527 nm 
(λex = 418 nm). By contrast, Pd2+ showed a clear quenching 

127.4 (1 C), 125.6 (4 C), 124.7 (2 C), 122.5 (1 C), 120.6 
(2 C). ESI-mass: calcd for ([DiPP + H+ + 2H2O + 2THF])+ 
: 557.30, found 557.58.

Fluorescent and UV-vis Titrations

6 µL (1 mM) of DiPP (3.8 mg, 1 × 10− 5 mol) dissolved in 10 
mL of tetrahydrofuran (THF) was diluted in 2.994 mL THF 
to provide 2 × 10− 6 M. 3–54 µL (2 × 10− 3 M) of Pd(NO3)2 
(2.5 mg) dissolved in THF (5.0 mL) were added to DiPP 
(3 mL, 2 × 10− 6 M). Their fluorescence spectra were taken 
in 10 s. For UV-vis, 15 µL (1 mM) of DiPP (1 × 10− 5 mol, 
3.8 mg) dissolved in 10 mL of THF was diluted in 2.985 
mL THF to provide 5 × 10− 6 M. 3–33 µL (0.4–4.4 eq) of 
Pd(NO3)2 (2 mM) dissolved in THF were added to DiPP 
(3 mL, 5 × 10− 6 M). Their UV-visible spectra were taken 
in 10 s.

Competition

DiPP (1 × 10− 5 mol, 3.8 mg) was dissolved in 10 mL of 
THF. 0.06 mmol of KNO3, NaNO3, In(NO3)3, Cr(NO3)3, 
Ga(NO3)3, Fe(NO3)3, Al(NO3)3, Hg(NO3)2, Ni(NO3)2, 
Ca(NO3)2, Co(NO3)2, Mn(NO3)2, Cu(NO3)2, Cd(NO3)2, 
Pb(NO3)2, Mg(NO3)2, Zn(NO3)2, and Pd(NO3)2 was dis-
solved in 3,000 µL THF. 4.5 µL of each metal (2 × 10− 2 M) 
and Pd2+ ion (2 × 10− 2 M) was added into 2,985 µL THF to 
afford 15 equiv. 6 µL (1 × 10− 3 M) of the DiPP stock was 
added to the solutions. Their fluorescence spectra were taken 
in 10 s. For the UV-vis, 2.7 µL of each metal (2 × 10− 2 M) 
and Pd2+ ion (2 × 10− 2 M) was added into 2,980 µL THF to 
afford 3.6 equiv. 15 µL (1 × 10− 3 M) of the DiPP stock was 
added to the solutions. Their UV-visible spectra were taken 
in 10 s.

Fig. 5 UV-vis variations of DiPP (5.0 µM) with different concentra-
tions of Pd2+
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DiPP to Pd2+. However, about 50% of the interference was 
observed from Cr3+ and more than 90% from K+ ions.

To check the colorimetric probing of DiPP to Pd2+, the 
UV-vis variation was studied with diverse cations in THF 
(Fig. 4). DiPP and DiPP with most cations showed no or 
little absorbance at 575 nm. However, the addition of Pd2+ 
caused an obvious increase in absorbance at 575 nm and a 
colorimetry variation of pale yellow to purple. Therefore, 
DiPP could also be performed as a colorimetry chemosen-
sor for the nicely selective probing of Pd2+. Importantly, as 
far as we know, DiPP is the first chalcone structure-based 
probe among chemosensors to detect Pd2+ through both flu-
orescence and color change methods. (Table S1).

To understand the colorimetric sensing feature of DiPP 
to Pd2+, UV-vis titrations were tested (Fig. 5). Absorbance 
of DiPP at 340 and 575 nm obviously increased, and that of 

with DiPP at 527 nm. The quantum yields (Ф) of DiPP and 
DiPP-Pd2+ were given to be 0.71 and 0.088, respectively. 
Thus, DiPP worked as a fluorescent turn-off chemosensor 
for the obvious probing of Pd2+. To study the photophysical 
feature of DiPP to Pd2+, fluorescent titrations were checked 
(Fig. 2). The fluorescence of DiPP at 527 nm smoothly 
decreased until Pd2+ increased to 15 equiv (Fig. 2). The 
decrease in fluorescence intensity of DiPP with the increas-
ing amount of Pd2+ ions was proposed as chelation enhanced 
quenching (CHEQ) mechanism. The developed sensor 
determined Pd2+ in the linear range of 0–10 µM, with a low 
detection limit of 0.67 µM (3

σ
/k) (R2 = 0.995) (Fig. 3) [61]. 

A competitive test was performed to know if DiPP could 
exclusively bind to Pd2+ with the other coexisting met-
als (Fig. S4). Most cations did not display the binding of 

Fig. 6 Photographs of DiPP-coated test strips (1 mM). (a) DiPP-test 
strips immersed in Pd2+ (0 and 500 µM) under UV light. (b) DiPP-test 
strips were immersed in varied metal ions (500 µM) under UV light. 

(c) Color variation of DiPP-test strips immersed in Pd2+ (0 and 500 
µM). (d) Color change of DiPP-test strips immersed in varied metal 
ions (500 µM)

 

1 3

1743



Journal of Fluorescence (2023) 33:1739–1748

Detecting Mechanism of DiPP to Pd2+

To determine the reaction ratio of DiPP with Pd2+, a Job 
plot method was applied and showed the biggest value at a 
0.5 molar fraction (Fig. S7). It meant that a Pd2+ bound to a 
DiPP with a 1 : 1 ratio. Positive-ion ESI-MS displayed that 
the peaks of 626.18 (m/z) and 756.49 (m/z) corresponded to 
[DiPP + Pd2+ + NO3

− + 2MeOH + H2O]+ (calcd, 626.11) 
and [DiPP + Pd2+ + NO3

− + MeOH + 2H2O + 2THF]+ 
(calcd, 756.21) (Fig. S8). In addition, the 1 H NMR titra-
tion was applied to illustrate how to interact DiPP with Pd2+ 
(Fig. 7). As the Pd2+ were added, the protons H1 and H4 
showed an up-field shift, whereas H2 and H3 moved down-
field. The protons H5 and H6 showed a large up-field shift, 
respectively. In contrast, the protons of tri-phenyl amine 
showed relatively small movement to the down-field, except 
for H7 and H7’, which were close to the binding site. The 
outcomes drove us to suppose that Pd2+ may bind with 
the nitrogen of the pyridine moiety and the oxygen of the 
carbonyl group. The binding constants of the DiPP-Pd2+ 

425 nm decreased until the amount of Pd2+ got to 3.6 equiv. 
A sound isosbestic point at 456 nm signified that the com-
bination of DiPP with Pd2+ formed a species. The detection 
limit of DiPP with Pd2+ based absorbance change was cal-
culated to be 0.80 µM (3

σ
/k) in the range from 0 to 14 µM 

(R2 = 0.995) (Fig. S5) [61].
A competitive test was achieved to know whether DiPP 

could exclusively bind to Pd2+ among the coexisting metals 
for colorimetric chemosensors (Fig. S6). The color change 
was not disturbed by most metals but was disturbed by 50% 
from Cr3+ and 75% from K+ ions. For the practical test, fil-
ter papers coated with DiPP were employed. The test strips 
could probe Pd2+ via a fluorescence turn-off and a colorim-
etry change from yellow to light navy blue (Fig. 6). Cu2+ 
and Ni2+ showed some inhibition in the fluorescent test 
kit. Thus, the DiPP-coated test strip can have the practical 
application to rapidly and readily recognize Pd2+.

Fig. 7 1 H NMR titration of DiPP with Pd2+ (0 and 1.0 equiv)
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Fig. 8 Energy-optimized forms of (a) DiPP and (b) DiPP-Pd2+

 

Scheme 2 Proposed structure of 
DiPP-Pd2+
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first chalcone-based fluorescent and colorimetric probe to 
detect Pd2+. The binding mechanisms of DiPP to Pd2+ could 
be supposed through NMR titration, Job plot, DFT calcula-
tions, fluorescent and UV-visible titrations, and ESI-mass.
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