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Abstract
Metal cations such as  Zn2+,  Al3+,  Hg2+,  Cd2+,  Sn2+,  Fe2+,  Fe3+ and  Cu2+ play important roles in biology, medicine, and the 
environment. However, when these are not maintained in proper concentration, they can be lethal to life. Therefore, selective 
sensing of metal cations is of great importance in understanding various metabolic processes, disease diagnosis, checking 
the purity of environmental samples, and detecting toxic analytes. Schiff base probes have been largely used in designing 
fluorescent sensors for sensing metal ions because of their easy processing, availability, fast response time, and low detection 
limit. Herein, an in-depth report on metal ions recognition by some Schiff base fluorescent sensors, their sensing mechanism, 
their practical applicability in cell imaging, building logic gates, and analysis of real-life samples has been presented. The 
metal ions having biological, industrial, and environmental significance are targeted. The compiled information is expected 
to prove beneficial in designing and synthesis of the related Schiff base fluorescent sensors.
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Abbreviations
CHEF  Chelation enhanced fluorescence
FRET  Fluorescence resonance energy transfer
CHEQ  Chelation enhanced quenching
ICT  Intramolecular charge transfer
PET  Photoinduced electron transfer
ESIPT  Excited-state intramolecular proton transfer
LOD  Limit of detection
Ka  Association constant

Introduction

Recognition of metal ions has gained much attention among 
researchers in the past few decades due to their pertinence in 
pharmacology, biology, environment, catalysis, green chemistry, 
and analytical fields [1–6]. Metal cations such as  Zn2+,  Al3+, 
 Hg2+,  Cd2+,  Sn2+,  Fe2+,  Fe3+, and  Cu2+ are required in essential 
biological processes involving oxygen transport, neurotrans-
mission, energy production, synthesis of important molecules, 

regulation of gene expression and many more [7, 8]. At the same 
time, these metal ions are also lethal for the human body when 
not maintained in the proper concentrations. Both excess and 
deficiency of these metal ions lead to several hazardous diseases 
such as anemia, Parkinson's disease, Wilson’s disease, Alzhei-
mer's disease, Minamata, amyotrophic lateral sclerosis (ALS), 
Itai-Itai, reproductive disorders, kidney failure, prostate cancer, 
mental retardation, cardiac arrest [9–13]. The majority of these 
lethal ions, like  Cr3+,  Hg2+,  Pb2+,  Sn2+,  Pd2+,  Cd2+, and  Ni2+, 
are essential in the industries such as the food, textile, paper 
industries, pharmaceuticals, metal refineries, electronic fields 
and construction of batteries, from which they are released into 
the water bodies and soil thereby harming the plants and aquatic 
life [14–19]. Hence, there is a tremendous demand to empha-
size the development of fast-detecting devices for monitoring 
the concentration of these toxic ions. Currently, there are sev-
eral techniques, such as atomic absorption-spectroscopy (AAS), 
inductively coupled mass-spectrometry (ICPMS), voltammetry, 
and UV–visible absorption spectroscopy used for detecting the 
metal ions, but these techniques are expensive, time-consuming, 
less sensitive and have a complicated procedure [20–22]. So, 
to overcome these limitations, chemosensors of different kinds 
have been developed and explored for their metal ions recogni-
tion properties. A chemosensor, used in qualitative or quantitative 
detection of a specific chemical substance, is comprised of three 
elements: a receptor responsible for the selective analyte binding, 
a photoactive unit whose properties depend upon this selective 
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analyte binding, and a spacer that can change the geometry of the 
system and tune the electronic interaction between the two for-
mer moieties. Depending on the nature of the signal emitted by 
the signaling subunit, chemosensors can be classified into three 
categories: (i) colorimetric sensors, which are related to changes 
in electronic properties via different charge transfer processes 
accompanying color change (ii) electrochemical sensors, includes 
the change in redox potential which triggers signal production 
(iii) Fluorogenic sensors, whose signals are affected by various 
processes including chelation enhanced fluorescence (CHEF), 
fluorescence resonance energy transfer (FRET), intramolecular 
charge transfer (ICT), excited-state intramolecular proton transfer 
(ESIPT), C = N isomerization and photoinduced electron transfer 
(PET), excimer-exciplex formation [23–25]. The field of molecu-
lar monitoring by fluorescent probes has slowly become a hot-
spot in the environment, biology, and material science due to 
the ease of production, non-destructiveness, quick response, low 
cost, high sensitivity and sensitivity and selectivity towards toxic 
ions. Great efforts are being made to advance fluorescent detec-
tors for metal cations due to their potential applications in real-
time sample analysis, biological fluorescence imaging, molecular 
catalysis, and logic gate construction [26–33]. To this end, Schiff 
base derivatives play a crucial role in ion recognition, mainly in 
developing fluorescent chemosensors. These compounds gained 
much attention from researchers because of their easy methods 
of preparation, availability, and ability to complex with almost 
every metal ion [34, 35].

Schiff bases, also known as imines or azomethines, are 
nitrogen analogs of aldehyde or ketone with the replacement 
of the carbonyl group by the imine group [36, 37]. They are 
represented by the standard formula  R1R2C =  NR3, while in 
some cases, this carbon atom is bonded with the hydrogen 
atom representing the formula  R1CH =  NR2 where  R1,  R2, or 
 R3 are the organic side chains (alkyl or aryl groups) [38–40]. 
These compounds play a substantial role in the purifica-
tion of metals, electroplating, organic synthesis, metallurgy, 
photography, and the analytical field. The Schiff bases' coor-
dination chemistry fascinated researchers because of its 
diversified applications in industries such as pigments, dyes, 
intermediates, polymer stabilizers, catalysts, and corrosion 
inhibitors. Further, these Schiff bases play wide roles in 
biological systems as they possess anti-inflammatory, anti-
fungal, antibacterial, analgesic, antioxidant, cardiovascular, 
and antitumor properties and act as local painkillers [41–50].

Schiff Base Fluorescent Chemosensors

Fluorescent chemical sensors are the molecules that show 
changes in the fluorescence characteristic properties in 
response to an analyte. Depending on the nature, these 
sensors can detect different types of analytes, such as 
cations, anions, neutral molecules, or gases. Schiff base 

fluorescent sensors can detect different types of cations 
over other compounds due to the number of binding sites; 
unique cavity sizes available where the metal cation can 
efficiently bind and forms a stable complex. Other struc-
tural factors include the size and charge of the ion, electron 
configuration, and hard and soft acid–base characteristics 
of both the cation and donor sites in the Schiff base. Some 
recent research on Schiff base fluorescent sensors con-
taining binding sites such as furan [51], imidazole [52], 
anthracene [53], pyridine [54], benzopyran, phenanthro-
line, neocuprine [55], coumarin [56], metal nanoparticles 
in sensors [57, 58] is well documented in the literature. 
Synthesis, properties, and fluorescence mechanisms of 
Schiff base compounds are also discussed in detail [59, 
60]. In the earlier reported reviews [61–66], the review-
ers covered all the biomedical and industrial applications 
of Schiff bases. Studies were also documented, which 
covered anion sensing by colorimetric, pH-sensitive, and 
fluorescent Schiff base sensors for cell imaging and appli-
cations of optical sensors.

This current review is consciously focused on the devel-
opment of Schiff base fluorescent chemosensors for bio-
logically, industrially, and environmentally essential cati-
ons such as  Zn2+,  Al3+,  Hg2+,  Cd2+,  Pb2+,  Fe2+,  Fe3+and 
 Cu2+. After conferring the literature, this review sum-
marizes the literature from 2016 and ahead. The present 
review provides detailed mechanisms involved in sensing 
metal cations along with their structures, binding stoichio-
metries, association constant, the limit of detection, and 
synthesis schemes for some of the sensors. The practical 
applicability of different sensors, such as cell imaging, 
logic gate construction, paper strip tests, and analysis of 
wastewater samples, is also given with the respective sen-
sors. In the end, these sensors' applications, advantages, 
and disadvantages are discussed.

Fluorescence Sensors for Al (III)

Aluminum, a majorly used element in our day-to-day life, 
is the third most abundant metal in the earth's crust and 
has many applications in biology, the environment, and 
industries. This metal is used mainly in making products 
such as aluminum foils, window frames, utensils, airplane 
parts, etc., due to its lightweight, malleability, and soft 
nature. Aluminum accumulation has increased dramati-
cally in the environment yearly due to human activity and 
acid rain. Although Aluminum is a non-essential element, 
it can potentially produce toxicity and accumulate in the 
human body. When aluminum reaches the blood circula-
tion system, it gets into tissues and cannot get excreted. 
The standard intake (WHO report) of aluminum in the 
human body is 3–10 mg per day, and its permissible limit 
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in drinking water is 7.4 l M. Excessive intake of aluminum 
leads to joint pain, myopathy, dementia, Alzheimer’s, and 
Parkinson's diseases [67–69]. So, the detection of Alumin-
ium by potentially selective chemosensors is necessary. 
Some most promising Schiff base fluorescent sensors for 
selective detection of aluminum have been analyzed and 
reported below.

Fan et al. developed a chromone-based Schiff base (1), 
which shows turn-on fluorescence in the presence of  Al3+ 
metal ions [70]. The molecule displayed a 500-fold enhance-
ment in fluorescence intensity along with a noticeable color 
change from colorless to yellow-green in ethanol upon binding 
with  Al3+, having the excitation and emission wavelengths as 
423 nm and 507 nm, respectively. It also showed high sensi-
tivity in ethanol with a detection limit of 5 ×  10–8 M, which is 
sufficiently low to detect the sub-micromolar concentration of 
 Al3+. This enhancement in emission intensity was due to the 
blocking of the PET mechanism, i.e., the lone pair of nitrogen 
that were freely available for donation are no more available 
after complexation with metal  Al3+ ion, thereby restricting the 
electron transfer process. Also,  ML2-type complex formation 
between the aluminum ion and the ligand leads to rigidity 
in the structure, resulting in chelation-enhanced fluorescence 
(CHEF) [Fig. 1].

Boron-dipyromethane (BODIPY) based Schiff bases 
(2) and (3) comprising quinoline and pyrazine moieties 
were reported for the selective detection of aluminum in 
the acetonitrile–water medium [71]. (2) and (3) showed 
a color change from pink to green on adding an excess 
amount of  Al3+ which is possibly due to the hydrolysis of 
the imine bond. Both probes encapsulate aluminum ions 
through hydrogen bonding. These sensors showed weak 
fluorescence because of intramolecular charge transfer 
(ICT) between the BODIPY and hydrazine functional-
ity. After the addition of  Al3+, an increase in emission 
intensity of the band present at 552 nm from 220–290 a.u 
for (2) and 220–610 a.u for (3) was observed. In another 
work, a polymer-based fluorescent chemosensor (4) was 

synthesized by post-modification of poly (ethylene glycol) 
using salicylaldehyde-based Schiff base derivate and elabo-
rated for its magnificent selectivity and sensitivity towards 
 Al3+ in pure aqueous media [72]. Its solution in free form 
exhibited negligible fluorescence, but as  Al3+ was added 
to the solution, an apparent increase in the fluorescence 
(up to 490 a.u) emission was induced with the peak cen-
tered at 459 nm, and the solution also displayed a drastic 
color change from colorless to bright cyan. Several other 
metal cations had little interference with the fluorescence 
intensity of the probe. Test strips coated with the molecule 
(4) were also made for checking  Al3+ concentration in real 
water samples, and they could also be used to construct 
inhibit-type logic gates. Similarly, by modification of poly-
(ethylene glycol) with thiophene Schiff base derivative, a 
fluorescent turn-on chemosensor (5) was synthesized [73]. 
(5) reports selective and sensitive determination of  Al+3 
over a wide pH range in the presence of other metal ions in 
an aqueous medium. This water-soluble chemosensor had a 
detection limit of 1.32 ×  10–8 M, which was way lower than 
the maximum concentration of 7.41 µM of  Al3+ in drink-
ing water recommended by WHO. Two isomeric antipyrine 
derivatives (6) and (7), on binding with  Al3+, regardless 
of the orientation of the naphthol ring, experienced nearly 
25-fold and fourfold enhancement, respectively [74]. The 
visible color change was shown by chemosensors through 
PET on binding with  Al3+ making them suitable colori-
metric sensors. These isomers were applied in construct-
ing ‘AND’ type logic gates by providing EDTA and  Al3+ 
as inputs. Structures of the sensors (2)-(7) are shown in 
Fig. 2. Also, Table 1 lists various characteristic properties 
of chemosensors (2)-(7). 

Schiff base (E)-4-methyl-2-((2-(9-(naphthalen-1-yl)-
8-(thiophen-2-yl)-9H-purin-6-yl)hydrazono) -methyl)
phenol,(10) (a yellow colored solid having 85% yield) 
was derived from 6-hydrazinyl-9-(naphthalen-1-yl)-8-
(thiophen-2-yl)-9H-purine (8) (200  mg, 0.558  mmol) 
and 2-hydroxy-4-methylbenzaldehyde(9) (114  mg, 

Fig. 1  Plausible sensing mecha-
nism of (1) for  Al3+

(1)
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0.837 mmol) after refluxing for two hours in an ethanolic 
medium as represented in Scheme 1 [75]. (10) was effi-
ciently employed for detecting trace  Al3+in living HeLa 
cells via cell imaging experiments by developing test 
strips. The fluorescence intensity enhanced up to 3 ×  105 
a.u upon adding  Al3+ and a visual color change from color-
less to pale yellow.

Another fluorescence turn-on compound (11), which 
employed a terpyridine-based Schiff base, showed very 
weak emission at 528 nm when excited at 265 nm [76]. 
Upon the addition of  Al3+, a 51-fold enhancement in the 
fluorescence, along with a hypsochromic shift (516 nm) 
was observed. This can be explained on account of strong 
intramolecular charge transfer and hindrance of PET and 
C = N isomerization process [Fig. 3]. The NMR and Job’s 
plot results revealed that  Al3+ binds with the ligand in a 
2:1 ratio forming the  M2L-type complex. The LOD and 

association constant were found to be 3.32 ×  10−7 mol  L−1 
and 6.8 ×  105  M−1 respectively.

A steroid-based Schiff base (12) was developed through 
microwave-assisted synthesis that showed high fluorescence 
selectivity towards  Al3+ in an ethanol–water (1:2) solvent 
system [Fig. 4a] and, thus, applied in sensing  Al3+ in actual 
water samples [77]. The detection limit was low (34 nM) 
in the pH range of 6.05—9.32. Banerjee and co-workers 
reported an  N2O2 donor Schiff base (13) with an azo arm 
that selectively detects  Al3+ in a semi-aqueous medium 
[78]. The fluorescence studies of (13) revealed weak flu-
orescence at 510 nm on excitation at 388 nm. Upon addi-
tion of  Al3+ ions, 61-fold fluorescence enhancement along 
with a blue shift from 510 to 478 nm was seen, despite the 
presence of other metal ions. It was successfully employed 
in the development of an inhibition-type molecular logic 
gate and sensing  Al3+ in fewer organic solvents. Schiff 

Fig. 2  Structures representing 
Chemosensors (2), (3), (4), (5), 
(6), and (7)

Table 1  Some characteristic properties and the binding mechanism for (2)-(7)

Cation sensor λex/λem (nm) M:L ratio Binding 
constant(M−1)

Detection limit (M) Mechanism Reference

(2) 360/552 1:1 5.5 ×  104 86.6 ×  10–8 ICT, CHEF (turn-on) [71]
(3) 360/552 1:1 6.6 ×  104 13.7 ×  10–8 ICT, CHEF (turn-on) [71]
(4) 394/459 1:1 1.01 ×  105 2.93 ×  10–9 CHEF (turn-on) [72]
(5) 374/444 1:1 8.74 ×  104 1.32 ×  10–8 PET, C = N, CHEF (turn-on) [73]
(6) 400/576 1:1 6.03 ×  103 1 ×  10–5 PET, CHEF (turn-on) [74]
(7) 400/576 1:1 5.56 ×  103 5 ×  10–10 PET, CHEF (turn-on) [74]
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base (E)-N′-(4(diethylamino)-2-hydroxybenzylidene)-2-
hydroxybenz-ohydrazidebenzylidene-based (14) having 
potential biomedical applications, shows a 45-fold increase 
in fluorescence intensity on complexing with  Al3+ ion due 
to development of rigid system causing chelation enhanced 
fluorescence [Fig. 4b] [79]. The detection limit was very low 
for sensing  Al3+ (3.60 ×  10−6 M). The Benesi–Hildebrand 
expression gave the stability constant value as 1.21 ×  105  M−1 
with the stoichiometric ratio 1:1 for the metal: ligand com-
plex. The fluorescence studies of another Schiff base (15) 
were done in DMF: water (9:1) as a solvent system, which 
suggested that (15) in its free form emitted negligible fluo-
rescence but in the presence of  Al3+, a 34-fold enhancement 
in fluorescence was noted, which is due to strong ICT and 
CHEF effects taking place in the complex [80]. The stoichi-
ometry of the ligand-Al3+ complex was 1:1, and the limit of 
detection calculated was 6.7 µM. The sensor could be recy-
cled by using appropriate complexing agents such as EDTA 
due to its reversibility. Structures of the above-mentioned 
Schiff bases are shown in Fig. 5.

To increase the water solubility, Hwang and the group 
have used aminobenzoic acid for the synthesis of Schiff 
base (16) through a simple condensation process [81]. This 
showed better and more efficient recognition of  Al3+ ions 
[Fig. 6b] in aqueous media amongst other metal cations, i.e., 
 Mn2+,  Fe3+,  Co2+,  Ni2+,  Cu2+,  Zn2+,  Cd2+,  Hg2+,  Na+,  K+, 
 Mg2+,  Ca2+,  Pb2+ and  Cr3+ which caused minor changes in 
fluorescence. Based on the results from fluorimetric titra-
tions and Job’s plot, the structure of (16)-Al3+ complex was 
proposed, as shown in Fig. 6a. The binding constant calcu-
lated was very high (3.1 ×  108  M−1), and the LOD reported 
was very low (290 nM).

Schiff base (17), a brown-colored solid, was synthe-
sized by refluxing salicylidene-4-aminoantipy–rine and 
4-aminophenol for 6 h in an ethanolic medium with 52% 
yield and was characterized by IR, NMR, and mass data 
[82]. This compound (17) displayed no fluorescence, but 
on binding with aluminum ions, the fluorescence intensity 
increased up to 690 a.u. Due to the formation of the com-
plex, the ESIPT mechanism gets hindered as the hydrogen 

Scheme 1  Scheme for the 
synthesis of (10)

Fig. 3  Binding mechanism of the sensor (11) with  Al3+ ion
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involved in hydrogen bonding was removed during com-
plex formation, followed by the electron transfer process. 
A phenyl thiadiazole-based Schiff base receptor (18) was 
developed for colorimetric as well as fluorometric detec-
tion of  Al3+ in a methanol-tris–HCl buffer medium [83]. 
The sensor displayed fluorescence to 5000 a.u on exciting 
at 310 nm, which increased up to 15,000 a.u with  Al3+ 
ions accompanying a color change from colorless to bright 
yellow.(18) can be potentially used in the construction of 
binary logic gates, smartphone-based chemical analysis, 

and recovery of contaminated water due to quick fluoro-
metric response time. Another turn-on fluorescent sensor 
(19) was found to be an effective fluorometric probe for 
sensing  Al3+ ions [84]. Molecule (19), along with  Al3+ions, 
also acts as a colorimetric sensor for  Fe2+ and  Fe3+ (yel-
low to brown for both). This probe showed an 18-fold 
enhancement in the presence of  Al3+ions. A cis-dioxo 
molybdenum (VI) complex derived from multidentate 
hydrazone ligand (20) was investigated for its fluorescence 
properties in an aqueous-DMF medium which revealed its 

Fig. 4  Fluorescence spectra of a sensor (12); b sensor (14) with different metal cations

Fig. 5  Structures of fluorescent 
chemosensors (12)-(15) used for 
selective detection of  Al3+
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high sensitivity towards  Al3+ ions [85]. Initially, probe 
(20) exhibited negligible fluorescence, but the intensity 
of the emission band increased up to 5000 a.u on bind-
ing with  Al3+. Li et al.synthesized a diazafluorene-based 
Schiff base (21) by simply refluxing diazafluorene-based 
amine (0.175 g, 0.5 mmol) and salicylaldehyde (0.183 g, 
1.5 mmol) in 70 ml methanol for 12 h [86]. The fluores-
cence behavior of (21) was examined towards a number 
of trivalent and divalent metal cations. A free form of 
(21) showed a poor signal of emission intensity at 475 nm 
when excited with the wavelength of 392 nm, whereas on 
adding 10 equivalents of  Al3+ ions, a 1312-fold enhance-
ment in fluorescence intensity was observed. Schiff base 
(2-((2-hydroxybenzylidene)-amino)-2-(hydroxymeth-yl)
propane-1,3-diol (22) was investigated for its emission 
behavior towards a series of divalent  (Co2+,  Ni2+,  Cu2+, 
 Zn2+,  Cd2+,  Hg2+,  Pb2+), alkali, alkaline and trivalent 
 (Fe3+,  Cr3+,  Ga3+,  In3+, and  Al3+) metal cations in a purely 
aqueous medium [87]. After adding different metal cations 
to the solution of (22), strong enhancement was shown in 
the case of  Al3+ only, along with a redshift from 405 to 
459 nm. Also, under the UV lamp, the color of the solu-
tion appeared blue, which was colorless before the addi-
tion of  Al3+. The other characteristic parameters of ligands 

(17)-(22) are listed in Table 2, and the structures of these 
compounds are shown in Fig. 7.

Schiff base (23) was investigated for its photophysical 
behavior in the buffer solution of HEPES (50 mM) made 
in 0.01% ethanol and was effectively employed in sensing 
aluminum ions in human hepatocellular liver carcinoma 
cells [88]. This weakly fluorescent ligand showed a sharp 
increase in intensity at 450  nm, along with the forma-
tion of an  ML2-type complex. 10 ml ethanolic solution of 
Al(NO3)3.9H2O (0.187 g, 0.5 mmol) was added into 10 ml 
solution of (23) (0.241 g, one mmol) and refluxed for 2 h with 
proper stirring; the clear solution obtained was kept overnight, 
after which yellow crystals were obtained with 80% yield. 
Scheme 2 depicts the formation of a solid aluminum com-
plex. Values from Job’s plot and Benesi–Hildebrand expres-
sion gave the value of binding constant  Ka = 10.188 ×  103  M–1. 
(23) was effectively employed in sensing aluminum ions in 
the Human hepatocellular liver carcinoma cells.

Antipyrine derivatives are of greater interest due to 
their pharmacological applications and clinical interest. 
Selvan and group reported two isomeric 4-aminoantipyrine  
based Schiff base ligands, (24) and (25), which recog-
nize  Al3+ ion in highly aqueous medium [89]. Fluo-
rescence studies of both the probes were investigated 

Fig. 6  a Proposed structure of 2:1 aluminum complex; b Emission spectra shown by (16)

Table 2  Some other distinctive parameters of fluorescent sensors (17)-(22) used for the detection of  Al3+

Cation sensor λex/λem (nm) M:L ratio Binding  
constant (M−1)

Detection limit (M) Mechanism Reference

(17) 278/484 1:1 2.67 ×  105 1.06 ×  10–7 PET, ESIPT, CHEF (turn-on) [82]
(18) 310/380 1:1 − 1.15 ×  10–7 ICT, PET, CHEF

(off–on-off)
[83]

(19) 420/480 1:1 2.7 ×  103 3.44 ×  10–6 CHEF (turn-on) [84]
(20) 330/450 2:1 2.86 ×  104 1.87 ×  10–6 CHEF (turn-on) [85]
(21) 392/475 1:1 1.8 ×  109 3.7 ×  10–8 ICT, CHEF (turn-on) [86]
(22) 310/459 1:1 - 3.2 ×  10–7 PET, CHEF (turn-on) [87]
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concerning different metal ions, which showed that on  
adding  Al3+ to the respective solutions, 25-fold and 
fourfold enhancement in fluorescence intensities was 
observed for (24) and (25), respectively. The binding 
ratio of both the ligands (24) and (25) with the  Al3+ was 
1:1, as confirmed by Job's plot analysis. The binding con-
stants evaluated are 6.02 ×  10–3  M−1 and 5.56 ×  10–3  M−1 
for (24)–Al3+ and (25)–Al3+ complex, respectively. 
2-Hydroxy naphthalene-based fluorescence sensor (26) 
was utilized in sensing  Al3+ ions in larvae of living 
zebrafish [90]. The sensor showed no detectable fluores-
cence in its free form, but adding  Al3+ to the solution of 
(26), showed a 150-fold increase in fluorescence intensity 
at 430 nm. The LOD for sensing  Al3+ is 1.37 ×  10−7 M.  
Sensors (24), (25), and (26) are shown in Fig. 8.

Fluorescence Sensors for Zn (II)

Zinc metal is the second most abundant d-group metal ion in 
the human body, which plays a vital role in various biologi-
cal processes like the synthesis of DNA, neurophysiology, 
apoptosis, modulation of diverse ion channels, gene expres-
sion, and signal transduction. Also,  Zn2+ is an integral part 
of the bio-enzymes like carbonic anhydrase, zinc finger pro-
teins, and transcription factors. An imbalance of  Zn2+ ions 
is associated with severe neurological disorders, including 
seizure disorder, Alzheimer's disease, Parkinson's disease, 
ischemic stroke, and infantile diarrhea [91–94].  Zn2+ meta-
bolic disorders are also associated with hair loss, diabetes, 
epilepsy, etc. So, the concentration variation of  Zn2+ should 
be monitored by highly selective chemosensors, and thus, 

Fig. 7  Structures of fluorescent 
chemosensors (17)-(22)

Scheme 2  Schematic repre-
sentation for the synthesis of 
(23)-Al3+ complex
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the determination of  Zn2+ is gaining more and more atten-
tion. A brief analysis of some Schiff base fluorescent sensors 
for selective determination of  Zn2+ is examined below.

A malononitrile-based ligand (27), stable under a broad 
pH range, displayed an eightfold enhancement in fluo-
rescence towards zinc ion for the peak present at 661 nm 
[Fig. 9a] [95]. The measured LOD value i.e., 0.44 μM, shows 
high sensitivity towards  Zn2+. The cell imaging experiments 
indicated that (27) could be effectively used as an assur-
ing tool for imaging studies, thereby revealing the explicit 
mechanisms of  Zn2+ in living systems. Similarly, another 
zinc sensor (28) showed eightfold enhancement, which could 
be due to the binding of (28) with  Zn2+ ions leading to ring 
formation making a stable ML-type zinc complex with for-
mation constant as 2.36 ×  106 M [refer to Fig. 9b] [96]. LOD 
for the sensor was found to be pretty low (0.52 nM) in the 
pH range of 4–9. The  Zn2+ complex of (28) has been used 
in live-cell imaging techniques and successfully illustrated 

as a feasible biomarker. The ligand and its  Zn2+ complex 
were evaluated by test paper strips to assess the real-world 
efficacy, and the latter was also employed for the selective 
detection of pyrophosphate ion with the help of fluores-
cence mechanism.2,6-bis((E)-(2-(benzo[d]thiazol-2-yl)-
hydrazono)methyl)-4-(4,5-diphenyl-1H-imidazol-2-yl)
phen-ol(29), reported by Gomathi and the group was found 
to be another turn-on emission probe for zinc ions [97]. The 
sensing ability of (29) was tested with different metal cations 
in which only  Zn2+ exhibited around an eightfold increase in 
intensity [Fig. 9c] with a green–blue emission band situated 
at 463 nm, achieving a detection limit of 10.9 μM. Sturuc-
tures of these Zinc sensors are shown in Fig. 10.

3 ,5-di- ter t -butyl-2-hydroxybenzaldehyde and 
2-hydroxybenzaldehyde were reacted with amino acid 
l-glutamine to produce Schiff bases (30) (yellow solid) 
and (31) (yellow oil) with 56% and 77% yield respectively 
when refluxed for 24 h in methanol solution [98]. These 

Fig. 8  Structural depiction of 
Aluminium sensors (24), (25) 
and (26)

Fig. 9  Emission behavior of ligands (a) (27), (b) (28), (c) (29) in the presence of metal ions
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sensors were documented for selective detection of zinc 
ions in acetonitrile–water (1:1) as a medium, having LOD 
values of 1.17 and 1.20 mM, respectively. The ligand 
was also used to determine intracellular zinc ions in the 
human epithelial cells via the live cell imaging process. 
The photophysical studies of (30) revealed a weak emis-
sion band exhibition at 475 and (31) at 445 nm on excita-
tion at 370 nm. The DFT studies revealed that electron 
transfer taking place from HOMO to HOMO-1 results in 
the poor emission of free sensors. Upon binding with  Zn2+, 
both molecules showed up to a 30-fold enhancement in the 
fluorescence intensities. This increase in fluorescence can 
be explained due to the restriction of PET and structural 
rigidity after complexing with  Zn2+ ions (Fig. 11).

Low-level recognition of  Zn2+ ions can also be done 
using diarylethene derivative-based Schiff base (32) in THF 
solvent, which on excitation at 380 nm, produces a weak 
emission band at 464 nm [99]. Upon addition of a stock 
solution of different metal cations one by one, (32) shows 
a 27-fold enhancement in fluorescence intensity only for 
 Zn2+ion along with a red shift (464 to 513 nm) and color 
change from blue to bright green. This behavior of the sensor 
is due to the formation of the complex (ML type) [Fig. 12], 
for which isomerization of C = N bond was suppressed, and 
CHEF came into the picture.

Zinc sensors (33)–(38) are shown in Fig. 13, along with 
their binding parameters listed in Table 3. The fluorescence 
behavior of a quinoline-based reversible chemosensor (33) 
was investigated in a 1:1 acetonitrile: water medium, which 
was found to be weakly fluorescing [100]. Upon gradual 
addition of  Zn2+ ions to the ligand solution, a 53-fold incre-
ment in fluorescence was observed. Along with sensing 

 Zn2+ ions in the human cervical cancer cells, this sensor was 
also helpful in building an “INHIBIT” type logic gate with 
 Zn2+ ions and EDTA as inputs. Studies of a guanidine-based 
Schiff base (34) in  CH3OH-tris buffer solution resulted in 
weak fluorescence emission at 585 nm when excited at 
395 nm. In contrast, emission intensity increased almost 
25-fold in the presence of  Zn2+[101]. Kim and co-workers 
developed another zinc sensor (35), which was effectively 
used in the imaging studies of zinc ions in living Hela cells 
[102]. Emission studies of (35) were done in a purely aque-
ous medium. Receptor (35) displayed a weak emission band 
(intensity 45 a.u approx.) at 479 nm, but with  Zn2+, this 
intensity increased to 200 a.u. An orange solid Probe (36) 
showing a parent peak in ESI-Mass at 565.32 was derived 
through the condensation process of 3,3'-Diaminobenzidine 
(100 mg, 0.46 mmol) and 4-(N,N-diethyl)-2-hydroxybenzaldehyde 
(181 mg, 0.93 mmol) in ethanol, when refluxed for 3 h 
[103]. Studying the fluorescence behavior proved to be a 
dominatingly selective sensor towards  Zn2+ ion (54-fold 
enhancement). The LOD value was as low as 8.6 ×  10–9 M 
for  Zn2+, indicating its high efficiency in detecting a nano-
molar concentration of  Zn2+, thereby imparting potential  
application in the selective detection of zinc in environ-
mental samples. A 4,5-diazafluorene-based molecule (37) 
showed selectivity towards  Zn2+ by displaying a 194-times 
increase in fluorescence at 465 nm, which is due to the 
complex formation because on complexing with the zinc 
metal ion, the hydroxyl proton is removed, which results in 
the restriction of ESIPT mechanism and thereby increasing 
the fluorescence [104]. A pyridine-based Schiff base (38) 
was prepared by adhering it to the surface of organically 
modified SBA-15 mesoporous silica [105]. The fluorescence 

Fig. 10  Zinc sensors (27), (28), 
and (29)

Fig. 11  Fluorescence enhance-
ment mechanism of (30) and 
(31) involving PET-blocking 
process
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performance of this sensor towards  Zn2+ was recorded in a 
purely aqueous medium. The molecule (38) alone displayed 
a strong emission band at 400 nm on excitation with 300 nm 
wavelength. Upon addition of  Zn2+ to it, drastic enhance-
ment in emission intensity (200–650 a.u) was seen, which 
was not present in the case of any other metal ion as a result 
of the spectrofluorometric titrations.

A series of Schiff bases (41), (42), (43), and (44) were 
prepared by refluxing of 4,4′-diaminodiphenylmethane 
(39) for 12 h in methanol with salicylaldehyde, o-vanillin, 
2,4-dihydroxybenzaldehyde and 4-formylbenzoic acid 
respectively [Scheme 3] [106]. All four compounds hav-
ing high yields were characterized by IR, NMR, and mass 

spectroscopies. After adding  Zn2+, the fluorescence prop-
erties of the four probes, as mentioned earlier, revealed 
that (41) (λex = 391 nm, λem = 489 nm), (42) (λex = 285 nm, 
λem = 460 nm) and (43) (λex = 372 nm, λem = 530 nm) with 
the electron-donating group enhanced the fluorescence 
intensity by 97-fold, 18-fold, and 60-fold respectively. In 
comparison, (44) (λex = 273 nm, λem = 352 nm) with the elec-
tron-withdrawing group quenched the emission intensity up 
to tenfold only in the case of the  Zn2+ ion.

Hydrazone-based Schiff-base fluorescent sensor (47) 
was synthesized by reacting (45) (0.102 g, 0.5 mmol) and 
(46) (0.101 g, 0.5 mmol) in ethanol with a yield of 71.4% 
[Scheme 4] [107]. The molecule showed high selectivity 

Fig. 12  Formation of (32)-Zn2+ complex during fluorescence studies

Fig. 13  Structures of Schiff 
bases (33)-(38)
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for the zinc ions by establishing a strong elevation in the 
intensity (20 a.u to 250 a.u) of the emission peak at 498 nm, 
forming ML type complex in the solution. The LOD calcu-
lated for  Zn2+ is 1.73 ×  10–7 M.

Another work provides a design strategy for constructing 
six new Schiff base fluorescent probes [108]. The fluorescence 
properties of these target probes (48), (49), (50), and reference 
probes (51), (52), and (53) [Fig. 14] interpreted that only the 
target probes exhibited significant elevation in the intensity of 
emission spectra in the presence of  Zn2+ whereas, the refer-
ence probes showed no change in the fluorescence spectra. The 
fluorescence spectra of the target probes (48), (49), and (50) 
displayed two emission bands; the first band at around 400 nm, 
and the second band concerning the first band is present with 
redshift at 169 nm in case of (48) and 171 nm in case of (49) in 
ethanol medium. Further, on adding different metal ions to the 
respective target probes, an elevation in fluorescence intensity 
was observed in the presence of  Zn2+ only. Probe (49) displayed 
a 40 times increment in the fluorescence with a new peak at 
500 nm with  Zn2+, and the signal due to ESIPT at 530 nm 
disappeared. A 35-fold enhancement was noticed for (48) and 
(50). The association constants  (Ka) of all three complexes 
with stoichiometric ratio 1:1 were calculated as 1.37 ×  106  M−1 
(48), 1.42  106  M−1 (49), and 1.13  106  M−1 (50), respectively. 
Moreover, these chemical sensors showed promising results 
on a broader pH range thus, can be efficiently used in live-cell 
imaging of zinc ions with considerable fluorescence variation.

Fluorescence Sensors for Cu (II)

Copper is a renowned trace metal for the proper function-
ing of the human body as it participates in several cellular 
processes and metabolic functions. It is an indispensable 
metal for humans, plants, and animals. Copper is involved 
in metabolic processes like enzymatic hydrolysis, genera-
tion and regulation of nerve signals, electron transfer, energy 
production, and formation of bones, and it also acts as an 
effective catalyst in various redox processes. Everyday con-
sumption of copper should be 1.2–1.3 mg/day as per WHO. 
When the concentration of  Cu2+ crosses the limit, it causes 
diseases like prion disease, Alzheimer’s disease, and Wil-
son’s disease [109–113].

An organic–inorganic hybrid nanosensor (54) was devel-
oped from a bis-salicylaldehyde-based Schiff base and 
SBA-15 mesoporous silica [114]. The aqueous suspen-
sion of (54) showed a strong fluorescence emission band at 
435 nm (λex = 317 nm), and the fluorescence quenched dra-
matically only in the presence of copper metal ion [Fig. 15a] 
with a limit of detection as 8.4  10–3 mg/L. The quenching 
in emission intensity is due to the formation of a coordina-
tion complex between the ligand and  Cu2+ ion through the 
electron-donating phenolic hydroxyl groups and the nitro-
gen atom. The paramagnetic nature of the  Cu2+ ion is also 
responsible for the quenching. Regeneration studies of this 
compound were performed using  Na2-EDTA (acting as a 

Table 3  Binding parameters of Zinc sensors (33)-(38)

Cation sensor λex/λem (nm) M:L ratio Binding  
constant (M−1)

Detection limit (M) Mechanism Reference

(33) 355/553 1:1 3.21 ×  106 5.0 ×  10–9 CHEF (off–on-off) [100]
(34) 395/585 1:1 8.71 ×  103 2.04 ×  10–6 PET, CHEF

(turn-on)
[101]

(35) 380/479 1:1 4.5 ×  103 11.9 ×  10–6 CHEF (turn-on) [102]
(36) 430/509 2:1 7.8 ×  104 8.6 ×  10–9 C = N, CHEF (turn-on) [103]
(37) 465/394 2:1 2.5 ×  103 5 ppm ESIPT,CHEF

(turn-on)
[104]

(38) 300/400 1:1 - - PET, CHEF (turn-on) [105]

Scheme 3  Synthesis scheme for 
probes (41), (42), (43), and (44)
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desorption agent) solution, which recovers the nanosensor 
(54) from its copper complex. Hence it can be utilized again 
and again for practical purposes. Another Schiff base (55) 
was derived from p-toluic hydrazide and 4-tert-butyl-2,6-di-
formyl phenol, which was found to be a colorimetric as well 
as a fluorometric sensor in the ethanolic medium [115]. The 
fluorescence performance of this ligand showed a decrement 
in the fluorescence intensity from 600–20 a.u in the presence 
of  Cu2+ ion [Fig. 15b]. This can be explained on the basis of 
the reverse PET mechanism occurring from the N, O atoms 
of carbohydrazide moiety to the OH of the phenol group in 
(55), leading to the formation of a dinuclear dimeric copper 
complex. A hydrophilic Schiff base (56) was incubated in the 
HeLa cells. On irradiating the loaded HeLa cells with UV 
light, bright green-colored fluorescence was seen at 37 °C 
[116]. Further addition of copper ion to the above system 
quenched the fluorescence. Regeneration studies of probe 
(56) having λex = 436 nm and λem = 532 nm were done with 
 Na2EDTA solution. The studies explored the chemosensor as 
reproducible and could be used repeatedly for sensing  Cu2+ 

ions at low concentration levels (LOD = 3.74 ×  10−8  M−1) 
in water. The fluorescence spectra of (56) in the presence of 
several cations are shown in Fig. 15c. Figure 16 represents 
the structures of the above-discussed Schiff bases (54), (55), 
and (56).

The molecule (57) behaves as a colorimetric and fluoro-
metric chemosensor and shows a strong emission band at 
519 nm in the physiological pH (7.4). The Schiff base (57) 
showed 2.5-fold quenching in the fluorescence on complexing 
with  Cu2+ due to the Dexter-type electron transfer from Cu 
(II) center to the photoexcited fluorophore. A color change 
was observed from light pink to yellow due to the complex 
formation between (57) and  Cu2+ ions [Fig. 17] [117].

2-Hydroxy-1-napthaldehyde (58) in reaction with ben-
zylamine (59) in methanol solution gave rod-shaped crys-
tals of Schiff base (60) with a yield of 80%, as shown in 
Scheme 5 [118]. Single crystal XRD confirms the structure 
of the sensor, and the fluorescence behavior studies revealed 
its high selectivity towards copper ion in DMSO:  H2O (2:8) 
system. The poor fluorescent molecule (λex = 320 nm and 

Scheme 4  Synthesis of Schiff 
base (47)

Fig. 14  a Structures of the sensors (48), (49), and (50) correspond to the target molecule, while 51, 52, and 53 relate to reference probes; b Com-
plex of sensors (48), (49), and (50) with  Zn2+
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λem = 645 nm) is a turn-on fluorescence sensor for the cop-
per metal ion, which could be explained by the restriction of 
the ICT mechanism (occurring in the naphthalene moiety), 
resulting in the formation of rigid  ML2 type Cu-complex. 
The value of the association constant and detection limit 
for the copper complex were reported as 1 ×  1011  M−2 and 
30 ×  10−9 M, respectively.

A few other copper sensors (61)-(68) discussed here 
are represented in Fig. 18, along with their characteristic 
properties listed in Table 4. Detection of the copper ion at 
the micromolar levels in the biological and water samples 
was achieved using the sensor (61), having a low detection 
limit of 0.36 μM [119]. Fluorescence studies of the above- 
mentioned sensor done in THF-water solvent displayed 
quenching in fluorescence at 565 nm, in the presence of 

copper ion forming a highly stable copper complex. Similar 
synthetic pathways were followed by Kowser et al. to pro-
duce two new fluorogenic molecules (62) and (63) [120]. 
Both the reported molecules were weakly fluorescent due 
to the electron transfer process occurring from the nitro-
gen atoms to the pyrenyl fluorophore of each sensor inde-
pendently. While performing the sensing studies, copper 
complexes of (62) and (63) formed in solution blocked the 
electron transfer process, resulting in an increase in fluo-
rescent intensity by 65-fold and 25-fold for (62) and (63), 
respectively. The condensation of N-(3-Aminopropyl)imi-
dazole and 2-Hydroxy-5-(ptolyldiazenyl)-benzaldehyde 
resulted in orange colored  Cu2+ sensor (64) with 82% yield, 
which was characterized by single crystal XRD [121]. The 
molecule displayed a 50-fold enhancement in the intensity 

Fig. 15  Emission spectra of a-(54), b-(55) and c-(56)

Fig. 16  Cu2+ sensing Schiff 
bases- (54), (55), and (56)
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with  Cu2+ ion. The combined effect of CHEF and restric-
tion in cis–trans isomerization were responsible for this 
increment. Upon the gradual addition of copper ions into 
the solution of a new naphthalene-based Schiff base deriva-
tive (65), an enhancement in emission intensity from 50 a.u 
to 550 a.u was observed, which was absent in the case of 
other metal ions [122]. Pyrene-based carbaldehyde and car-
bonohydrazide amine were refluxed in an ethanol medium 
to produce Schiff base (66), which selectively recognizes 
the biologically important  Cu2+ in semi-aqueous suspen-
sion [123]. This molecule initially showed a weak band in 
the emission spectra, but after adding  Cu2+, a 4.5-times 
elevation was observed at 455 nm. This ligand was effec-
tively used in governing the intracellular copper ion in HeLa 
cells. The photophysical properties of a naphthalimide-based 
Schiff base (67) were studied through excitation and emis-
sion spectroscopy in a tris–HCl buffer-DMF solution [124]. 
A significant quenching in fluorescence intensity (from 980 
to 320 a.u approximately) was noted at 539 nm only in the 
presence of  Cu2+ ions. The test strips of a Schiff base (68) 
were fabricated to investigate its practical applications [125]. 
This molecule depicted 95-fold quenching in the fluores-
cence band present at 520 nm, along with a notable color 
change from yellow to colorless in the presence of  Cu2+ ions.

Fluorescence Sensors for Ag(I)

Silver is one of the precious metals and has a wide vari-
ety of applications in the industries like pharmacology, 
photography, medicine, jewelry, electronics, etc.. Besides 
that, silver is also used as an antimicrobial agent in silver-
impregnated filters for water purification. These wide-
spread applications have resulted in the accumulation of 
silver in the environmental systems. 0.2 µM concentration 
of  Ag+ is allowed for the human body. A concentration 
of more than this can cause severe damage to the human 
body [126–131]. So, there is a need for effective sens-
ing of silver species in the waste-water samples. Sahu 
and the group developed the pyridine-based Schiff base 
(69), which recognizes silver ina methanol–water (1:1) 
binary solvent mixture [132]. Sensor (69) is a feebly 
emitting molecule showing an emission band at 416 nm 
(λex = 330 nm). After adding different metal cations  (Fe2+, 
 Co2+,  Cu2+,  Ni2+,  Zn2+,  Cd2+,  Hg2+,  Pb2+,  Cr3+,  Al3+,  Fe3+, 
and  Ag+ ions), only in the case of  Ag+ drastic enhance-
ment (~ 25-fold) in fluorescence was observed at 416 nm 
along with a noticeable change in color from colorless to 
deep-blue forming an  M2L type complex in solution. This 
molecule binds with one silver ion through the ‘N’-atom of 

Fig. 17  Sensing mechanism of 
Schiff base (57) towards copper 
ion
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pyridine fluorophore, along with one nitro group and two 
water molecules, whereas another silver atom bind with 
(69) through ‘N’ and ‘S’ atoms of thiourea group along 
with two water molecules leading to the formation of stable 
dimeric complex [Fig. 19].

Fluorescence Sensor for Cd(II)

Cadmium is a silvery-white, soft metal belonging to group 
12 of transition metal atoms. Cadmium reassembles mer-
cury and zinc metal in most of its properties. Amongst the 

Fig. 18  Representation of copper sensors (61)-(68)

Table 4  Characteristics of Copper sensors (61)-(68)

Cation sensor λex/λem (nm) M:L ratio Binding constant Detection limit (M) Mechanism Reference

(61) 365/565 1:2 - 0.36 ×  10–6 CHEQ (turn-off) [119]
(62) 367/405 1:1 1.29 ×  105  M−1 8.80 ×  10–8 PET, CHEF (turn-on) [120]
(63) 367/405 1:1 1.55 ×  104  M−1 4.94 ×  10–7 PET, CHEF (turn-on) [120]
(64) 385/426 1:2 - 1.8 ×  10–6 C = N, CHEF (turn-on) [121]
(65) 234/345 1:1 4 ×  104  M−1 - CHEF (turn-on) [122]
(66) 370/455 1:2 1.89 ×  109  M−2 3.5 ×  10–8 CHEF (turn-on) [123]
(67) 430/539 1:1 1.32 ×  106  M−1 2.3 ×  10–5 CHEQ (turn-off) [124]
(68) 375/520 2:1 6.1 ×  1010  M−2 4.87 ×  10–9 CHEQ (turn-off) [125]
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other heavy metal ions, cadmium is one of the most toxic. 
Excessive exposure to cadmium may lead to renal dysfunc-
tion, forms various types of cancers, and can collapse the 
metabolic calcium rate. Higher concentrations of cadmium 
released into the environment from industries may contam-
inate the soil, water, and crops, harming aquatic life and 
human health. As  Cd2+ behaves like  Zn2+, it can replace zinc 
from the zinc enzymes and will lead to dis-functioning those 
enzymes. That is why explicit recognition of this toxic metal 
is essential [133–135].

Schiff base (72) was produced with (79% yield) by stir-
ring of 2-hydroxy-napthaldehyde (0.2  g, 1.1  mM) (70) 
with 2-hydrazinoquinoline (0.185, 1.1 mM) (71) in slightly 
acidic methanol medium for half hour at room temperature. 
The formation of (72) was confirmed by the presence of 
parent peak in HRMS data 314.1288, IR, and NMR data 
[Scheme 6] [136]. Treatment of  Cd2+ with (72) in an ace-
tonitrile–water (8:2) medium forms a rigid complex, binding 
through -OH (of quinolone) and N (of imine), restricting 
C = N isomerization ultimately. The emission bands initially 
at 330 nm and 380 nm exhibited a bathochromic shift to 
436 nm and 456 nm, showing a 37-fold enhancement. A 
visible color change from colorless to crimson yellow was 
seen immediately after adding  Cd2+ to the stock solution 
of the sensor. The DFT studies confirmed the reduction in 
band gap energy (4.13 eV—2.86 eV) from the compound 
(72) to its cadmium complex, which is also attributed to 
its good fluorescence response. The ligand (72) was used 

successfully to evaluate cadmium concentration in various 
water samples.

A Naphthalene-based sensor (75), with 87.93% yield, 
was prepared by refluxing 2-hydroxynapthaldehyde 
(200 mg, 1.10 mmol) (73) and 2-hydrazinobenzothiazole 
(190 mg, 1.10 mmol) (74) for 3 h [Scheme 7] [137]. (75) was 
reported to sense cadmium ions. The spectrofluorometric 
studies of (75) in a DMSO-water mixture displayed a weak 
fluorescence band at 507 nm. After adding  Cd2+, a nine-
fold enhancement in intensity and the hypsochromic shift 
from 507 to 497 nm were noted. The value of the associa-
tion constant for the M:L type complex was 1.17 ×  104  M−1. 
The imaging experiments checked the practicability of this 
probe. HeLa cells loaded with (75) showed minimum fluo-
rescence, while on treating the above cells with  Cd2+ for 
10 min, bright fluorescence was noted.

Fluorescence Sensors for Cr(III)

Chromium is commonly found in the earth's crust in  Cr3+ 
and  Cr6+ oxidation states.  Cr6+ is highly toxic, whereas 
 Cr3+ is essential for human nutrition.  Cr3+ plays a vital role 
in activating certain enzymes, which are also required in 
the catabolism of proteins, carbohydrates, fats, and nucleic 
acids. Although, excess and insufficiency of chromium will 
lead to several health diseases, such as diabetes and heart 
problems, which impact cellular structure and normal enzy-
matic activities. The environmental protection agency (EPA) 

Fig. 19  Plausible sensing 
mechanism of (69) for  Ag+

Scheme 6  Synthesis scheme of 
chemosensor (72)
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sets the maximum permissible limit of total chromium as 
0.1 mg/mL [138–142]. So, the detection of  Cr3+ is essen-
tial. Chalmardi et al. developed two chemosensors (76) and 
(77) only by differing the binding position of ‘N’ atoms in 
the moiety [Fig. 20] [143, 144]. Emission studies of both 
probes were done in an acetonitrile–water medium (95/5%), 
which revealed that molecules (76) and (77) were negligibly 
fluorescent. However, they displayed considerable elevation 
(~ 100-fold) and (~ 70-fold) in the fluorescence with  Cr3+, 
respectively, and formed ML-type stable metal-chelate in 
solution. The LOD values calculated for (76) and (77) are 
2.2 ×  10–7 M, 1.3 ×  10–7 M, and formation constants values 
are 8.77 ×  104  M−1, 2.28 ×  105  M−1, respectively.

Fluorescence Sensors for Fe(III)

Iron is one of the key elements in the human body required 
to fulfill the normal physiological functioning of the body. 
Iron involves several cell processes, counting DNA and 
RNA synthesis, oxygen transport, and energy production 
[145, 146]. Nonetheless, the deficiency or excess of iron 
leads to many diseases, such as liver damage, kidney fail-
ure, anemia, cancer, Alzheimer's, and Parkinson's diseases, 
and also causes lipid peroxidation and DNA fragmenta-
tion leading to cell death. [147, 148]. Iron exists in two 
forms: ferrous ion  (Fe2+) and ferric ion  (Fe3+).  Fe3+ is the 
less reactive form due to its better water solubility, good 
binding affinity, and intracellular reductive environment 

[149–151]. Some examples of Schiff bases, which selec-
tively recognize  Fe3+, are discussed below.

Li and the group produced a Schiff base containing an 
acyl hydrazone moiety (78), which showed exciting fluo-
rescence properties in a methanol solvent system [152]. 
In the presence of  Fe3+, molecule (78) showed 69-fold 
quenching at 506 nm. Emission intensity decrement was 
due to the paramagnetic nature of  Fe3+ and the breaking of 
the H-bond between the proton of -CO–NH- and oxygen 
of the C = O group. For the practical applicability of the 
sensor (78), the authors have developed its test strips by 
soaking strips of Whatman filter paper into the metha-
nolic solution of the molecule (78) for  Fe3+ sensing. Also, 
the probe is applied to measure the concentration of  Fe3+ 
in different water samples such as tap water, water from 
rivers etc. Another sensor (79) for  Fe3+ sensing showed 
off–on type fluorescence behavior in  CH3OH/H2O (9:1) 
[153]. This feebly fluorescent Schiff base (having inten-
sity 90 a.u) on binding with  Fe3+ imparted slight enhance-
ment in fluorescence up to 130 a.u. So, (79) can effectively 
determine the concentration of  Fe3+ in environmental and 
biological samples. A highly fluorescent sensor (80) hav-
ing emission intensity ~ 1000 a.u and λex = 280 nm showed 
two emission peaks between 330–520 nm, one at 356 nm 
and another at 372 nm [154]. The high fluorescence of 
(80) was due to two carbazole moieties suspended on both 
ends of the diaminomalonitrile group in the ligand, which 
forms a highly conjugated system. The binding interaction 
of (80) was studied with different metal cations; in the 
case of  Fe3+, fluorescence intensity was quenched from 
5000 a. u to 2000 a.u in DMF. The probe (81) showed 
good fluorescence when bombarded with a light source 
having 425 nm wavelength, but this fluorescence was 
quenched up to ninefold in the presence of  Fe3+ [155]. The 
naked-eye studies of Schiff base (81) revealed its colori-
metric sensing behavior on complexing with  Fe3+ species, 
i.e., yellow to colorless. Figure 21 depicts the structures 
of Schiff bases (78)-(81), and other parameters of these 
probes are discussed in Table 5.

Four iron sensors (78), (79), (80), and (81) have been 
prepared by refluxing the amines and aldehydes in eth-
anolic medium, producing a yield of 82%, 76%, 10%, 
and 88.25%, respectively. All four compounds were 

Scheme 7  Synthesis scheme of 
probe (75)

Fig. 20  Structural representation of  Cr3+ sensors (76) and (77)
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characterized by IR, 1H, 13C NMR, and mass techniques 
[132–135].

Fluorescence Sensors for Hg (II)

Mercury, amongst various heavy metal ions, is one of the 
most harmful elements commonly found in air, water, and 
soil and is a non-radioactive heavy metal ion. Mercury is an 
exceedingly dangerous and universal pollutant causing severe 
damage to human health. According to WHO's recommenda-
tion, the maximum limit of  Hg2+ in drinking water is two ppb 
[156–158]. Further, it is challenging to degrade and can cause 
serious harm to the central nervous system. The aggregation 
of mercury in the body of human beings leads to several health 
diseases, such as Minamata disease and various cognitive and 
mortar disorders. It can damage the human heart, stomach, 
kidneys, and genes [156, 159, 160]. So, there is a high demand 
for mercury sensors. A few of them are discussed below.

A thiocarbohydrazide Schiff base (82) behaves as a chem-
osensor for  Hg2+ ions in a semi-aqueous medium [161]. Solu-
tion studies of (82) suggest the formation of a 1:1 mercury 
complex, followed by quenching of the emission intensity. 
This change may be due to the combined CHEQ and PET 

mechanisms [Fig. 22]. The limit of detection and associa-
tion constant calculated were 1.26 nM and 8.2 ×  10–5  M−1, 
respectively.

Figure 23 shows structures of other mercury sensors (83), 
(84), and (85). Upon adding  Hg2+ to the coumarin-based 
sensor (83), a fourfold increment in emission intensity of 
the band present at 530 nm was observed [162]. The asso-
ciation constant for ML type  Hg2+ complex was found to 
be 3.89 ×  105  M−1. Compound (83) was efficiently applied 
in determining the toxic concentrations of  Hg2+ in environ-
mental and biological samples. Another weakly fluorescing 
Schiff base (84) was reported as having λex = 440 nm and 
λem = 530 nm [163]. It was prepared by simple condensation 
of coumarin dyes and 5-aminoisophthalic acid methyl ester. 
The molecule worked effectively in the physiological pH 
range and was reported to sense nano levels of  Hg2+ in the 
living cells. The emission studies done in acetonitrile–water 
(8:2) medium revealed that the addition of mercury salt to a 
stock solution of (84) exhibited a broad emission band from 
530 to 490 nm with enhancement from 5 to 60 a.u in emis-
sion intensity. Mercury is a highly toxic metal that can seri-
ously damage the environment and biological systems. Thus, 
determining nano levels of mercury in the animal, plant, or 
human bodies is much needed. Schiff base (85) showed a 

Fig. 21  Structures of  Fe3+ sens-
ing probes

Table 5  Distinctive parameters of iron sensors (78)-(81)

Cation sensor λex/λem (nm) M:L ratio Binding constant 
(M−1)

Detection limit (M) Mechanism Reference

(78) 395/506 1:1 1.49 ×  105 4.6 ×  10–6 CHEQ (turn-off) [152]
(79) 385/435 1:1 1.52 ×  104 6.49 ×  10–5 CHEF (turn-on) [153]
(80) 280/356,372 1:1 7.98 ×  106 3.75 ×  10–8 LMCT, CHEQ (turn-off) [154]
(81) 425/526 1:1 1.2 ×  103 - CHEQ (turn-off) [155]
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turn-on fluorescence response in the existence of mercury 
ions in an acetonitrile–water (9:1) solvent system, as shown 
in Fig. 24 [164]. The value of the association constant for 
the  ML2-type mercury complex is 4.484 ×  105 M –1, with the 
LOD value is 2.268 ×  10–8 M for detecting  Hg2+.

Fluorescence Sensors for Pb(II)

Divalent lead is one of the harmful metal ions found on 
the earth, and exposure to very minimal concentrations of 
it leads to dis-functioning of the digestive and respiratory 
systems of the human body. As lead is non-biodegradable, 
it accumulates inside the body and results in severe health 
disorders such as anemia, loss of memory, muscle paralysis, 
and neurological dysfunction [165–168].

Detection of the lead ion at the micromolar levels can be 
achieved with a thiophene-based Schiff base (86) [Fig. 25a] 
[169]. This molecule showed eightfold enhancement at 
490 nm in the presence of  Pb2+ in a methanol–water (3:1) 
binary mixture. Further, the yellow solution of the ligand 
turned red on adding  Pb2+ into it, making it a colorimetric 
sensor. The colorimetric and fluorometric detection limits 
were 6.78 µg/L and 7.38 µg/L, respectively. The fluores-
cence properties of another Schiff base (87) [Fig. 25b] were 
explored in an acetonitrile–water (95:5) system [170]. The 
molecule exhibited weak fluorescence at 508 nm, and in 

the presence of  Pb2+, it showed an 11-fold increase in fluo-
rescence emission, as shown in the spectra [Fig. 26]. The 
solution studies suggest the formation of a stable  M2L2-type 
complex leading to chelation-enhanced fluorescence.

Multi‑cation Fluorescence Sensors

The sensors which can detect two or more metal ions simul-
taneously are called multi-ion sensors. These sensors have 
various applications in developing test strips for different 
metal ions, real sample analysis, construction of molecular 
logic gates, and cell imaging experiments. Some examples 
of multi-cation sensors (88–112) are discussed in detail.

Schiff bases (88) and (89) were derived from the con-
densation of 4-(diphenylamino)-2-hydroxybenzaldehyde 
with cyclohexane-1,2-diamine and ethylene diamine [171]. 
Both sensors depicted 36-fold enhancement with  Zn2+ 
ions (λmax = 488 nm). Also, the ligands exhibited weak 
enhancement (fourfold) in the presence of  Cd2+ ions at 
λmax = 458 nm. Interestingly, (88)-Zn2+ showed a second 
turn-on fluorescence phenomenon (190-fold) after add-
ing  Cd2+ ions and vice-versa. The probes, as mentioned 
above, detect  Mn2+ colorimetrically (colorless to orange). 
The single crystal structure of the zinc complex confirmed 
the formation of a 1:1 (Zn:L)  N2O2 coordination com-
plex with square pyramidal geometry. Schiff bases (bis[4-
(2-hydroxy-3-methoxybenzyl-ideneamino)phenyl] ether 
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(90) and(di[(4-phenylimino)4-diethylsalicyl-aldehyde] 
ether) (91) were used for the simultaneous recognition of 
biologically important metal ions viz.,  Al3+ and  Cr3+ in 
 CH3CN-H2O (1:1) medium at physiological pH [172]. Probe 
(90) exhibited a broad emission band at 530 nm, concomi-
tant additions of  Al3+ and  Cr3+ caused considerable quench-
ing in ligand’s emission, and a new peak was developed at 
480 nm (for  Al3+) and 508 nm (for  Cr3+) displaying hyp-
sochromic shifts. The molecule (91) experienced a very poor 
emission seen at 490 nm due to the transfer of a proton from 
phenolic -OH to azomethine ‘N’ and cis–trans isomerization 
of C = N. The fluorescence was intensified on complexing 
with  Al3+ and  Cr3+. Zhu et al. reported another weakly fluo-
rescent Schiff base (92) used to detect  Fe3+ and  Cr3+ metal 
ions simultaneously [173]. It showed a 13-fold enhancement 
in the emission spectrum with  Fe3+ and 11-fold with  Cr3+, 
along with a red shift from 495 to 502 nm. All these Schiff 
bases from (88) to (92), shown in Fig. 27, were weakly fluo-
rescent due to C = N isomerization and the proton transfer 
mechanism involved; their interaction with the metal ions 
leads to structural rigidity and enhancement in fluorescence. 
The other characteristics of these sensors are discussed in 
Table 6.

2-Hydroxy-N-((9-propyl-9H-carbazol-3-yl)methylene)
benzo-hydrazide (95) with a yield of 78.8% was synthesized 
by condensation of (93) with (94) (41 mg, 0.27 mmol) in 
anhydrous ethanol at 80 °C [Scheme 8] [174]. This mol-
ecule is capable of concurrent sensing of  Hg2+ and  Al3+ in 
a purely aqueous solution. It showed a large quenching at 
458 nm with  Hg2+, which could be attributed to the CHEQ 
effect of the heavy metal mercury. Also, (95) marked a rise 
in the fluorescence intensity and a bathochromic shift with 
 Al3+. This probe also acts as a colorimetric sensor for  Al3+, 
showing a color change from blue to green. LOD for  Hg2+ 
and  Al3+ are 14.7 nM and 47.2 nM, respectively. This probe 
can be employed for developing test strips, practical sample 
analysis, molecular logic gate constructions, and cell imag-
ing experiments.

A dual Schiff base sensor 4,4′-Methylenebis[2-[[(2-
mercaptophenyl)imino]methyl]phenol (MMIP) (96) 
[Fig. 28a] was developed successfully by one-pot syn-
thesis [175]. Molecule (96) can detect  Ag+,  Cu2+, and 
 Hg2+ simultaneously over a pH range of 3–10 giving 

Fig. 24  Fluorescence behavior of probe (85) in presence of metal ions

Fig. 25  a Schiff base (86); b 
Structure of  M2L2 type lead 
complex of (87) N
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Fig. 26  Fluorescence spectra of (87) in the presence of various metal 
ions
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low detection limit values, i.e., 63.7 μM, 64.8 μM, and 
52.7  μM, respectively. Investigation of f luorescence 
properties in DMSO-H2O (1:1) medium revealed that the 
molecule having high-intensity emission at λem = 527 nm 
was quenched in the presence of  Ag+,  Cu2+ and  Hg2+ 
as shown in Fig. 28b. Another bifunctional Schiff base 
(97) [Fig. 28d] consisting of an oligothiophene unit was 
produced by Zhang [176]. The spectral behavior of this 
molecule was investigated in the presence and absence 
of metal ions and found that it recognizes  Hg2+ and 
 Cu2+ in DMSO-H2O (1:1) solvent mixture, as shown in 
Fig. 28c. The detection limits were found to be very low, 
1.16 ×  10−7 M for  Hg2+ and 7.06 × 10 − 8 M for  Cu2+. 
Moreover, regeneration and reversibility studies of the 
ligand were carried out by adding EDTA solution sepa-
rately into  Cu2+ and  Hg2+ complexes of (97), which regen-
erates the free ligand.

Crown ethers are a class of macrocyclic compounds hav-
ing essential applications in forming host–guest complexes. 

Dong et al. developed a Schiff base chemosensor (98) car-
rying a phenyl-crown-ether unit, and its interactions with 
 Al3+ and  Fe3+ were highlighted [177]. Upon adding  Al3+, 
the molecule underwent a sharp color change from color-
less to orange-yellow, exhibiting a 160-fold fluorescence 
enhancement, whereas, in the presence of  Fe3+, a 130-fold 
enhancement was registered. In both cases, the CHEF 
mechanism was involved due to metal ion coordination 
through four ‘N’ donors of (98), leading to the formation 
of a stable, rigid molecular framework [Fig. 29].

The non-fluorescent Schiff base (99) was examined 
for its photophysical properties with different cations and 
showed a remarkable increment in fluorescence intensities 
with zinc and mercury ions [Fig. 30a][178]. This enhance-
ment is primarily due to the restriction of charge transfer 
happening within the molecule and also for the develop-
ment of CHEF effect after the formation of respective 
complexes of ML type [Fig. 30b]. Values of association 
constants  (Ka) calculated from Benesi-Hildebrand plot are 

Fig. 27  Structure of multi-ion 
sensors (88), (89), (90), (91), 
and (92)

N N

OH HO

N N

(88)

O

N N

OH

OCH3

HO

H3CO(90)

O

N N

OH HO

N N(91)

NO2

NC6H13

(92)

R

HC* CH2
*

CH2

CH2H2C
H2C

(89)

R =

*H2C CH2
*

Table 6  Characteristic parameters of Schiff bases (88)-(92)

Cation Sensor λex/λem (nm) M:L ratio Binding constant (M1) Detection limit (M) Mechanism Reference

(88) 360/488(Zn2+)
360/458(Cd2+)

1:1
1:1

-
-

-
-

CHEF, ESIPT, ICT (turn-on) [171]

(90) 350/480(Al3+)
350/508(Cr3+)

1:1
1:1

2.35 ×  105

1.26 ×  105
1.73 ×  10−7

1.12 ×  10−7
CHEF, ESIPT, ICT (turn-on) [172]

(91) 430/507(Al3+)
430/486(Cr3+)

1:1
1:1

1.46 ×  105

3.0 ×  105
4.34 ×  10−7

7.73 ×  10−7
CHEF, ESIPT, ICT (turn-on) [172]

(92) 380/521(Fe3+)
380/502(Cr3+)

1:2
1:2

4.67 ×  104

5.97 ×  104
-
-

CHEF, ESIPT, ICT (turn-on) [173]
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1.52 ×  104  M–1 for  Zn2+ and 1.41 ×  105  M–1 for  Hg2+. The 
molecule can also perform naked-eye detection of  Zn2+ 
(colorless to yellow) and  Hg2+ (colorless to greenish-
yellow) ions.

Some other prominent fluorescent sensors (100)-(106) 
are shown in Fig. 31, along with their binding properties, 
as listed in Table 7. The sensor (100) was developed explic-
itly for detecting  Al3+ and  Zn2+ [179]. Basically, (100) was 
a weak fluorescent molecule, but  Al3+ showed a 196-fold 
increase in the intensity accompanying the color change 
from orange to bright yellow. In the case of  Zn2+, a 446-
fold intensification of the fluorescence intensity was noted, 
with a new peak appearing at 560 nm. Also, naked-eye 
detection of  Zn2+ is possible as color-changed to bright-
green. Further application-wise, the authors developed a 
logic gate circuit by giving emission intensity as an out-
put signal. The reliability of the probe was established in 
detecting  Al3+ and  Zn2+ in real-water samples. The etha-
nolic solution of Benzimidazole-based Schiff base (101) 
detects  Al3+,  Fe3+and  Cu2+ simultaneously in EtOH [180]. 
It exhibits two emission maxima at 468 and 497 nm. On 

spectrofluorometric titration with  Al3+, an increase in the 
emission intensity at 497 nm was noticed, which can be 
substantiated for the ESIPT process. Naked eye detection of 
 Al3+ was also possible due to a color change from pale yel-
low to dark yellow. Further, upon the incremental addition 
of  Cu2+ and  Fe3+ into (101), 15-fold and 11-fold quenching 
in emission intensity were observed without changing the 
wavelength maxima. Schiff base (102) was derived through 
condensation of benzylamine and 2-hydroxybenzaldehyde, 
which acts as a multi-ion sensor and simultaneously 
detects  Zn2+,  Cd2+, and  Hg2+ with low detection limit value 
2.7 ×  10–7 M, 7.5 ×  10–7 M and 6.0 ×  10–7 M respectively  
[181]. Cytotoxicity analysis of E-(2-(((4-aminophenyl)
imino)methyl)-5-(difluorome-thoxy)phenol (103) was 
done for the liver cancer cells of the HeLa cell line. The 
results from the cell imaging experiment showed that the 
percentage of cell viability increased with the increase in 
the ligand concentration [182]. This molecule was further 
examined for its fluorescence behavior that showed its rec-
ognition for  Al3+ with an enhancement in emission inten-
sity from 50- 860 a.u in ethanol–water (1:4) as a solvent 

Scheme 8  Scheme for the syn-
thesis of Schiff base (95)

N
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N
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Fig. 28  a Structure of sensor 
(96); b Fluorescence spectra of 
ligand (96) in the presence of 
metal ions; c Emission behavior 
spectra of ligand (97); d Struc-
ture of sensor (97)



882 Journal of Fluorescence (2023) 33:859–893

1 3

system. It also showed an increase in the emission inten-
sity in the presence of  Fe2+ (up to 170 a.u) and  Cu2+ (395 
a.u). These increments in the intensities resulted from the 
formation of conjugate systems after complexing with the 
metal ions. Multi-responsive vanilinyl-p-cresol diformyl 
based imine (104) was developed for simultaneous deter-
mination of  Zn2+ and  Cd2+ions [183]. The fluorescence 
properties of (104) were evaluated in DMSO-water (9:1) 
binary solvent system with metal ions. A weak intensity 
emission band was noticed at 482 nm by the ligand only. 
However, upon adding  Zn2+ into (104), a 90-fold intensi-
fication in the fluorescence intensity was seen. Whereas 
in the presence of  Cd2+, a 120-fold increase was noted. 
Additionally, the authors developed portable test kits for 
recognizing  Zn2+ and  Cd2+, where TLC plates were dipped 
in the solution of this ligand for preparing the test strips. 
When the dried strips were brought in contact with metal 

solutions and observed under UV lamps, they showed 
remarkable color change, i.e., red–orange for  Cd2+ and red-
green for  Zn2+. Schiff base (E)-7-(((8-hydroxyquinolin-
2-yl)methylene)amino)-4-methyl-2H-chromen-2-one (105) 
developed by Roy and coworkers selectively detects  Fe3+ 
(colorimetrically),  Zn2+ and  Cu2+ (fluorometrically) [184]. 
It displayed a fluorescence band at 438 nm that got mani-
fested by a sixfold increment in the intensity along with 
a blue shift (438–428 nm) in the presence of  Zn2+ ions. 
Contrary, quenching emission intensity 210- 60 a.u was 
observed with  Cu2+ ions. A yellow solid, 2-(((9H-fluoren-
2-yl)imino)methyl)phenol (106) was obtained with 81% 
by reaction of 9H-fluoren-2-amine (0.181 g,1 mmol) and 
2-hydroxy- benzaldehyde (0.122 g, 1 mmol) in ethanolic 
solution [185]. The compound was characterized by TLC, 
melting point, IR, 1H, 13C NMR, and Mass spectroscopy. 
This probe recognizes both  Cr3+ and  Al3+ in an acetonitrile 
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medium by showing an increase in the intensity of the fluo-
rescence band.

2-hydroxy-5-methylisophthalaldehyde and piperazine 
were reacted to produce Schiff base (107) for successful 

detection of  Zn2+ and  Cu2+ in a water–methanol (9:1) 
binary-solvent system [186]. The molecule showed a 
90-fold increase in emission intensity and a blue shift from 
510- 480 nm due to the PET effect's restriction. Also, the 

Fig. 31  Structural representa-
tion of Schiff bases (100)-(106) F
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Table 7  Binding properties of Schiff bases (100)-(106)

Cation Sensor λex/λem (nm) M:L ratio Binding  
constant (M−1)

Detection limit (M) Mechanism Reference

(100) 420/58  (Al3+)
420/560(Zn2+)

1:1
1:1

1.5 ×  104

6.4 ×  104
2.7 ×  10–7

4.0 ×  10–8
CHEF (turn-on)
CHEF (turn-on)

[179]

(101) 425/497(Cu2+)
424/497(Al3+)
425/497(Fe3+)

2:1
1:1
1:1

1.5 ×  103

3.5 ×  104

1.2 ×  109

1.3 ×  10−7

3.7 ×  10−7

-

Paramagnetic nature
(turn-off)
ESIPT off, (turn-on)
CHEQ, turn-off

[180]

(102) 369/452(Zn2+)
369/474(Cd2+)
369/491(Hg2+)

2:1
1:1
2:1

-
-
-

2.7 ×  10–7

7.5 ×  10–7

6.0 ×  10–7

CHEF, (turn-on)
CHEF, (turn-on)
CHEF, (turn-on)

[181]

(103) 368/478(Al3+)
439/521(Fe2+)
473/545(Cu2+)

2:1
2:1
2:1

5.7 ×  104

5.0 ×  104

5.4 ×  104

13.38  10–6

-
-

CHEF (turn-on)
CHEF (turn-on)
CHEF (turn-on)

[182]

(104) 482/545(Zn2+)
482/560(Cd2+)

1:1
1:1

2.7 ×  104

0.9 ×  104
2.7 ×  10–9

6.6 ×  10–9
CHEF (turn-on)
CHEF (turn-on)

[183]

(105) 335/428(Zn2+)
335/438(Cu2+)

1:1
1:1

2.6 ×  104

8.6 ×  104
-
-

CHEF, PET off (turn-on)
Paramagnetic nature
(turn-off)

[184]

(106) 333/536(Al3+)
333/536(Cr3+)

2:1
2:1

8.3 ×  104

5.4 ×  104
2.5 ×  10–7

3.1 ×  10− 7
C = N, ESIPT off,
(turn-on)
C = N, ESIPT off,
(turn-on)

[185]



884 Journal of Fluorescence (2023) 33:859–893

1 3

C = N isomerization promotes the chelation of  Zn2+ to (107) 
through O, N donors forming the  M2L type complex, favor-
ing the CHEF mechanism. However, in the case of  Cu2+, 
174-fold quenching was seen, possibly due to the paramag-
netic nature of  Cu2+ and the CHEQ mechanism. Seeing their 
importance in sensor technology, solid complexes of this 
ligand with  Zn2+ and  Cu2+ were synthesized by stirring zinc 
nitrate hexahydrate (2.0 mmol, 0.5948 g) and copper nitrate 
trihydrate (2.0 mmol, 0.5912 g) with the Schiff base (107) in 
ethanol with yield 85% [Scheme 9]. The m/z peaks at 638.00 
and 634.14 corresponded to the exact mass of  Zn2+ and  Cu2+ 
complexes, respectively.

Fluorescence imaging studies of a dual coumarin-based 
sensor (108) were done on the human colon cancer cell 
[187]. The results depicted that when the cancer cells were 
treated with this sensor, no fluorescence was observed, 
but, when the above cells loaded with (108) were exposed 
to  Zn2+, turn-on green fluorescence was seen in the fluo-
rescence microscope. The fluorescence studies revealed 

that probe (108) initially displayed a weak emission band 
at 471 nm. After adding  Zn2+, this band showed consid-
erable intensity enhancement due to the complex's planar-
ity and rigidity [Fig. 32]. Also, a significant color change 
from colorless to bright green was observed. The above-
said molecule also recognizes  Fe3+ colorimetrically by a 
visible difference from colorless to dark brown. The forma-
tion constants for  Zn2+ and  Fe3+ complexes calculated are 
2.847 ×  103  M−1 and 0.94 ×  104  M−1, and the LOD values are 
0.6 ×  10–8 M and 5.38 ×  10–6 M, respectively.

Another Schiff base (109) was a promising tool for simul-
taneously detecting three metal ions:  Hg2+,  Cu2+, and  Al3+, 
and behaved as a colorimetric and fluorometric sensor [188]. 
The notable change in color from yellow to red yellow was 
seen with  Hg2+ ions, mainly because of the formation of 
the  Hg2+ complex (LOD = 2 μM) involving intra-molec-
ular charge transfer from ligand to metal.  Al3+ and  Cu2+ 
showed enhancement in fluorescence intensities by 216 and 
73-fold with LOD values of 2.07 and 1.29 μM, respectively. 
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Schiff base4E,10E-4-(2-(4-nitrophenyl)-N-((1H-indol-3-yl)
methylene) benzenamine (110) was derived from (4)-4- 
(phenyldiazenyl)aniline and indole-3-carbaldehyde [189]. 
This compound showed “Off–On” type emission spectra in 
the presence of  Ni2+,  Mg2+, and  Fe3+ at 487 nm. LOD val-
ues calculated for  Ni2+,  Mg2+, and  Fe3+ were 6.82 ×  10−7 M, 
5.27 ×  10−7 M, and 5.96 ×  10−7 M, respectively. The val-
ues of the binding constant computed by the B-H plots 
method were found to be 3.45 ×  108  M−2, 5.63 ×  104  M−2, 
and 8.63 ×  103  M−2, respectively. An indole-based Schiff 
base (110) was checked for its anticancer activity towards 
the HeLa cell line, results of the experiment showed good 
in-vitro cytotoxicity behavior of the sensor. Another Schiff 
base (111) was reported that showed selectivity towards 
 Ni2+ and  Cu2+ amongst the pool of metal cations in the 
methanol-tris–HCL buffer [190]. This molecule displayed 
weak emission at 450 nm (λex = 350 nm), and an increase in 
intensity from 250 a.u to 640 a.u was noted with a detection 
limit of 3.64 µM with  Ni2+. On the contrary, adding  Cu2+ to 
(111) quenched the emission intensity (250 a.u to 90 a.u), 
mainly because of the paramagnetic nature of copper metal 
ions. The stoichiometries of both complexes were 1:1. The 
probe can detect  Ni2+ and  Cu2+ in environmental samples 
and living cells. Also, this can be used in the construction 
of INHIBIT-type logic gates. Selective recognition of two 
important metal ions, such as  Pb2+ (toxic in nature) and  Cu2+ 
(highly essential for plants and animals), was achieved by 
a single triazole-based compound (112) [191]. The emis-
sion studies carried out in  CH3OH–tris-buffer revealed that 
both  Cu2+ and  Pb2+ depicted enhancement in fluorescence 
intensity about 15-fold and 17-fold, along with LOD val-
ues 12 ×  10–7 M and 9 ×  10–7 M, respectively. The molecule 
acted as a colorimetric sensor for  Cu2+ (colorless to yellow), 
and  Pb2+ (colorless to light yellow) was noticed through the 

naked eye. The dual sensor (112) was found useful to check 
the concentration of  Cu2+ and  Pb2+ in water, soil, and bio-
logical samples, and also its INHIBIT-logic gate was con-
structed by the same group. Schiff bases (109)- (112) are 
shown in Fig. 33.

Applications

Schiff base probes have a wide variety of applications in 
biological, clinical, and analytical fields [192]. Fluorescence 
imaging is one of the biomedical applications of such sen-
sors, which allows them to monitor various processes in the 
cells, tissues, and organs of the body. They are used as a 
potent tool for live-cell imaging due to their ability to provide 
non-damaging images of living cells. They are also known 
for their high selectivity, sensitivity, and fast response time 
in bacterial detection. For instance, sensors (10), (23), (26), 
(28), (30), (33), (35), (56), (66), (75), (84), (103), (108), (110) 
reported in this article were used in cell imaging experiments 
of various cells including HeLa cells, liver carcinoma cells, 
zebrafish larvae, human epithelial cells, and human cervical 
cancer cells, as discussed. The other biomedical applications 
include drug and biological sample analysis [193–197]. Real 
sample analysis is another primary application of these sen-
sors, where they are used to directly detect toxic metal ions 
in real samples such as water, food, soil etc.. Schiff bases 
(4), (12), (56), (61), (72), (78), (100), (112) reported in this 
review are practically applied in the real sample analysis. 
The optical sensing properties of the Schiff base chemosen-
sors are very crucial as they impart applications in the con-
struction of molecular keypads and logic gates due to their 
molecular switching properties, for example, some already 
cited sensors: (4), (6), (7), (13), (18), (33), (95), (100), (111), 

Fig. 33  Structures of probes 
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(112). The metal complexes of Schiff bases offer important 
industrial applications like catalysis [198]. Other applications 
include the development of security inks, rewritable papers, 
and data storage systems [199–201].

Advantages and Disadvantages

Schiff base fluorescence sensors have more advantages over 
non-Schiff base sensors due to their ease of synthesis with 
high percentage yield, availability of several binding sites, 
and variable cavity size in the structural framework that 
favors complex formation with a wide range of metal ions. 
The metal chelate effect offers high stability to the Schiff 
base sensor molecules. Also, a rigid metal–ligand frame-
work influences the emission properties significantly. Most 
importantly, the preference of the imine group in the Schiff 
bases enhances the sensor activity by either promoting a 
blocking ICT, PET, or ESIPT mechanism.

Apart from the merits, these sensors' major drawback 
is their poor solubility or insolubility in the pure aqueous 
medium. Most of these molecules are soluble in DMSO/
DMF or in combination with other non-polar solvent sys-
tems, limiting their applications in biological and environ-
mental fields. However, there still exist several Schiff base 
sensors that are soluble in an aqueous medium, for example, 
(4), (5), (16), (35), (38), and (54). A poor detection limit of 
many sensors that lack high sensitivity and selectivity of 
the analytes is another concern that needs to be addressed. 
During the compilation of this presentation, it was felt that 
the number of Schiff base probes for detecting heavy toxic 
metal ions such as  Hg2+,  Pb2+,  Cr3+,  As3+,  Sb3+ etc., are 
less, hence demands more work for new developments for 
applications in the sensor technology.

Further, the hindrance to precisely detecting ions due to 
the interference of other coexisting metal ions needs to be 
sorted out. However, many sensors have high potentiality in 
sensing due to their promising photophysical properties but 
are recognized with only limited commercial applications.

Conclusions

The study of fluorescent Schiff base sensors and their bind-
ing properties has burgeoned over the past decade. They and 
their metal complexes are widely used as sensors in medi-
cine, biology, advanced technologies, etc. The simple, time-
effective, and low-cost synthesis of Schiff bases and their 
high coordination ability with various metal ions make them 
potential candidates for sensing through fluorescence spec-
troscopy. This review describes several Schiff base probes 
reported in the last few years, some with the mechanism and 

their fluorescence sensing ability towards different metal 
cations. These sensors are crucial because they find places 
in exploring applications in new developments for environ-
mental and biological metal ions detection. The fluorescence 
probes used in making transportable realistic test kits for 
sensing and tracking heavy metal ions in potable water and 
industrial wastes are highlighted. Also, updates on the suc-
cessful employment of a number of Schiff base molecules 
in live cell imaging technique and logic gate construction 
have been elaborated for young researchers’ attention and 
benefits. Although the binding ability of Schiff bases makes 
them unique in the detection of various ions, there is still a 
growing need to focus more on the selectivity and sensitivity 
aspects of the sensors. A new synthesis of the multifunctional 
framework with enhanced sensing ability is in demand, along 
with an exploration of their optical sensing properties for 
advanced applications. Despite advances in this field, the low 
selectivity towards most alkali and alkaline earth metal ions 
is challenging. Despite having excellent sensing efficiency, 
organic molecule-based sensors often suffer from poor solu-
bility issues and are found unsuitable for bio-application. 
There should be more focus on the design and synthesis of 
chemosensors that can work in purely aqueous media. The 
development of biomimetic and non-toxic sensors is also less 
explored, limiting the applications of chemosensors in stud-
ying living systems. Apart from the challenges mentioned 
above in designing chemosensors, these sensors can be of 
great use practically. Compiling the results in this review will 
help gain insight while designing new Schiff base probes for 
suitable applications.
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