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Abstract
Proteins are one of the dynamic macromolecules that play a significant role in many physiologically important processes to 
sustain life on the earth. Proteins need to be properly folded into their active conformation to perform their function. Altera-
tion in the protein folding process may lead to the formation of misfolded conformers. Accumulation of these misfolded 
conformers can result in the formation of protein aggregates which are attributed to many human pathological conditions 
including neurodegeneration, cataract, neuromuscular disorders, and diabetes. Living cells naturally have heterogeneous 
crowding environments with different concentrations of various biomolecules. Macromolecular crowding condition has been 
found to alter the protein conformation. Here in this review, we tried to show the relation between macromolecular crowding, 
protein aggregation, and its consequences.
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Introduction

Macromolecular Crowding

Natural physiology of a living cell is densely crowded with 
different molecules including proteins, DNA, RNA, lipids 
and solute particles [1].This biological molecules occupies 
a significant volume (in the range of 5% to 40%) of the cell 
[2]. The concentration of protein and RNA inside an E.coli 
cell can range up to 300-400 g/l [3].

Crowding deals with the available volume to a biomol-
ecule inside the cell. Internal environment of a eukaryotic 
cell is far more complex in contrast to prokaryotic cell 
[4]. It contains variety of membrane bound organelles and 
cytoskeletal fibre network. The functional properties of bio-
macromolecules evolved in cellular milieus crowded with 
both soluble and insoluble macromolecules. The crowd-
ing concentration of these macromolecules can reach up 
to hundreds g/l. For example, hemoglobin concentration 
in red blood cells is about 350 g/l [5], protein content in 
human lens is approximately 340 g/l [6]. Different cells and 

compartments can differ in the level of crowdedness. Over-
all, a significant volume of the cell is occupied by these 
macromolecules, making it nearly inaccessible to the other 
molecules present inside the cell. Such crowded environment 
is termed as volume occupied rather than concentrated, as 
because no single species of molecules is present at a high 
concentration.

The term macromolecular crowding was first coined by 
Minton and Wilf in 1981 which brought up the importance 
of studying the effect of crowding on nature and interac-
tion between biomacromolecules [7]. The term crowding is 
strictly related to the volume exclusion principle physically 
arising purely as a result of stearic repulsion. In addition to 
the intracellular environment, crowding is witnessed in the 
extracellular matrix of the tissues. For instance, the protein 
concentration in the blood plasma is 80 g/l [5], significantly 
enough to exert crowding effect. In contrast to the size of 
the macromolecules, the minimum distance between any 
two biomacromolecules under crowded environment can be 
much lower than themselves. Consequently, macromolecular 
crowding will affect any type of reactions that depends on 
the available accessible volume.

In contrary to macromolecular crowding, the existing 
knowledge about the various biological processes has been 
learned by research done mostly under dilute buffer condi-
tions. The concentration of the crowding agent in the buffer 
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system does not exceed even 10 g/l. In buffer environment, 
the biomolecule has enough accessible space unlikely in the 
crowded environment as shown in Fig. 1. This difference 
can significantly influence the conformations of the biomol-
ecules. Overall, macromolecular crowding can considerably 
affects the biological processes like enzyme activity, pro-
tein folding, ligand–protein interactions, protein–protein and 
protein-nucleic acids interactions etc. [8].

In Vitro Macromolecular Crowding

In vitro crowding environment can be created using differ-
ent molecular crowders of both natural and artificial origin, 
contrary to the in vivo where the cell is already crowded 
due to presence different biomolecules. The natural origin 
crowding agents include different types of proteins like 
lysozyme, serum albumins, ovalbumin, nucleic acids, lipids, 
etc. Whereas, the artificial crowding agents composed of 
synthetic inert polymers. For example: dextran, polyethylene 
glycol, ficoll, glycerol, etc.

Significance of Macromolecular Crowding

In contrast to the diluted buffer system, the behavior of a bio-
molecule of interest in the crowded environment is expected 
to be different. Macromolecular crowding was found to exert 
both positive and negative effects on biomolecules [9]. The 
studies conducted so far found that macromolecular crowd-
ing enhance protein association, association of monomeric 
proteins, increase the process rate of protein folding as well 
as refolding [10, 11]. It is also found to positively impact on 
kinetics of gene regulation constraining number of binding 
sites for DNA protein binding per cell [12]. It also increases 
self-association of fibrinogen protein [13]. It also stabilizes 
α-chymotrypsin against solvent induced aggregation [14]. 
Fascinatingly, besides stability macromolecular crowding 
also affects the functional properties of the protein. For 
instance, enzyme activity of PKG increases with increase in 
crowding concentration [15]. Researchers overall concluded 
that macromolecular crowding (i) stabilizes protein against 

chemical or heat induced denaturation. It is also postulated 
that crowding condition stabilizes globular protein via vol-
ume exclusion mechanism as native conformation occupy 
less volume than misfolded/unfolded form [16–20]; (ii) 
alters the rate of reactions [21, 22]; (iii) increases the cata-
lytic activity of the enzymes [23–26]; (iv) protein aggrega-
tion inhibition of β- rich proteins [27, 28].

Conflicting to the above mentioned positive effects of 
macromolecular crowding, many studies has been conducted 
illustrating negative effects of macromolecular crowding. 
For instance, recent investigations reported that macromo-
lecular crowding and confinement promotes hemoglobin 
aggregation and fibril formation [29, 30]. Furthermore, it 
also disrupt the refolding of reduced lysozyme and forms 
aggregates [31, 32]. Decreased activity of recombinant 
human brain like creatine kinase has also been reported 
under crowded and confinement conditions [33]. Similarly, 
α- lactalbumin was also destabilized thermally in the pres-
ence of crowding agent polyethylene glycol 2000 [9]. Addi-
tionally, crowding agent ficoll 70 was found to influence the 
process of myoglobin unfolding [34]. Likewise, dextran 70 
has also been demonstrated to negatively affect the stability 
of the properly folded prion protein  (rPrPC) [35]. Recent 
studies conducted by many researchers interestingly under-
lines the role of natural crowding agents in destabilizing pro-
tein and causing aggregation and fibril formation. This may 
be the consequence of the weak non-specific protein–protein 
interactions [2, 36, 37]. Amusingly, all these data advocate 
that the effect of macromolecular crowding on protein does 
not confined alone to stabilizing/positive or destabilizing/
negative properties. For this reason, it is essential to under-
stand both the positive and negative effect of macromolecu-
lar crowding in order to have complete scenario of what 
kind of effect does macromolecular crowding has on bio 
macromolecular properties.

The Macromolecular Crowding Agent

The crowding environment is created in the laboratory with 
the help of crowding agents. The crowding agents are poly-
mer in nature made up of repeated monomeric unit typically 
joined by covalent linkage. Strictly, the macromolecular 
crowding deals with volume exclusion and confinement, so, 
it is utmost important to select a suitable crowding agent 
ensuring that it will produce the desired effect. In order to 
make sure that the consequences witnessed will be solely 
due to crowding and confinement, the crowding agent have 
to meet definite requirements: 1) there should be insignifi-
cant interactions between proteins and the crowding agents 
except steric repulsions, 2) the polymeric crowding agent 
should not be prone to self-aggregation, 3) it should be  
available in different molecular sizes, and 4) the solubility of 

Fig. 1  Diagrammatically representation of buffer and crowded envi-
ronment. Protein molecule is shown in the center of the box. The red 
circles are crowding agents, grey color small circles represent solvent 
and white color in the box is the volume accessible to the protein 
molecule
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the crowding agent in water or physiologic solution should 
be high.

It is now well known that ficoll 70, dextran 70, polyeth-
ylene glycol (PEG) and inert proteins are some of the most 
commonly used crowding agent.

Macromolecular Crowding and Protein Aggregation

The defined ability of a protein to fold into its physiologi-
cal active conformation is the most vital process in biology. 
The native form of protein can be turned in to unfolded or 
partially folded conformation due to both external and or 
internal factors like temperature and pH [38]. Naturally, 
primary sequence of a protein has the tendency to form 
aggregates [39]. Protein aggregate formation is responsible 
for many proteopathies including cardiovascular, metabolic 
and neurodegenerative disorders [40–46]. The process of 
protein aggregation frequently encountered both in vivo and 
in vitro. Significant efforts is being made to understand the 
basic cause and factors affecting protein aggregation. How-
ever, dilute buffer medium is being used to study the process 
of protein aggregation in vitro. In contrary, the natural envi-
ronment wherein protein executes its function, is densely 
crowded making it of utmost important to consider the effect 
of macromolecular crowding on protein structure, stability 
and function. The possible effects induced by macromolecu-
lar crowding has been illustrated in Fig. 2.

The effect of macromolecular crowding on the process of 
protein aggregation have been extensively studied in the last 
few decades (Table 1).

The results revealed that macromolecular crowding 
enhances the process of aggregate formation of many pro-
teins [15]. However, it is dependent on the type and physio-
chemicals properties of the protein being studied. For 
instance, the crowding condition have been shown by our 
lab, to promote hemoglobin aggregation in time and con-
centration dependent manner [29]. In addition, aggregation 
of reduced lysozyme was because of the accumulation of 
aggregation prone intermediates [31]. In another exciting 
finding, both the protein and polymer based crowding agent 
favor aggregation during GroEL refolding [47]. Others also 
showed that mixed crowded conditions also promotes the 
aggregation of rabbit muscle creatine kinase, and reduced 
lysozyme [10, 48]. Though, the process of protein aggrega-
tion in the presence of mixed crowding agents is found to be 
less serious compared to the aggregation process in the pres-
ence of single protein crowding agent like BSA. This may 
be due to the more effective volume exclusion done by BSA 
addition to the weak protein–protein interactions. Collec-
tively, macromolecular crowding induced protein aggrega-
tion can be attributed to the following reasons: a) increased 
solute concentration due to the reduction in water activity 
consequently leading to decreased protein solubility and 
increased aggregate formation, b) preferential accumulation 

Fig. 2  Different possible consequences as a cause of the effect of macromolecular crowding on protein structure and stability
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of aggregation prone intermediates, c) slow rate of protein 
refolding as a result of increased viscosity with increased 
crowding agent concentration.

Macromolecular crowding has been reported to accelerate 
the process of protein fibrillation [30]. Addition of polymer 
based crowding agents has been shown to facilitate the fibril-
lation process of insulin, α-synuclein, human superoxide 
dismutase1 and β-lactalbumin [28, 49, 50]. Dextran 70 at a 
concentration of 200 g/l accelerate hemoglobin fibrillation 
in a time dependent manner [30]. The fibrils formed, induce 
redox perturbation and exerts cytotoxic effects. Dextran has 
also been reported to accelerate the process of reduced apo 
α- lactalbumin and human apolipoprotein fibrillation [51, 
52]. Likewise, ficoll is another crowding agent that has also 
been reported to speed up protein fibrillation. At a concen-
tration of 200 g/l, ficoll was found to hasten human prion 
protein, α-synuclein, and human tau protein fibrillation [50, 
53]. Another crowding agent PEG has also been shown to 
accelerate the fibrillation process of hemoglobin [30], β- 
synuclein and bovine core histone proteins [49, 54]. Addi-
tion to the polymer crowders, protein based crowding agent 

has also been reported to influence the fibrillation of many 
proteins. For instance, protein crowing agents accelerates the 
process of hemoglobin [29], S-carboxymethyl-α-lactalbumin 
[49], and α-synuclein [55, 56]. Altogether, from the above 
facts it has been witnessed that macromolecular crowding 
affect the native conformation of protein and accelerates the 
process of protein aggregation and fibril formation.

Solvent Modulation in Presence of Crowding Agents

A number of experimental and theoretical studies have confirmed 
the active role of solvent in protein stability and dynamics. The 
macromolecular crowding has been shown to possess potential 
of modulating the solvent properties. Almost all the enzymes 
are protein in nature. They are required to be properly folded 
in to their active conformation in order to perform physiologi-
cal function. Crowding condition increases the solvent viscos-
ity which is one of the key factor influencing protein structure 
consequently influencing enzyme activities. Many researchers 
have reported that increased crowding concentration reduces the 
enzymatic activity. This can be attributed to increased viscosity. 

Table 1  Effect of macromolecular crowding on protein structure and aggregation

Proteins Crowding agents Observations

Bovine hemoglobin BSA Formation of amorphous aggregates
Bovine hemoglobin PEG 4000; 6000; dextran 70 Formation of protofibrils and fibrils
β-synuclein PEG 10000 Stabilization of the amyloidogenic intermediate

by Zn2 + 
Insulin Ficoll 70; PEG 3500 Stabilization of the partially folded protein conformation
α-Synuclein Ficoll 70; PEG 3500 Accumulation of partially folded intermediates
α-Synuclein Ficoll 70 and 400; Dextran

138000; PEG 200, 400, 600, 3350
and 10000; Lysozyme; BSA

Metal ions minimize the coulombic charge–charge 
repulsion between the charged

protein molecules
S-carboxymethyl α-lactalbumin Ficoll 70; PEG 3500; BSA Crowding modulated partial folding of protein
FG Nucleoporins PEG 2000 Space restriction or sequestering of water
Human Superoxide Dismutase 1 mutant A4V Dextran 70; PEG 20000 Reduction in protein stability enhances aggregation 

rate more than folding
Bovine core histones PEG 3500 Stabilization of partially folded protein conformation 

leads to accelerated fibrillation
Human Tau fragment,
tau-(244–441)

Ficoll 70; Dextran 70 Acceleration of the nucleation step of phosphorylated 
human Tau misfolding

Human PrP (wild type; E196K;
D178N)

Ficoll 70; Ficoll 400 Production of more fragmented fibrils increases the 
apparent rate constant for fibrillation

Reduced, denatured lysozyme Dextran 70; Ficoll 70; BSA Increase in volume exclusion
Rabbit muscle creatine kinase PEG 2000; Ficoll 70; Dextran 70; Calf 

Thymus DNA
 Increase in volume exclusion and possibly weak and 

nonspecific crowder–protein interactions
Reduced, denatured lysozyme Dextran 70; Ficoll 70; Ovalbumin; BSA Intermediates aggregate before having enough time to 

fold to a state resistant to aggregation
Holo α-lactalbumin Ficoll 70; Dextran Protein destabilization due to reduced calcium-binding 

affinity
Azotobacter vinelandii flavodoxin Dextran 20 Intermediates aggregate before having enough time to 

fold to a state resistant to aggregation
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Furthermore, an increase in the Km values of few enzymes 
has been observed due to increased polymeric crowding con-
centration. Additionally, increased viscosity has been shown 
to decrease the mobility of the dimers consequently affecting 
the re-association of the denatured glyceraldehyde-3-phosphate 
dehydrogenase tetramer. This delayed re-association of GAPDH 
in to its active tetrameric form reduces its reactivation rate [12, 
24, 33, 57–60].

Hydration is another key factor that can influence protein 
function. Hydration forces are in charge of protein structure 
packing and stability. Water, in particular, widely acknowl-
edged to serve an important role in influencing the struc-
ture, stability, dynamics, and function of biological macro-
molecules [61]. Water of hydration and bulk water are the 
two types of water found in cells. The water of hydration is 
water that has been firmly adsorbed on macromolecules. The 
amount of hydration water is determined by the total concen-
tration of macromolecules in the sample, thus, as the solute 
concentration increases, the hydration water volume around 
each macromolecule decreases [62, 63]. Water molecules 
can direct folding and aid packing of super-secondary struc-
tural features by mediating long-range interactions between 
polar charged amino acids, highlighting their importance in 
the folding and stability of large and multi-domain proteins. 
Previous research suggests that at low levels of crowding, the 
structure of water within the hydration shell is only margin-
ally impacted, while at high levels of crowding, the structure 
of water is dramatically altered beyond the first hydration 
shell. Additionally, an examination of self-diffusion rates 
and dielectric constants demonstrated a linear decrease in 
hydration dynamics as crowder concentration increased [64, 
65]. Moreover, the enzymatic activity of α-chymotrypsin 
was decreased in the presence of polymeric crowding agent 
PEG. This reduced activity can be attributed to the decrease 
in  kcat, which can be consequence of the loss of critical water 
residues from the enzyme hydration shell. Moreover, the 
macromolecular crowding was found to facilitate the dif-
ferential binding mechanism in anionic and cationic ligands 
binding to telomere and inhibiting telomerase activity. The 
anionic ligands were found to be more effective in inhibiting 
the telomerase activity in contrast to the cationic ligands. 
This differential binding can be attributed to the degree of 
hydration during the G-quadraplex / ligand complex forma-
tion [14, 66]. Despite these elegant studies, more studies 
are required to establish the relationship between water of 
hydration of particular enzymes and thus their activity with 
increasing crowder concentration.

Protein Aggregation, Propagation and Consequences

Proteins, one of the most important biological macromol-
ecules. It plays a wide range of physiological functions 
essential for all biological processes. Protein functions as 

a transporter, storage of molecules such as oxygen, move-
ment generation, nerve impulse transmission, immune 
responses, neural control and coordination during growth 
and differentiation [67]. For a protein, it requires to be 
folded in a proper conformation to execute any function. 
The process of protein folding typically very well organ-
ized, forming a specific functionally active conformation 
as illustrated in Fig. 3.

Though, the course of folding is not fail proof and undeni-
ably a percentage of all the proteins synthesized in the cell 
did not fold correctly. Inappropriate folding of protein may 
results in formation of abnormal structured conformations 
whose accumulation can lead to many pathophysiological 
consequences [68]. Misfolded conformers are known to form 
due to factors like temperature fluctuations, oxidative stress, 
genetic mutations, and alterations in the cellular environ-
ments due to ageing [69–71].

Cells normally challenged with the continuous flow of 
misfolded forms of proteins arising from different factors 
like mutation or physiological stressors. Protein quality 
control system is a mechanism developed by the cells to 
deal with misfolded conformers of the protein (Fig. 4). This 
system consists of both proteases and chaperones serves as 
regulating agents [72–74]. In a crowded cellular environ-
ment, misfolded proteins can form amorphous aggregates 
and or ordered elongated amyloid fibrils. These highly 
ordered aggregates are not easily degraded by protein qual-
ity control system and starts to accumulate in specific organ 
or tissue. Accumulation of these aggregates results in patho-
logical conditions known as amyloidosis. More than 20 such 
proteins associated with severe diseases have been identified 
(Table 2) which includes islet amyloid peptide with type 2 
diabetes, prion protein with spongiform encephalitis and Aβ 
with Alzheimer’s disease [75–79].

Additionally, the amyloid aggregates are thermodynami-
cally highly stable which contributes to their property of 
converting native form of protein into amyloid forms [80]. 
This acts like a key factor in propagation of pathogenic pro-
tein species in prion like manner. Studies conducted in past 
have shown that these pathogenic aggregates can spread 
from one neuron to other neuron and neighboring glial cells. 
Researcher have also found that one form of disease caus-
ing protein can trigger the misfolding of other aggregate 
prone proteins. Recent studies also suggested that the spread 
of these misfolded protein from one cell to other involves 
activity dependent secretion by exosomes and or chaperone 
mediated pathways [81–84].

Failure of a cell to prevent the process of protein mis-
folding and or degradation of the misfolded protein subse-
quently forming toxic protein aggregates forms the basis of 
the pathology [85–87]. The cause of protein aggregation is 
dependent on many factors which includes both environmen-
tal and genetic origin (Fig. 5) [69, 88].
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The protein abnormality caused by genetic mutations may be 
of autosomal recessive and or autosomal dominant [89]. Redox 
perturbation can be the cause of nongenetic protein misfold-
ing and conformational disorders. Reactive oxygen species can 

potentially damage the biomacromolecules of the cell including 
proteins. The partially unfolded or misfolded protein conform-
ers further modified by these reactive oxygen species conse-
quently leading to protein aggregation [30, 69, 90].

Fig. 3  Sequential steps showing the process of synthesis from ribosomes, protein folding, misfolding. Misfolded proteins often clump together 
resulting in the formation of protein aggregates

Fig. 4  Displaying the protein quality control system (PQCS). It involves 
the degradation of the misfolded conformers of protein by different pro-
teolytic cellular pathways. Misfolded conformers are at first recognized 

by molecular chaperones carrying the substrates to the ubiquitin–protea-
some system (UPS), chaperone mediated autophagy (CMA) or macro-
autophagy subjected to the nature of size, solubility and misfolding
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Therapeutic Approaches Towards Amyloidogenic 
Disorders

For the treatment of amyloidosis, many therapeutic 
approaches have been advised which includes increasing the 

rate of degradation of misfolded and aggregated protein con-
formers, increasing stability of aggregation prone proteins, 
inhibiting the production of amyloidogenic forms of protein 
and it’s self-assembly. From the previous studies, it has been 
reported that plant derived phenolic compounds have the 

Table 2  Protein aggregates and associated disorders

Disease Protein Affected region Characteristic features

Alzheimer’s disease Aβ-peptide/Tau Cortex, hippocampus, basal 
forebrain, brain stem

Neuritic plaques, neuro-fibrillary 
tangles

Huntington’s disease Huntingtin with polyglutamine 
expansion

Striatum, other basal ganglia, 
cortex, other regions

Intracellular inclusions and 
cytoplasmic aggregates

Hemodialysis-related amyloidosis β 2 -Microglobulin Gastrointestinal tract including 
the stomach, small intestine, and 
colon

Accumulation of Β2 -microglobulin 
in the osteoarticular structures

Parkinson’s disease α-Synuclein Substantia nigra, cortex, locus 
ceruleus, raphe etc

Lewy bodies and Lewy neurites

Prion diseases (scrapie/
Creutzfeldt- Jakob disease)

Prion protein Cortex, thalamus, brain stem, 
cerebellum, other areas

Spongiform degeneration, amyloid 
and other aggregates

Type II diabetes Amylin or islet amyloid 
polypeptide

Heart, eyes, blood vessels, kidney, 
nervous system etc

Insulin resistance and relative 
insulin deficiency

Insulin related amyloid Insulin Multiple body areas Aggregates of insulin
Cataract γ-Crystalline Eyes White, wedge-like opacities starting 

from periphery of lens towards 
center

Lysozyme systemic amyloidosis Lysozyme Stomach Extended amyloid deposits in the 
upper gastrointestinal tract, entire 
colon, and kidney

Fig. 5  Showing different factors affecting process of protein aggregation both in vitro and in vivo
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potential to inhibit the amyloid aggregate formation. It has 
also been shown that these compounds possesses cytoprotec-
tive activity against aggregates induced cytotoxic effects [30, 
73, 91, 92]. These assumptions should be highly relevant for 
the future de novo design of small molecule inhibitors for 
the treatment of amyloidogenic diseases.

Industrial Application of Studying Macromolecular 
Crowding

With the advancement of the technological knowledge, the 
use of protein based therapeutics for the treatment of vari-
ous human pathological disorders was came into existence. 
Interferons, monoclonal antibodies, cytokines, anticoagu-
lants, bone morphogenetic proteins engineered proteins, 
scaffolds, enzymes, growth factors and hormones are some 
of the examples of macromolecular therapeutic proteins. 
These therapeutic proteins have high activity and specific-
ity but they have some limitations too. Addition to the short  
half-life and low solubility, one of the prominent limitation 
is self-aggregation and poor stability. Since protein thera-
peutics are self-crowded during the industrial synthesis 
process, there can be a significant effect of macromolecular 
crowding can exists that may be the reason for its poor sta-
bility and self-aggregation. So, from industrial point of view, 
it becomes more important to study the behavior of protein 
in crowded condition so that the unfavorable consequences 
could be avoided.

Current Challenges and Future Perspective

From the past decades, scientists were making every effort 
to understand the process of protein folding, unfolding and 
aggregation. Protein aggregation has been associated with 
many pathological conditions making life of elderly miser-
able. It is very difficult to study the process of protein mis-
folding and aggregation inside the cell, so researchers are try-
ing to imitate the in vivo like conditions in vitro. One of the 
most noticeable factor of in vivo environment is molecular 
crowding. The effect of crowding on structure, stability and 
interactions of proteins with other biomolecules is of utmost 
important to study. Crowding condition in vitro has been suc-
cessfully achieved with the help of both natural and artificial 
molecular crowders. The study involves use of both homog-
enous (single type of crowder) and heterogeneous (mixed 
crowders). However, the exact scenario of in vivo crowded 
milieu is far away from that being created in vitro. The in vitro 
crowding conditions has many limitations which needs to be 
answered with prime concern. In future, much of the work 
has to be done to create an in vitro system which should be 
if not exactly, nearly identical with that of in vivo cellular 
conditions. This can be achieved with growing advanced 

technology like in vitro organ developments. Once we able 
to create similar in vivo like environment in vitro, then it will 
be more easier to study the process of protein folding, unfold-
ing and aggregation. The amelioration of amyloid aggregate 
formation by various molecules can also be tested under these 
in vitro created crowded conditions. The positive results 
obtained via this study could be successfully implemented 
for the treatment of protein conformational disorders.
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