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Abstract
Qualitative and quantitative analysis of mercury at concentration levels as low as parts per billion (ppb) is a basic and practi-
cal concern. The vast majority of research in this field has centered on the development of potent chemosensor to monitor 
mercuric  (Hg2+) ions. Mercury exists in three oxidation states, + 2, + 1 and 0, all of which are highly poisonous. In this study, 
(N1E,N2E)-N1,N2-bis(pyrene-1-ylmethylene)benzene-1,2-diamine (PAPM), a novel photoluminescent sensor based on pyrene 
platform was synthesized. Over the tested metal ions  (Cd2+,  Co2+,  Cu2+,  Mg2+,  Mn2+,  Ni2+,  K+,  Na+,  Zn2+,  Sr2+,  Pb2+,  Al3+, 
 Cr3+ and  Fe3+) the sensor responds only to  Hg2+ by showing high selectivity and sensitivity. After treatment with mercuric 
ions at room temperature, the luminescence intensity of probe was quenched at 456 nm. The quenching of fluorescence 
intensity of probe upon addition of mercury is due to the effect of “turn-off” chelation enhanced quenching (CHEQ) by the 
formation of 1:1 complex. The ESI–MS spectrum and the Job’s experimental results confirm the formation of 1:1 complex 
between PAPM and  Hg2+. The detection limit and association constant of sensor for mercury is computed using fluorescence 
titration data and were found to be 9.0 ×  10–8 M and 1.29 ×  105  M−1 respectively. The practical application of sensor towards 
recognition of mercury(II) ions was explored through economically viable test strips and also using cell imaging studies.
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Introduction

Studies relevant to the detection and quantification of heavy 
and transition-metal ions have been appealing due to their 
exceedingly hazardous impact on the environment and bio-
logical systems [1]. Among various toxic heavy metal ions, 
the mercury ion  (Hg2+) is one of the most poisonous and 
endangering both human health and the environment [2] 
because it is released into environment by natural processes 
and human activities like water erosion, solid waste incinera-
tion, wind erosion, forest fires, oceanic and volcanic erup-
tions, fossil fuel combustion and industrial productions [3, 
4]. Despite its toxicity, mercury compounds find variety of 
applications in industrial processes and products, including 
paints, electrical materials and batteries [5]. The presence of 

mercury even at very low concentrations can accumulate in 
the human body and produce many health issues, including 
foetal brain damage, significant cognitive and motor abnor-
malities and minamata sickness [6]. Furthermore, due to 
more soft nature of mercury ions, it has a strong binding 
affinity towards thiol groups in proteins, which causes cell 
dysfunction and numerous diseases including kidney disor-
der, abdominal pain and nausea. In addition, mercury has the 
power to create various hormonal imbalance and problems 
in thyroidal system by quickly entering through skin and 
respiratory cell membranes in living system [7–9]. Hence, 
the need for highly selective and sensitive determination of 
mercury(II) ions is vital.

In literature, many analytical methods were reported for 
recognition of mercury(II) ions including neutron activa-
tion analysis, plasmon-resonance rayleigh scattering spec-
troscopy (RSS), graphite furnace atomic absorption spec-
trometry (GF-AAS), anodic stripping voltammetry, cold 
vapor atomic absorption spectroscopy (CV-AAS), cold 
vapor atomic fluorescence spectrometry (CV-AFS), atomic 
absorption spectroscopy, inductively coupled plasma mass 
spectrometry and emission spectroscopy. Although these 
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methods are well established, they are expensive, time-
consuming and can require complex sample preparation 
[10–15]. Due to its low cost, simplicity, superior sensitiv-
ity, simple instrumentation, low detection limit, real-time 
response, and non-destructive nature, sensing by fluores-
cence technique is typically preferred over above discussed 
methods for quantifying  Hg2+ [16–22].

Schiff base (-C = N-) based fluorophores have demon-
strated excellent results among various chemosensors due  
to their ease of synthesis and ability to provide a suit-
able electronic/geometrical environment after complexa-
tion with metal ions. Generally Schiff base based sensors 
are designed using aromatic, poly-aromatic units or het-
erocyclic moieties with conjugated double bond systems. 
By incorporating fluorescence assisting groups in Schiff 
base structural framework fluorescence property can be 
achieved. In addition to this the nitrogen atom of -C = N- 
group is well known for binding mercury and resulting 
complex exhibits biological and photophysical application. 
Including several environmental and biological applica-
tions, the Schiff base based sensors and their complexes 
have demonstrated anticancer, antibacterial, analgesic, 
antifungal, anti-inflammatory, antiviral, antioxidant, anti-
malarial, antiglycation, and anti-ulcerogenic properties 
[23–26].

Several chemosensors containing sulphur and nitrogen 
donor atoms have been exploited for sensing of mercury(II) 
ions. Many of these sensors were developed through dif-
ficult synthetic routes and demonstrated poor selectivity 
towards  Hg2+. The detection limit of these fluorophores 
for mercury(II) ions was found between 0.2 and 12.0 μM 
[27–30]. Additionally, the sulphur containing receptors 
cause cell malfunctions and subsequently leads to many 
diseases in the biological system [31, 32]. Thus, the design-
ing and developing sensors with nitrogen biding sites for 
the selective recognition of soft mercury(II) ions might be 
an ideal choice. The simple synthesis of ratiometric fluores-
cent chemosensors typically involves pyrene units due to its 
peculiar signal of excimer-to-monomer emission. Due to its 
high chemical stability, unique photophysical properties and 
remarkable fluorescence detection, pyrene derivatives have 
been exploited regularly as a fluorescence probe [33–40].

For biological and environmental applications, there is 
still a need for highly selective and sensitive fluorescent 
sensor which can only respond to mercury(II) ions. Hence, 
it is crucial and highly prized to develop a very sensitive 
and selective fluorescent chemosensors for quantification of 
 Hg2+ [41, 42].

Herein, we report synthesis and characterization of a 
novel sulphur free, highly selective and sensitive molecu-
lar sensor for mercury(II) ions detection based on pyrene 

as a backbone with limit of detection 9.0 ×  10–8 M and  
its bio-imaging studies along with test strips practical 
applications. The following Table 1 shows comparison of 
reported mercury(II) sensor with present work.

Experimental

Materials and Methods

The chemicals and reagents used in the experiments were 
all analytical or spectroscopic grade. The inorganic metal 
nitrate salts Mg(NO3)2.6H2O, Cd(NO3)2.4H2O, Hg(NO3)2.
H2O, Co(NO3)2.6H2O, Ni(NO3)2.6H2O, Cu(NO3)2.3H2O, 
Zn(NO3)2.6H2O, Pb(NO3)2, Mn(NO3)2.4H2O,  NaNO3, 
 KNO3, Sr(NO3)2, Al(NO3)3.9H2O, Anhydrous  FeCl3, 
 CrCl3.6H2O, mercury(II) acetate, o-phenylene diamine 
(OPD) and 1-pyrene carboxaldehyde were purchased from 
Sigma Aldrich. The entire UV–Visible and fluorescence 
studies were done by taking Milli-Q water. The elemen-
tal analysis (C, H and N) was carried out using Thermo-
quest CHN analyzer. The IR spectra were obtained using a 
Nicolet 6700 FT-IR spectrometer. In DMSO-d6, 1H-NMR 
spectra were collected using a Jeol 400 MHz FTNMR 
spectrometer. Mass spectra were recorded using a Waters-
USA Xevo G2-XS Qtof mass spectrometer. A Jasco-P-670 
UV–Visible spectrophotometer was used to collect elec-
tronic spectra in 200–800 nm range. The Hitachi F-7000 
Fluorescence Spectrophotometer was used to measure the 
fluorescence spectra.

Synthesis of Sensor PAPM (Scheme 1)

To the methonolic solution of OPD (0.5 g, 4.62 mmol, in 
10 mL), a solution of 1-pyrene carboxaldehyde (2.12 g, 
9.25  mmol, in 20  mL MeOH) was added dropwise at 
room temperature with steady stirring. To this, acetic 
acid (0.5 mL) was added and reaction mixture was boiled 
under reflux for 16 h. The completion of the reaction was 
confirmed by TLC. The precipitated yellow compound 
was filtered, washed with methanol (25 mL) and dried 
in air. The product has been recrystallized from mixture 
of chloroform and methanol (1:1). Yield: 2.42 g, 98%. 
M.P. 225–227 °C. Elem. Anal. Calculated for  C40H24N2: 
C, 90.20; H, 4.54; N, 5.26. Found: C, 90.17; H, 4.48; 
N, 5.21. 1H-NMR (400  MHz, DMSO-D6) δ 9.48 (s, 
2H), 8.52 (d, J = 8.0 Hz, 2H), 8.44 (d, J = 8.1 Hz, 2H), 
8.36—8.23 (m, 11H), 8.11 (t, J = 8.0 Hz, 3H), 7.81(s, 2H), 
7.24(s, 2H). 13C-NMR (101 MHz, DMSO-D6) δ 152.27, 
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Table 1  Comparison of fluorescent probes for  Hg2+

Sl. No Sensor Detection 
Limit
(M)

Binding Constant 
(M−1)

Application Reference

01 N

HS

2.82 ×  10–6 7.36 ×  104 Cell imaging [33]

02

N
H

N

O

S

NH2

3.5 ×  10–7 4.54 ×  102 Metal ion sensor and 
real sample analysis

[9]

03

N
OH

N

N
B
F

F

5.0 ×  10–6 7.41 ×  104 Metal ion sensor [43]

04

N OO

HN

N

NH HN

S S

OO

O 0.83 ×  10–6 3.76 ×  104 Cell imaging and 
water sample

[44]

05

N

N N
N

S

SH 2.0 ×  10–6 2.5 ×  104 Water sample [45]

06

N

ON OH

N

SHN

H
N

S O 0.27 ×  10–6 4.04 ×  104 Cell imaging [46]



542 Journal of Fluorescence (2023) 33:539–551

1 3

132.16, 131.43, 130.83, 129.10, 127.85, 127.26, 126.50, 
126.16, 125.44, 125.01, 124.84, 124.22, 123.30, 122.31, 
111.98. IR (KBr,  cm−1) ν: 1587 (m. C = N), 3041 (Ar–H); 
ESI–MS: m/z 533.21 [(M + 1)+].

Synthesis of Mercury(II) Complex (Scheme 2)

The synthesis of the mercury complex is induced by 
the dropwise addition of mercuric acetate (0.15  g, 
0.41 mmol, in 10 mL MeCN) to the solution of PAPM 
(0.2 g, 0.37 mmol, in 15 mL MeCN) at room temperature 
with constant stirring. Upon addition of all the mercuric 
acetate, the reaction mixture turns to colorless and stir-
ring was continued for further 11 h to get dark red solid. 
It was filtered, washed with MeOH and chloroform to get 
pure compound and dried in air. Yield: 0.18 g, 56%. Elem. 
Anal. Calculated for  C44H30N2O4Hg2+: C, 62.14; H, 3.33; 
N, 3.56. Found: C, 62.11; H, 3.29; N, 3.52. IR (KBr,  cm−1) 

ν: 2969 (Ar–H), 1590 (br. C = N), 1513 (asym. OCO), 
1236 (sym. OCO); ESI–MS: m/z 851.26 [(M + 1)+].

General Procedure for UV–Visible and Fluorescence 
Experiments

The stock solutions of sensor (1.0 ×  10–5 M) and metal nitrate 
solutions (1.0 ×  10–3 M) were prepared in aqueous acetoni-
trile (2:8). The UV–Visible and fluorescence response of 
fifteen metal ions  (Cd2+,  Co2+,  Hg2+,  Cu2+,  Mg2+,  Mn2+, 
 Ni2+,  K+,  Na+,  Zn2+,  Sr2+,  Pb2+,  Al3+,  Cr3+ and  Fe3+) was 
investigated. Selectivity of the probe has been tested for 
all the metal ions using both UV–Visible and fluorescence 
experiments. To a 2 mL of sensor, 10 equivalents of each 
metal ion solutions were introduced and stirred for 1 min 
before carrying out absorption and fluorescence measure-
ments. The fluorescence and UV–Visible titrations were 
achieved by using varied concentrations (0–2 eq.) of metal 

Table 1  (continued)

Sl. No Sensor Detection 
Limit
(M)

Binding Constant 
(M−1)

Application Reference

07

N

N
N

O

N

N
O

N

NO2 1.92 ×  10–8 1.15 ×  104 Cell imaging [47]

N N

9.0 ×  10–8 1.29 ×  105 Cell imaging and test 
strip application

Present work

Scheme 1  Synthetic route of PAPM (L)
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ion solution by maintaining the ligand concentration con-
stant. The quantum yield (ϕ) of the sensor in presence and 
absence of the mercury(II) ions has been calculated accord-
ing the formula [48].

Preparation of Solutions for 1H‑NMR Titration

Stock solutions of ligand and mercuric nitrate were prepared 
in DMSO-d6 for 1H-NMR titrations.

Results and Discussion

UV–Visible and Fluorescence Spectral Studies of PAPM

The absorption and emission properties of the probe were 
measured using UV–Visible and fluorescence techniques 
in aqueous MeCN. At 275 and 355 nm, the probe showed 
two intense absorption bands, which can be assigned to pyr-
ene based absorption bands. When the probe was excited 
at 355 nm, the pyrene based emission peaks (structured) 
were observed at 410 and 428 nm [41]. However, when 
the mercury(II) ions are added to the probe, a ratiometric 
shift was observed in the emission peak (non structured) 
at 456 nm with decrease in the fluorescence intensity. Fur-
thermore, no significant changes in the emission peaks 
were noticed of probe after other metal ions were added to 
the sensor. The findings of fluorescence spectral studies of 

probe with various metal ions reveal that the receptor only 
responses to  Hg2+ (Fig. 1).

Fluorescence Titration Studies

The stock solutions of receptor and mercury(II) ions were 
prepared in same concentration which is used for UV–Visible 
measurements. Among all the tested metal ions, the probe 
showed extreme sensitivity to  Hg2+ (Fig. 2). Fluorescence 
titration has been carried out for thorough understanding of 
binding properties of sensor towards  Hg2+. The probe exhib-
ited substantially stronger fluorescence property (ϕ = 0.236) 
when irradiated at 365 nm. UV light, which can be perceived 
through naked eye. When mercury(II) ions were added to the 
probe solution, the ratiometric shift of emission band occurs 
at 456 nm with fluorescence quenching (ϕ = 0.024). Hence, 
PAPM functions as a potent “turn-off” sensor for determin-
ing mercury(II) ions. The quenching property of the probe 
has successively enhanced as the concentration of mercuric 
ions is increased in sequential order from 0–2 equivalent 
(0—40μL) (Fig. 3).

Stoichiometry and Sensing Mechanism of PAPM 
with  Hg2+

ESI–MS spectrometry, Job’s plot experimental data, IR 
spectral studies and 1H-NMR titration analysis confirm the 
formation of a complex between PAPM and mercury(II) 

Scheme 2  Synthetic route for synthesis of Mercury(II) Complex

Fig. 1  Fluorescence intensity 
of PAPM with different metal 
ions (10 eq.) under irradiation at 
365 nm. UV light
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ion in a 1:1 ratio. The fluorescence quenching of probe 
towards  Hg2+ results from chelation enhanced quenching 
(CHEQ) which can be attributed to significant spin–orbit 
coupling constant of the heavy mercury(II) ion [49].  
Additionally, the ligand structure lacks intramolecular 
hydrogen bonding and the presence of nitrogen donor 
sites aids in direct interaction with the mercury(II) ion as 
depicted in Scheme 2. The presence of rigid electron rich 
pyrene groups boosts the chelating ability of the probe 
through two nitrogen lone pairs resulting in fluorescence 
quenching [49].

1H-NMR titration studies were carried out in DMSO-d6 
to assess the change in the chemical shift of imine protons 
of ligand upon binding to  Hg2+. It is known fact that due 
to the electron donating nature of pyrene groups, the elec-
tron cloud is pulled towards both nitrogen atoms present 
in the fluorophore. The imine protons in the free ligand 
resonate at 9.50 ppm, after adding the 0.5 and 1 equivalent 
of mercury(II) ions to the free ligand, this peak shifted 
to 9.46 and 9.35 ppm respectively. This shift indicates 
the coordination of both nitrogen atoms to  Hg2+ lead to 
decrease in electron density on nitrogen atoms [50] which 
is clearly indicated by upfield shift of imine protons by 
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of probe after addition of mercury(II) ions (0–2  eq.) to PAPM. B 
Expansion graph of fluorescence titration of PAPM with increase in 
concentration of  Hg2+
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0.15 ppm (Fig. 4). After addition of 1 eq.  Hg2+ to the free 
ligand there is no appreciable change in chemical shifts  
of other protons.

The appearance of a peak with maximum intensity at 
851.26 m/z in the ESI–MS (Fig. S4) further supports to 1:1 
complex formation between the probe and the mercury(II) 
ions.

The IR spectrum was recorded to ensure the complex 
formation between PAPM and  Hg2+ and also to con-
firm the binding mode of acetate ion. PAPM showed 
a band of medium intensity at 1587  cm−1 (C = N) and 
3041  cm−1 (Ar–H) which have been shifted to 1590 and 
2969  cm−1 respectively upon complexation with  Hg2+. 
The shift in the C = N stretching frequency clearly sug-
gests the coordination of nitrogen atoms with mercu-
ric ion. The presence of two new bands at 1513 and 
1236  cm−1 in the complex are assigned to asymmetric 
and symmetric stretching (νOCO) vibrations of acetate 
ions respectively and the difference of 276  cm−1 among 
these two bands suggests the unidentate coordination 
mode of acetate [51].

The Job’s plot experiment [52] was carried out using 
stock solutions of PAPM and  Hg2+ (1.0 ×  10–4 M in aque-
ous acetonitrile) to determine the affinity of mercury(II) 
ion towards PAPM. Using the plot of photoluminescence 
intensity v/s mole fraction  (XM) of the mercury(II) ions 
at 428 nm. (Fig. 5), the stoichiometry of PAPM and  Hg2+ 
was established. The intersection point at 0.5  XM in the 

Job’s plot clearly reveals 1:1 stoichiometry between PAPM 
and  Hg2+.

Limit of Detection (LOD) and Association Constant  (Ka)

The value of the LOD was determined using standard devi-
ation (SD) and slope obtained by linear fittings based on 

Fig. 4  1H-NMR titration of 
PAPM with  Hg2+
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 Hg2+. The molar ratio  [Hg2+]/{[L] +  [Hg2+]} was displayed as a func-
tion of fluorescence intensity at 428 nm
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fluorescence titration studies by using 3σ/slope [53] (where 
σ refers to standard deviation of probe). The emission data 
at 428 nm was used to plot the graph of LOD (Fig. 6). The 
graph of relative fluorescence intensity versus concentration 
of mercury(II) ion suggests the detection limit of PAPM for 
 Hg2+ as 9.0 ×  10–8 M. The obtained LOD value is compara-
ble to other reported methods [27–30].

The stability constant  Ka was graphically evaluated 
using the Benesi-Hildebrand equation [54] by plotting 

(1/F-F0) versus 1/[Hg2+] (Fig. 7), where  F0 denotes the 
fluorescence intensity of bare sensor and F denotes the 
maximum photoluminescent intensity as a function of  
 Hg2+ concentration at 428 nm. The slope yielded the  Ka 
value of 1.29 ×  105  M−1 for PAPM towards  Hg2+.

Competitive Study of Counter Metal Ions

To demonstrate the high selectivity of PAPM and to 
assess its practical application towards  Hg2+, we also 
performed competitive studies in the presence of other 
fifteen metal ions (10 equivalent) at concentration of 
10 μM  Hg2+ (Fig. 8). These tests reveal that none of the 
specified ions significantly obstruct the detection of  Hg2+ 
by PAPM.

pH Studies

The fluorescence response of receptor towards  Hg2+ was 
investigated at various pH levels as the effect of pH is 
vital for practical aspects of sensing. Buffer solutions 
ranging from 3.0 to 11.0 were prepared to test the pH 
sensitivity of the sensor (1.0 ×  10–5 M) for the determi-
nation of mercury(II) ion (1.0 ×  10–3 M) using phosphate 
buffer saline (PBS) environment. The mercury(II) ion was 
introduced to the buffered PAPM solution and the results 
showed that PAPM can effectively bind to  Hg2+ in the 

Fig. 6  Limit of detection based on fluorescence titration of PAPM 
with change in concentrations of  Hg2+

Fig. 7  Benesi-Hildebrand curve 
for PAPM with  Hg2+
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R-Square (COD) 0.99194
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pH range of 3.0–11.0 with no discernible changes in the 
fluorescence spectra (Fig. 9).

Cytotoxicity by MTT Assay

HeLa cells purchased from National Center for Cell Sci-
ence, Pune, India. The cells were seeded in a 96-well flat-
bottom microplate and maintained at 37 °C in 95% humid-
ity and 5%  CO2 overnight. Different concentration (100, 
50, 25, 12.5, 6.25 and 3.125 μg/ml) of PAPM in presence 
and absence of  Hg2+ were treated. The cells were incubated 
further for 8 h. The wells were washed twice with PBS 
and 20 μL of the MTT staining solution was added to each 
well and plate was incubated at 37 °C. After 4 h, 100 μL 
of DMSO was added to each well to dissolve the formazan 
crystals and absorbance was recorded with a 570 nm using 
microplate reader. As a result of the MTT analysis, it was 
found that the PAPM was cytotoxic at higher concentra-
tions but less toxic at lower concentrations. Cell viability 
was greater than 98% at a lower concentration of PAPM 
(3.125 μM), while it was 42.43% control at a higher con-
centration (100 μM). Despite of this, over 80% of the cells 
were continued to survive after PAPM concentration was 
increased to 12.5 μM. (Fig. S9).

Cell Imaging Studies

HeLa cells were sown separately on 16 mm coverslips and 
allowed to grow for 24 h in order to conduct bio-imaging 
experiment. Separate incubations of 10 μM of each com-
pound were placed for 60 min at 37 °C in the dark. After 
removing the medium, the cells underwent three PBS washes 
before being fixed for 30 min with 4% para-formaldehyde. 
After that, a Zeiss LSM 710 confocal microscope was used 
to record the fluorescence of the cells. According to fluo-
rescence imaging experimental results, PAPM exhibits high 
fluorescence, but when  Hg2+ are added, the fluorescence 
intensity is quenched due to the combination of PAPM with 
 Hg2+ in live HeLa cells (Fig. 10).

Sensing with Test Strips and TLC Plates

In order to explore the sensing properties of the probe 
towards mercury(II) ions in aqueous acetonitrile, we con-
ducted the experiments on test strips as well as silica gel 
coated TLC plates for the practical utility. The four test strips 
(A to D; Fig. 11) were prepared by dipping test strips in 
PAPM solution (A), in PAPM and  Hg2+ solution (B), in 

Fig. 8  Bar graph showing 
the relative photolumines-
cence intensity of PAPM 
(1.0 ×  10–5 M) with  Hg2+ in 
presence of 10 equivalent of 
other interfering metal ions 
(1.0 ×  10–3 M) in MeCN:H2O 
(8:2)
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PAPM and various metal ion solution (C) and in solutions of 
PAPM, various metal ion and  Hg2+ ion (D). Later these test 
strips were kept to dry at room temperature and exposed to 
UV lamp. This experimental results clearly illustrate that the 
color of the test strip changes from intense white lumines-
cence (in the absence of  Hg2+) to pale blue green color (min-
imum/almost no fluorescence) after irradiation at 365 nm.

The sensing application of receptor was also performed 
using a couple of TLC plates by immersing one of them 
in PAPM solution and other in the solutions of PAPM and 
mercury(II) ions sequentially. Further, both TLC plates were 
allowed to dry at room temperature for 20 min before being 
exposed to UV radiations at 365 nm. The TLC plate dipped 
in PAPM solution exhibited deep bluish white fluorescence 

Fig. 9  Fluorescence response 
of receptor to  Hg2+ (10 eq.) 
with different ranges of pH 
(3.0–11.0) solutions of phos-
phate buffer saline
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Fig. 10  Fluorescence image of 
HeLa cells A incubated with 
PAPM (10 μM) for 1 h, B incu-
bated with PAPM for 1 h and 
then  Hg2+ (5 μM) for 1 h
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(Fig. 12B), while another TLC plate displayed pale blue-green  
which is non-fluorescent in nature (Fig. 12C) (Fig. 12).

The successful usage of less expensive test strip and TLC 
plate techniques illustrates potential of the probe to recog-
nize mercury(II) ions in future aspects.

Conclusion

The present study illustrates the synthesis of novel 
(N1E,N2E)-N1,N2-bis(pyrene-1-ylmethylene)benzene-
1,2-diamine (PAPM) as a sensor to detect  Hg2+ fluoro-
metrically in aqueous MeCN. In presence of  Hg2+, recep-
tor experiences quenching in fluorescence intensity as well  
as a ratiometric redshift in the emission spectrum. The 
LOD and association constant  (Ka) of sensor for  Hg2+ were 
found to be 9.0 ×  10–8 M and 1.29 ×  105  M−1 respectively. 
The novel probe can be used for live cell imaging studies 
for detection of mercury(II) ions in HeLa cells. The pre-
sent report also explored the sensing applications using 
low cost test strips and TLC plates for the detection of 
noxious mercuric ions. In summary, we conclude that the 
probe could serve as a potential sensor for the detection  
of mercury(II) ions.
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