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Abstract
A simple pyrazoline-based ‘‘turn off’’ fluorescent sensor 5-(4-methoxyphenyl)-3-(5-methylfuran-2-yl)-1-phenyl-
4,5-dihydro-1H-pyrazole (PFM) was synthesized and well characterized by different techniques such as FT-IR, 1H-
NMR, 13C-NMR, and mass spectrometry. The synthesized sensor PFM was utilized for the detection of  Fe3+ ions. 
Fluorescence emission selectively quenched by  Fe3+ ions compared to other metal ions  (Mn2+,  Al3+,  Fe2+,  Hg2+,  Cu2+, 
 Co2+,  Ni2+,  Cd2+,  Pb2+, and  Zn2+) via paramagnetic fluorescence quenching and showed good anti-interference ability 
over the existence of other tested metals. Under optimum conditions, the fluorescence intensity of sensor quenched by 
 Fe3+ in the range of 0 to 3 μM with detection limit of 0.12 μM. Binding of  Fe3+ ions to PFM solution were studied by 
fluorescent titration, revealed formation of 1:1 PFM-Fe metal complex and binding constant of complex was found to 
be of 1.3 ×  105  M−1. Further, the fluorescent sensor has been potentially used for the detection of  Fe3+ in environmental 
samples (river water, tap water, and sewage waste water) with satisfactory recovery values of 99–101%.
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Introduction

Iron, as one of the most fundamental trace elements, is 
known for cell formation in the human body system and 
growth in plants. Ferric ions  (Fe3+) play an imperative role 
in lots of critical biological processes (e.g., oxygen transfer 
in haemoglobin, electron-proton transfer, RNA and DNA 
synthesis, nerve conduction, enzyme synthesis, and regu-
lation of acid–base balance). However, excess deposition 
of iron in the human body can cause some severe diseases 

including hemochromatosis, Parkinson’s and Alzheimer’s 
disease, and diabetes [1]. Moreover, the lack of iron in the 
human body decreases immunity throughout the develop-
mental periods. Subsequently, a trace level of iron plays a 
vital role in the health of the living organism. Considering 
importance of evaluation of  Fe3+ ions concentration, WHO 
and European legislation have set the permissible limit of 
iron in drinking water and food as 0.3 ppm (~ 5.4 μM) and 
0.2 ppm (~ 3.8 μM) respectively [2]. Thus, quantitative 
detection of  Fe3+ ion at an ultra-trace level in environmental 
samples is of prominent concern using efficient analytical 
methods. Numerous methods (e.g. atomic absorption spec-
trometry, spectrophotometry, colorimetry, high-performance 
liquid chromatography, inductively coupled plasma optical 
emission spectrometry, and electrochemical analysis) for the 
detection of  Fe3+ ions have been used with good aspects 
[3, 4]. However, all these methods emerged with various 
limitations such as complicated technologies, sophisticated 
handling, expensive devices, and a long time for operating 
systems. Therefore, compared with these methods, the fluo-
rescence sensing strategy has gained considerable attention, 
as it has protruded optimistic method for monitoring and 
detection of diverse ions in environmental, and biological 
samples [5]. This consideration is due to a lot of highlights 
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like simplicity, cost-effectiveness, rapid responses, high 
selectivity, and sensitivity [6].

Pyrazolines derivatives, as the most recent fluorescent sen-
sor have generated much excitement because of their multi-
purpose applicability in various fields compared with other 
fluorescent emitters [7, 8].The synthetic versatility and the 
extended synthesis potential of pyrazoline with intrinsic bio-
logical and pharmacological activity (e.g. antimalarial, anti-
fungal, anti-inflammatory, antibacterial) have made pyrazoline 
and its derivatives as one of the most well-known precursors to 
chemistry [9, 10]. Specifically, the assurance of spectroscopic 
properties of pyrazoline dyes widely used as pH sensors, metal 
ion fluorescent sensor, living cell imaging probes, and logic-
based devices is of great importance [11, 12]. Now a days 
pyrazolines fluorescence sensors are also contributing in the 
direction of various other specifications like reusability, revers-
ibility, good quantum yield and suitable fluorescence life time 
in addition to high sensitivity and selectivity [13–16].

In this context, and in continuation of our research on 
pyrazoline based fluorescent sensors [17], we synthesized 
and characterized a “turn Off” fluorescent sensor, namely, 
5-(4-methoxyphenyl)-3-(5-methylfuran-2-yl)-1-phenyl-
4,5-dihydro-1H-pyrazole (PFM). This molecule, detects 
 Fe3+ via the paramagnetic enhanced quenching mechanism 
and offers several advantages such as easy synthesis, high 
sensitivity and selectivity, and rapid fluorescence quench-
ing response to  Fe3+ over other metal cations  (Al3+,  Fe3+, 
 Fe2+,  Mn2+,  Cu2+,  Co2+,  Hg2+,  Ni2+,  Cd2+,  Pb2+, and  Zn2+). 
Besides, the DFT calculations were used to confirm the 
experimental results.

Experimental

Reagents and Measurements

All the metal salts and 4-methoxybenzaldehyde were 
purchased from Loba Chemie Pvt. Ltd. (Mumbai, India). 
2-acetyl-5-methylfuran and phenyl-hydrazine were pur-
chased from Sigma-Aldrich (Mumbai, India). The synthe-
sized compounds were characterized by FT-IR, 1H-NMR, 
13C-NMR, and mass spectrometry. FT-IR spectra were 
scanned on a Perkin Elmer Spectrum Infrared Spectropho-
tometer Version (10.6.0), Japan. 1H-NMR and 13C-NMR 
spectra were recorded on a 500 MHz Bruker spectrometer, 

Switzerland. LC–MS Spectrometer Model Q-ToF Micro 
Waters was used to record the mass spectrum of the PFM. To 
record absorption spectra of the compounds, UV-1800 Shi-
madzu UV–Visible spectrophotometer (Shimadzu, Japan) 
was used. All fluorescence experiments were performed 
with a Shimadzu RF-5301PC spectrophotofluorometer, 
(Shimadzu, Japan). Triply distilled water (TDW) was used 
for the experimental work.

Synthesis and Characterization 
of 5‑(4‑methoxyphenyl)‑3‑(5‑methylfuran‑2‑yl)‑1‑ 
phenyl‑4,5‑dihydro‑1H‑pyrazole (PFM)

The synthesis of pyrazoline derivative PFM is pre-
sented in Scheme  1. The starting material chalcone 
(CFM) was synthesized from 2-acetyl-5-methylfuran 
and 4-methoxybenzaldehyde as reported in the litera-
ture [18]. Then, a mixture of chalcone CFM (2.42 g, 
0.01  mol), phenylhydrazine (1.5  g, 0.01  mol), KOH 
(0.5 g, 0.01 mol), and ethanol (20.0 ml) was refluxed 
continuously for 6 h and reaction progress was moni-
tored by TLC. After reaction completion, the resulting 
mixture was neutralized with iced-HCl to yield a dark 
brown solid mass. Then, the product PFM was recrystal-
lized from MeOH [19].

Dark Brown solid; Yield: 72%; m.p. 179-1800C; FT-IR: 
υmax  (cm−1): 3100 (aromatic C-H) & 1595 (C = N); 1H-NMR 
(500 MHz,  CDCl3): δ 7.17 (4H, m), 7.03 (2H, m), 6.80 (2H, 
d), 6.73 (1H, d), 6.37 (1H, d), 6.00 (1H, d), 5.11(1H, dd, 
JXM = 12 Hz, JXA = 7 Hz, H–X), 3.74(3H, s, 1’-OCH3), 3.66 
(1H, dd, JMX = 12 Hz, JMA = 17 Hz, H-M), 2.97 (1H, dd, 
JAX = 7 Hz, JAM = 17.0 Hz, H-A), 2.33 (3H, s, 1’’-CH3); 
13C-NMR (125 MHz, CDCl3): δ 159.04,153.86, 146.63, 
144.85, 139.36, 134.40, 128.89, 127.12, 119.04, 114.53, 
113.58, 111.013, 107.96, 63.4, 55.27, 43.27, 13.91; Calcu-
lated ESI–MS: m/z 332.39 for  C21H20N2O3.

Analytical Procedure

Stock solutions (1 μM) of metal salts i.e.  AlCl3,  FeCl3.6H2O, 
 FeCl2.H2O,  MnCl2,  CuCl2.2H2O, Co(NO3)2,  HgCl2,  NiCl2, 
Cd(NO3)2, Pb(NO3)2, and  ZnCl2 were prepared in triply dis-
tilled water. The stock solution of probe PFM (2 ×  10–5 M) in 
methanol: water (1:9, v/v) was prepared.

Scheme 1  Synthesis of pyrazo-
line 5-(4-methoxylphenyl)-3-(5-
methoxylfuran-2-yl)-1-phenyl-4, 
5-dihydro-1H-pyrazole
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Investigated the fluorescent behavior of the sensor PFM, 
the fluorescence excitation and emission wavelength were 
found to be 350 nm and 484 nm respectively. Afterwards, 
for selectivity, the absorption and fluorescence spectrum of 
PFM in the presence of each metal salt was recorded. For 
the experiment, 100 µL of PFM solution, 100 µL of metal 
salt was taken in cuvette and then diluted up to 3 ml with 
triply distilled water. For the better considerations of the 
quenching behavior of sensor PFM, fluorescence titration 
was performed in the presence of different concentrations 
of  Fe3+ ions (0–3 µM). The limit of detection (LOD) value 
was obtained from the 3σ/K (where σ is the standard devia-
tion of the blank solution and K represents the slope of the 
calibration curve between fluorescent intensity and the  Fe3+ 
concentrations).

Binding Measurement’s

Job’s plot analysis was carried out to identify the binding stoi-
chiometry between sensor PFM and  Fe3+ ions. The solution 
of sensor PFM and  Fe3+ ions were prepared to carry out Job's 
plot experiments. The plot was constructed from the emis-
sion profile by maintaining the sum of the concentration of 
 Fe3+ ions and the PFM constant. The fluorescence spectrum 
was recorded by varying the mole fraction of PFM and  Fe3+ 
ions at an excitation wavelength of 350 nm. The emission 
intensity was plotted against the mole fraction of the  Fe3+ 
ions. The molar ratio corresponding to the highest point or 
inflection point on the Job's plot gives the coordination ratio 
of the PFM to the  Fe3+ ions [20]. The association constant of 
PFM with  Fe3+ was calculated according to the fluorescence 
emission intensity data using the modified Benesi–Hildebrand 
equation:

where, F0, F, and Fmin are the fluorescence intensities of 
PFM in the absence of  Fe3+ ions, at an intermediate con-
centration of  Fe3+ ions, and a concentration of complete 
interaction of  Fe3+ ions, respectively. Ka is the association 
constant and [M] represents the concentration of the metal 
ion  (Fe3+) [21, 22].

Computational Study

To gain insight into the structures and fluorescence proper-
ties of PFM, before and after the addition of metals, density 
functional theory (DFT) computations were performed on 
B3LYP/6-311G(d,p)/LANL2DZ using Gaussian 09 soft-
ware. The optimized geometrical parameters, net charges on 
active centres, and energetic of the ground state for interme-
diate chalcone CFM, the sensor (PFM), and its binding with 

F
min

− F
0

F − F
0

=
1

K
a
[M]

+ 1

iron metal (PFM-Fe) were calculated. The spectral theoreti-
cal results of vibration analysis, 13C-NMR, and 1H-NMR of 
the ligand molecule were also examined.

Detection of Iron in Water Samples

Different water samples (river water, tap water, and sew-
age waste water) were used for the practical applicability of 
synthesized sensor. The river water was collected from the 
Ghaggar River (Patiala, Punjab, India). The tap water was 
collected from the chemistry lab (Khalsa College, Patiala) 
and sewage waste water was taken from the Punjabi Uni-
versity, Patiala (Punjab, India). All the water samples were 
filtered through a Grade 1 Whatman filter paper (pore size: 
11 µm) and nylon-6,6 membrane filter (0.2 µm per 47 mm) 
before analysis. All the samples were tested with the pro-
posed method before spiking.

Results and Discussion

Synthesis and Structural Characterizations

The absence of stretching frequency of α, β-unsaturated 
carbonyl group and the presence of (C = N) and (C-N) 
stretching frequencies at 1595  cm−1 and 1244  cm−1 in the 
IR-spectrum (Figs. S1 and S2) of the sensor PFM confirmed 
the subsequent cyclization of chalcone to form the pyra-
zoline derivative PFM [23]. In the 500 MHz instruments, 
the 1H-NMR coupling constant analysis of compound CFM 
indicated that hydrogen atoms of the olefinic carbon–carbon 
bond were in a trans arrangement (J = 15 Hz) (Fig. S3). 1H-
NMR spectra of the compound PFM exhibit the presence of 
two non-equivalent protons of a methylene group  (HA ⁄  HM) 
at 2.97 ppm and 3.64 ppm, because of the (H–X) proton 
at vicinal asymmetric carbon. The methene proton (H–X) 
appeared as a doublet of doublets at 5.11 ppm, because of 
vicinal coupling with the two magnetically non-equivalent 
protons of the methylene group at position 4 of the pyrazo-
line ring (Fig. S4) [23]. The carbonyl carbon of the chalcone 
CFM appeared at 177.39 ppm (Fig. S5). A signal due to 
C = N carbon of the pyrazoline ring was observed in PFM 
at 159.04 ppm. C4 and C5 carbons of the pyrazoline ring 
resonated at 63.41 ppm and 43.27 ppm respectively (Fig. S6) 
[24]. The characteristic peaks of masses were observed 
at m/z 243.44 (Fig. S7) and m/z 332.39 in the mass spectra 
of chalcone CFM and ligand PFM (Fig. S8).

Absorption and Fluorescence Experiments of PFM 
for the Sensing of  Fe3+ Ion

UV–Vis absorption and fluorescence spectra of compound 
PFM were presented together in Fig. 1a to determine the 

2321Journal of Fluorescence (2022) 32:2319–2331
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optical properties of the compound PFM in methanol:water 
(1:9). The PFM exhibited absorption bands at 286 nm and 
366 nm and relatively high intensity fluorescence band at 
484 nm. The n–π* transition may be due to conjugation 
between a lone pair electron of the nitrogen atom in the pyra-
zoline moiety and the π–bond of the benzene ring.

The effects of several metal ions having biological and 
ecological importance  (Al3+,  Fe3+,  Fe2+,  Mn2+,  Cu2+,  Co2+, 
 Hg2+,  Ni2+,  Cd2+,  Pb2+, and  Zn2+) on the absorption prop-
erties of the compound PFM were investigated. For this 
purpose, solutions having selected metal ions were added 
into the compound PFM’s 2 ×  10–5 M aqueous solution. 
Then absorption measurements of metal ions were real-
ized and recorded in Fig. 1b. Upon addition of metal ions to 
the solution containing PFM, the band observed at 286 nm 
diminished while the absorption of the band at 366 nm is 
enhanced. These changes can be manifest due to charge 
transfer properties of the pyrazoline moiety [25]. However, 
in the case of  Fe3+ ions, the absorption spectra exposed sig-
nificant changes. A bathochromic shift for band at 366 nm, 
and a new band at 625 nm was identified. The changes in 
band position and intensity of several characteristic absorb-
ing peaks in the UV–Vis absorption spectrum of PFM-Fe 
can be attributed to n → π* and π → π* transitions of the 
aromatic π system containing the C = N bonds[26–28].

Further, to gain insight for the selectivity of sensor PFM, 
fluorescence measurements were done. Different excita-
tion wavelengths (320–400 nm) were optimized to get the 
maximum fluorescence emission intensity for PFM. The 
maximum fluorescence emission intensity (484 nm) was 
observed at excitation wavelength of 350 nm (Fig. S9). The 
selective recognition of different metal ions having concen-
tration 1 μM  (Al3+,  Fe3+,  Fe2+,  Mn2+,  Cu2+,  Co2+,  Hg2+, 
 Ni2+,  Cd2+,  Pb2+, and  Zn2+) was examined (λex-350 nm; λem- 
484 nm). For the selectivity experiment, 100 μL of different 
metal solution and 100 μL of PFM were taken and diluted 
to 3 mL with TDW. The solution was stirred for 3 min and 
kept undisturbed at room temperature for 15 min. A large 
decrease in fluorescence intensity was observed for  Fe3+ 
comparative  to other metal cations, showing a selective 

recognition of  Fe3+ ion by pyrazoline-based ligand PFM 
(Fig. 2).

Effect of Response Time

The effect of the response time of the PFM sensor in 
the presence of  Fe3+ was investigated at different times 
(1–20 min). As shown in Fig. S10, the fluorescence intensity 
of PFM sensor with  Fe3+ reached equilibrium within 1 min 
and then almost no change in the fluorescence intensity 
within 20 min was observed. It showed that PFM quickly 
coordinates with  Fe3+ ions in almost 1 min. The rapid and 
stable response of the sensor PFM could serve as an efficient 
and consistent probe for  Fe3+ ions.

Fluorescence Life Time and Quantum Yield

The average lifetime of the PFM sensor in the absence 
and presence of  Fe3+ was found to be 1.94 ×  10–9 s and 
1.55 ×  10–10  s respectively. Figure  S11 represents the 

Fig. 1  a UV–Vis and Emission 
spectrum of PFM (2 ×  10–5 M) 
in methanol:water (1:9). b UV–
Vis spectra of PFM (2 ×  10–5 M) 
in methanol:water (1:9) upon 
addition of various metal ions 
(1 μM)
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Fig. 2  Fluorescence spectra of PFM (2 ×  10–5  M) in methanol:water 
(1:9) upon addition of various metal ions (1  μM) (Ex. Wavelength 
350 nm)
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fluorescence lifetime decay curve of PFM in the absence 
and presence of  Fe3+ fitted with three-component exponen-
tial decay curve.

The fluorescence quantum yield of the sensor was calcu-
lated using quinine sulphate in 0.5 M  H2SO4 as reference 
standard. The fluorescence quantum yield of PFM sensor in 
the absence of  Fe3+ was measured as 0.69. However, upon 
the addition of  Fe3+, the quantum yield decreases and meas-
ured as 0.27.

Reusability and Reversibility

To endorse the reversible and reusability performance of 
the sensor PFM towards  Fe3+ ions, the effect of addition of 
EDTA on the fluorescence was examined. When EDTA was 
added in to the solution, the fluorescence intensity of com-
pound PFM returned to the earlier state (93%) in which there 
was no  Fe3+ ions. This indicates that compound PFM fluo-
rescence sensor system detecting  Fe3+ ions is reversible and 
can be reused for further findings. The fluorescence response 
of subsequent additions of  Fe3+ or EDTA on PFM was car-
ried out. On adding  Fe3+, the fluorescence intensity of PFM 
decreases while addition of EDTA on PFM increased the 
fluorescence intensity. These cycles were repeated five times 
without losing much sensitivity of the sensor (Fig. S12).

Sensitivity Study of PFM for  Fe3+ Ion

To quantify the sensitivity and fluorescence quenching 
behavior between PFM and  Fe3+, the sensing proficiency 

of PFM towards  Fe3+ was further explored in the range of 
0–3 μM. On the addition of  Fe3+ ions in a sequential man-
ner in the PFM solution, the fluorescence emission intensity 
of the sensor PFM gradually decreases with the increase 
in concentration of  Fe3+ (Fig. 3a). The emission intensity 
of sensor PFM was specifically quenched by  Fe3+ ions via 
paramagnetic fluorescence quenching [5, 29]. The quench-
ing phenomena were further analyzed by the Stern–Volmer 
equation:

where,  F0 is the initial fluorescence intensity of the PFM 
solution in the absence of  Fe3+, F is the fluorescence 
emission intensity in the presence of  Fe3+, and  KSV is the 
Stern–Volmer constant. The Stern–Volmer plot  (F0/F ver-
sus  [Fe3+]) depicts that the quenching ratio increase linearly 
with the increase in  Fe3+ concentration  (R2 = 0.99) (Fig. 3b). 
The  KSV was calculated from the slope of plot and found to 
be 4.45 ×  10–5  M−1.

The limit of detection (LOD) was calculated 0.12 µM for 
 Fe3+ using the equation LOD = 3σ/K, which are far lower 
than most extreme toxin levels for  Fe3+ (5.4 μΜ) in drinking 
water given by EPA guidelines (Fig. 3c) [2].

Competitive Selectivity of PFM for  Fe3+ Ions

To investigate the selectivity and efficiency of PFM towards 
 Fe3+ ions, competitive experiment was carried out. For the 

F
O

F
= 1 + K

sv

[

Fe
3+
]

Fig. 3  a Fluorescence spectra 
of PFM with increasing 
concentration of  Fe3+ ions b 
Stern–Volmer plot for PFM 
against varying concentrations 
of iron ions in the range of 
0–3 μM c Calibration curve of 
fluorescence intensity of PFM 
at 484 nm vs. concentration of 
iron ion excited at 350 nm

a) b)

c)
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competitive study, 1 mL of  Fe3+ (1 μM) was added to the 
100 μL of PFM (2 ×  10–5 M) solution containing other metal 
ions  (Al3+,  Fe2+,  Mn2+,  Cu2+,  Co2+,  Hg2+,  Ni2+,  Cd2+,  Pb2+, 
and  Zn2+ at concentration of 2 ×  10–6 M) were taken and the 
fluorescence emission spectra was obtained. The interfering 
metal ions induced no significant changes in the fluorescence 
intensity of the sensor PFM (Fig. 4). As a result, the PFM 
can be presented as a highly selective and reliable fluores-
cent sensor for  Fe3+ ion recognition [25]. Moreover, relative 
error (%) for various metal ions was calculated:

where,  F0 and F are the fluorescence emission intensities in 
the absence and presence of interfering ion. Table 1 vali-
dated the relative error (%) values showing great tolerance 
of other metals over the  Fe3+ ion. The relative error is also 
found to be less than ± 5. These results suggest that the metal 
binding of PFM shows an evident preference for ferric ions 
over other competing ions.

Proposed Binding and Sensing Mechanism

A Job’s Plot was performed to calculate the binding stoi-
chiometry of PFM and  Fe3+ ion (Fig. 5). A turning point at 

Relative error (%) = [(F − F
0
)∕F

0
] × 100%

0.5 mol fractions indicates 1:1 metal–ligand binding interac-
tions between sensor PFM and  Fe3+. The association con-
stant  (Ka) was calculated to be 1.3 ×  105  M−1 according to 
the modified Benesi–Hildebrand equation (Fig. 6).

The mechanism of interaction between the  Fe3+ and 
PFM was studied through FT-IR (Fig. S13). It can be pro-
posed that the formation of the coordination between  Fe3+ 
and sensor PFM resulted from electronegative atom nitro-
gen of the pyrazoline ring and the oxygen of the furyl ring 
(Fig. 7). This interaction causes the fluorescence quenching 
of the sensor PFM. The FTIR spectrum of PFM exhibits a 
peak at 1595  cm−1 (stretching vibration C = N), and peak 
at 1245  cm−1 (C-O stretching vibration). However, in the 
PFM-Fe complex, the characteristic stretching vibration C-O 
peak of PFM partially disappear while the C = N stretching 
vibration of pyrazoline ring shifted from to 1595  cm−1 to 
1561  cm−1. This can be due to the interaction of  Fe3+ ions 
with the nitrogen and oxygen atom of PFM. The binding of 
 Fe3+ to PFM resulted in the electron or energy transfer from 
PFM to  Fe3+ metal ion causes fluorescence quenching of 

Fig. 4  a Fluorescence response 
of PFM upon addition of  Fe3+ 
ion in the presence of other 
competing metal ions (Ex. 
Wavelength 350 nm) b Dark 
grey bars represent the fluo-
rescence intensity of PFM in 
the presence of 1 μM of metal 
ion. light grey bars represent 
the fluorescence intensity in the 
presence of various metal ions 
after the addition of  Fe3+
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Table 1  Relative error showing tolerance of other metals

Interferent ion Relative Error 
% (∆F/F0 × 100)

Zn2+ 1.411
Hg2+ -1.411
Cd2+ -1.376
Fe2+ 0.882
Mn2+ 4.4107
Co2+ 2.681
Cu2+ -3.0345
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Pb2+ 4.234
Al3+ 4.869
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ions
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PFM. The fluorescence emission spectra of PFM overlaps 
with the absorption spectra of  Fe3+, suggesting the fluores-
cence resonance energy transfer (FRET) mechanism for the 
fluorescence quenching (Fig. S14).

Computational Study

Molecular Geometry Optimization

The optimized structures of these compounds along with 
the labeling of atoms are shown in Fig. 8. After optimiza-
tion, the binding energies (ΔE = E(complex)-E(PFM)) were 
calculated for all metals with PFM to obtain the strongest 
binding of the metal cation with PFM. The calculated result, 
△E = -564  kcalmol−1 showed the minimum energy changes 
for iron complex as compared to other metals (Table S1). 
Also, more negative energy value (-1194.45 a.u.) of the 
PFM-Fe than the free ligand (-1072.42 a.u.) confirms the 
stability of the PFM-Fe system compared to other metals 
showing high selectivity towards iron ions [5, 30, 31].

Also, for chalcone CFM, ligand PFM, and ligand com-
plex (PFM-Fe3+) with iron metal, C–C bond distances are 
found to be in the range from 1.528–1.533 Ǻ, 1.529–1.539 
Ǻ, and 1.531–1.546 Ǻ while for C-N, these values are 1.469 
Ǻ, 1.470 Ǻ, and 1.478 Ǻ respectively. In the case of C-H 

bond distances, they lie in the range from 1.093–1.103 Ǻ, 
1.093–1.101 Ǻ, and 1.092–1.098 Ǻ respectively [30].

Mulliken Population Analysis and Molecular Electrostatic 
Potential

The Mulliken population analysis is correlated to the vibra-
tional properties and nature of chemical bonds present in the 
molecule. The Mulliken charge distribution structure and hori-
zontal bar diagram of comparative mulliken atomic charges of 
the title compounds are shown in Fig. 9a, b, respectively. All the 
hydrogen atoms in the compounds carry a net positive charge. 
The atomic charge distribution shows that the hydrogen atoms 
of the methoxy group have a bigger positive atomic charge 
(0.2e to 0.32e) than the other hydrogen atoms. As expected, 
the charge of the nitrogen atom (N31 = -0.1826, -0.2933 and 
N32 = -0.2574, -0.2008 in PFM and PFM-Fe respectively) is 
negative. Additionally, the results illustrate that the charge of 
the oxygen atoms in the carbonyl group of CFM and furyl ring 
exhibits a negative charge, which acts as donor atoms. The 
oxygen atom of -OCH3 group enforces a large negative charge 
on the carbon (C11 = -0.1285, C26 = -0.3822, C26 = -0.4545 
in CFM, PFM, and PFM-Fe respectively) attached to it. Iron 
atom (Fe46 = 0.7185) has a high positive charge showing elec-
tropositive character.

The electrostatic potential surfaces are correlated with 
the charge density, shape, dipole moment, and position of 
chemical reactivity of the molecules. As inspected from the 
MEPs map of the title compounds (Fig. 10), the negative 
regions are localized over the electronegative oxygen and 
nitrogen atoms. The maximum positive regions are localized 
on the hydrogen atoms and the metal ion [32].

Molecular Reactivity

The electron donor–acceptor properties of various types of 
molecules can be defined by using the energy of HOMO and 
LUMO. FMO’s also helped to interpret the kinetic stabil-
ity, charge transfer, and chemical reactivity of a molecule. 
The frontier molecular orbital distribution of the compounds 
CFM, PFM, and PFM-Fe were represented in Fig. 11a. The 
smaller value of the HOMO and LUMO energy gap showed 
that the studied molecule has high polarizability, chemical 
reactivity, and biological activity.
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Fig. 6  Benesi–Hildebrand plot (at 350 nm) for complexation of PFM 
with  Fe3+ ion

Fig. 7  Proposed binding modes 
of PFM with  Fe3+ ions
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Fig. 8  Optimized geometric 
structures of CFM, PFM, and 
PFM-Fe at B3LYP/6-311G (d,p)
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In the PFM molecule, the HOMO (–6.621 eV) and the 
LUMO (–2.506 eV) are situated at the benzene and pyra-
zoline ring, respectively. For the PFM-Fe, the electron 

density of HOMO (–16.079 eV) is mainly situated at 
the molecular framework. Whereas, the electron density 
of LUMO (–14.062 eV) is situated at the coordination 
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center. The calculated energy gap (Δ) between HOMO 
and LUMO for PFM-Fe is found to be 2.02 eV, which is 
lower than that of unbound PFM (4.12 eV). Based on the 
DFT calculations, the binding between PFM and Fe is 
energetically favorable. These DFT results implied that 
the interaction of Fe to PFM effectively decreases the 
HOMO–LUMO energy gap of the PFM-Fe and intensely 
stabilizes the sensing of Fe by forming PFM-Fe com-
pound [33]. Furthermore, the chemical reactivity param-
eters of the compounds (Table 2) were also calculated 
with the help of the energy of HOMO and LUMO orbit-
als. Using FMOs energies, the ionization potential (I) 
and electron affinity (A) can be measured as: I = -EHOMO 
and A = -ELUMO.

Moreover, Density of States (DOS) plots of PFM are 
examined to study the electronic structure of the molecule 
via population analysis of orbitals. DOS plot represents the 
energy level of each orbital. DOS plot (Fig. 11b) for PFM 
shows that FMOs and the energy gap of HOMO–LUMO 
are in complete agreement with the result obtained from 
the DFT study [34]. To investigate the optimization pro-
cess Fig. S15a, a graph displaying deviation from the tar-
get was plotted (Fig. S15b). Also, the graph energy vs. 
optimization step was plotted as shown in Fig. S15c. In 
these plots, the path of structure convergence was estab-
lished. As inspected from these plots, the self-consistent 
field is converging as the line is directed towards zero [35].

Note: Some other important thermodynamics param-
eters, NBO, Vibrational analysis, and NMR of the com-
pounds based on theoretical results are discussed in Sect. 1 
of the SI.

Detection of  Fe3+ in Water Samples

The synthesized PFM sensor was utilized for the detec-
tion of  Fe3+ in different water samples (river water, tap 
water, and sewage waste water) by using the spike recovery 
method. All the samples were tested before spiking and the 
results revealed that the concentrations of  Fe3+ were either 
below the LOD or not present in the tested samples. So, 
all the samples were spiked with different concentrations 
of  Fe3+ and the results obtained were shown in Table 3. 
It can be seen that the detected  Fe3+ ions concentration is 
close to the spiked value with a satisfactory recovery value 
(99.0–101.0%) and low RSD values (0.78–2.03%). This sig-
nifies the great practical potential of the present method for 
the detection of  Fe3+ in water samples.

CFM

PFM

PFM-Fe

Fig. 10  Molecular electrostatic potential (MEPs) of compounds of 
CFM, PFM, and PFM-Fe at B3LYP/6-311G (d,p) (most electronega-
tive electrostatic potential are red, most positive electrostatic potential 
are blue and t regions close to zero potential are green)

▸
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Comparison with Other Reported  Fe3+ Fluorescent 
Sensors

To provide quantifiable achievement for the design of a new 
fluorescent sensor, the sensing performance of PFM was com-
pared with some reported pyrazoline based fluorescent sensors 
for  Fe3+ detection (Table 4). As shown in Table 4, the synthe-
sized fluorescent ligand PFM showed a better detection limit 
for  Fe3+ (0.12 μM) in comparison to other reported sensors. 
Pyrazoline based fluorescent sensors such as P [36], Q [37], R 
[38], and S [39] showed good selectivity for  Fe3+ ions, but were 
not used for any real sample analysis. Pyrazole-pyrazoline based 
sensor (U) [40] showed a better detection limit but the synthetic 
process was tedious and involved 4 step reaction. On the other 
hand, the present procedure involves a simple procedure with 2 
step reaction (Scheme 1). Moreover, the sensor showed better 
extraction recovery of 99–101% (tap, river, and sewage waste 
water) with RSD < 2.1% than the other reported methods.

Fig. 11  a FMOs of compounds of CFM, PFM, and PFM-Fe at B3LYP/6-311G (d,p) b Calculated TDOS diagram of PFM using gaussum soft-
ware

Table 2  Chemical Reactivity Parameters of the Compounds Based on 
HOMO–LUMO

S. No CFM PFM PFM-FE

E HOMO (eV) -7.308 -6.6216 -16.0792
ELUMO (eV) -2.133 -2.5064 -14.0623
ΔEHOMO-LUMO (eV) 5.1747 4.11517 2.0169
Ionization potential (IP) (eV) 7.308 6.6216 16.0792
Electron affinity (EA) (eV) 2.133 2.5064 14.0623
Chemical potential (eV) -4.7207 -4.564 -15.07076
Electronegativity(eV) 4.7207 4.564 15.07076
Chemical hardness (eV) 2.5873 2.0575 1.008454
Chemical Softness (eV)−1 0.1932 0.243 0.495808
Electrophilic global index (eV) 4.3065 5.0618 112.611

Table 3  Detection of  Fe3+ in 
different water samples (tap, 
river, and sewage waste water) 
by the proposed PFM sensor

Order Matrix Amount spiked 
(μM)

Amount found 
(μM)

Recovery % RSD %

1 River water 0.89 0.878 98.6 0.85
1.79 1.77 98.8 0.91
2.50 2.43 97.2 0.78

2 Tap water 0.89 0.884 99.3 1.23
1.79 1.79 100.0 1.11
2.50 2.48 99.2 2.03

3 Sewage waste water 0.89 0.88 98.8 0.59
1.79 1.79 100.0 0.96
2.50 2.50 100.0 1.20
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Conclusions

The synthesized organic fluorescent probe based on pyra-
zoline 5-(4-methoxyphenyl)-3-(5-methylfuran-2-yl)-
1-phenyl-4, 5-dihydro-1H-pyrazole (PFM) has been 
designed for the selective detection of  Fe3+ ions. The 
sensor PFM displayed a “turn off” fluorescence response 
towards  Fe3+ ion with a detection limit of 0.12 µM. The 
binding stoichiometry of  Fe3+ ions with PFM was 1:1 con-
firmed by Job’s plot, and their binding mechanism of them 
was demonstrated by paramagnetic enhanced quenching, 
FRET and density functional theory (DFT) study. The pro-
posed PFM-sensor was satisfactory applied for quantita-
tive and cost-effective detection of  Fe3+ with good preci-
sion in real samples.
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