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Abstract
Synthesis of luminescent metal cluster for selective sensing of specific analyte with detail mechanistic understanding is 
very important for real world applications as well as for developing new emissive materials. In the present work, we have 
synthesized L-glutathione stabilized gold (Au-SG) and gold-silver bimetallic (AuAg-SG) clusters under identical experi-
mental conditions with orange red emissive characteristics for both. Detail photo physical analysis reveals that both clusters 
are phosphorescent in nature with moderate quantum yield of 7% and 19% for Au-SG and AuAg-SG respectively and their 
excited state lifetime values are in the range of 1–2 μs. While Au-SG cluster showed luminescence quenching response (turn-
off) in presence of Fe3+ and Hg2+ ions, AuAg-SG cluster showed turn-off response for Cu2+, Fe3+ and Hg2+, but luminescent 
enhancement (turn-on) response for Cd2+ ions. The highest detection limit obtained for Cu2+ ion by AuAg-SG cluster is 
20 nM while for Cd2+ ion it is 75 nM. From Time Correlated Single Photo Counting (TCSPC) and Dynamic Light Scattering 
(DLS) measurements we postulated that except Cd2+, all other metal ions cause aggregation of clusters through ligation with 
SG ligands while Cd2+ ion does not induce any cluster aggregation but binds to cluster surface atoms. The near constant life 
time values of both clusters during gradual addition of respective metal ions confirms static quenching/enhancement process 
through formation of stable ground state adducts.
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Introduction

Ligand stabilized ultra-small coinage metal clusters have 
emerged as a new class of functional material with unique 
physico-chemical properties and have tremendous application 
potential specially in the areas of trace level sensing, bio-
imaging, light emitting diodes and catalysis [1–5]. These small 
clusters show molecular like optical absorption properties, high 
quantum yield and tuneable luminescence behaviour with 
good photo stability, selective catalytic activity and good bio-
compatibility which make them superior than the organic dye/
fluorophores [6–8]. The origin of emission from these clusters 
are broadly decided by the nature of metal(s) and their oxidation 

state, size of the cluster, atomic arrangement of the cluster, type 
of ligand and metal–ligand interfacial structure [7–10]. Strong 
luminescence, large stokes shift, high photo-thermal stability, 
good biocompatibility, availability of easy surface modification 
routes and their high stability under ambient conditions are 
reasons behind their potential applications [7–11]. These 
qualities has driven strong interest to pursue development metal 
nanocluster (NC) based selective and sensitive luminescence 
sensor for various analytes under aqueous phase in ambient 
conditions. The use of stabilizing ligands with various surface 
functional groups, e.g., thiol, alkyne, halide, carbene, amine and 
carboxylic acids have been studied to synthesize a variety of 
emissive clusters [12–18]. Although various ligands have been 
successfully used, but still the “thiol” based ligands including 
small thiol molecules, amino acids, peptides and proteins 
are found most intriguing in terms of synthesizing highly 
emissive metal clusters. L-Glutathione is a tripeptide with a 
free-SH group and have been used extensively to synthesize a 
variety of metal clusters and nanoparticles [19–26]. The highly 
fluorescent Au22(SG)18 cluster with strong red emission is one 
of the most prominent early example with a quantum yield of 
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16% [20, 21]. It was revealed that aggregation of Au(I)-SG 
oligomers on Au(0) kernel induced ligand to metal charge 
transfer (LMCT) transitions for showing such strong emission 
[20, 21]. In pursuit of isolating more emissive cluster, alloying 
of two metals were tested as the resulting bimetallic cluster 
may achieve higher quantum yield through better geometrical 
rigidity, smaller kernel size and efficient electron transfer 
dynamics [27–39]. Thus, alloying of Ag or Cu with Au have 
resulted a number of highly luminescent bimetallic clusters in 
recent years with high quantum yield up to 71% [33].

Trace level detection of various analytes including metal 
ions, explosives, specific biomolecules, toxic molecules 
and food contaminants by luminescent noble metal clusters 
is a promising approach [40–45]. The detection of trace 
quantity of metal ions is important as their contamination 
in food, drinking water and in body fluids is very important 
from human health safety and diagnostic prospective. The 
advantages of luminescence sensing of analytes includes 
very high sensitivity and selectivity, low cost, on the spot 
testing feasibility and fast response time [40] Luminescence 
quenching (Turn-OFF) is the most dominant pathway of 
sensing analytes demonstrated by various metal clusters and 
we may ascribe its origin through electron/energy transfer from 
metal cluster to analyte through a static or dynamic adduct 
formation mechanism [46–50]. Luminescence enhancement 
(Turn-ON) based sensing of analytes is more advantageous 
but is less common and it follows a distinct mechanism than 
the previous one [51–53]. Thus, one of the major motivation 
of the work is to develop metal NC based turn-on sensors 
for specific metal ions and understanding the underlying 
mechanism behind it. In metal ion sensing, the ions may 
interact with surface ligands, or it may interact with surface 
metal atoms of the cluster and may also form a different alloy 
resulting a luminescence response. Hence, we were interested 
to understand the metal ion sensing ability of a monometallic 
(Aun) and a bimetallic nanocluster (AunAgm) stabilized by a 
sufficiently polar thiol ligand {L-Glutathione (L-GSH)}. We 
anticipated that various metal ions will interact differently with 
mono and bimetallic nanocluster surface atoms or with the 
ligand functional groups and may result different responses. 
Thus, the present work reports synthesis, characterization and 
luminescence sensing behaviour of Glutathione stabilized 
Au and AuAg clusters for various metal ions with a major 
focus on their photo physical aspects. Interestingly, we could 
find that while gold clusters showed selective luminescence 
quenching based sensing of Fe3+ and Hg2+, the AuAg 
cluster showed luminescence quenching for Fe3+, Hg2+ and 
Cu2+ but luminescence enhancement in presence of Cd2+. 
Detailed steady state emission behaviour and TCSPC analysis 
were performed along with hydrodynamic diameter (Dh) to 
understand this different sensing behaviour for two different 
clusters. The present work is also significant for the observed 
turn-on luminescence response of the bimetallic cluster and 

may find application as a real world sensor for the detection 
of trace level metal ions. In addition to it the work suggests 
that it may be feasible to synthesize a tri-metallic cluster with 
high phosphorescence quantum yield at room temperature by 
combining Au, Ag and Cd.

Experimental Section

Materials and Instruments

Gold (III) chloride trihydrate (HAuCl4.3H2O), Silver nitrate 
(AgNO3), L-Glutathione, Sodium hydroxide (NaOH), Ferric 
nitrate (Fe(NO3)3, Cadmium chloride (CdCl2), Copper nitrate 
(Cu(NO3)2, 3H2O), Zinc chloride (ZnCl2), Mercury (II) nitrate 
(Hg(NO3)2), Chromium (III) chloride (CrCl3, 3H2O), Lead 
chloride (PbCl2), Arsenic (III) oxide (As2O3), Cobalt (II) 
nitrate (Co(NO3)2), Manganese (II) chloride (MnCl2), Nickel 
(II) chloride (NiCl2), Ammonium chloride (NH4Cl), Potassium 
bromide (KBr), Sodium chloride (NaCl) were obtained from 
Sigma-Aldrich Chemical Co. Milli-Q grade water were used 
in all experiments. UV–Vis spectroscopic measurements 
were performed in a JASCO V-670 spectrophotometer. All 
the solution phase photoluminescence spectra were obtained 
by using a HORIBA Fluoromax spectrofluorometer at 298 K. 
Dynamic light scattering (DLS) experiments for measuring 
hydrodynamic diameter were performed by using a Malvern 
DLS instrument (Zetasizer Nano ZSP model). HORIBA Jobin 
Yvon Deltaflex time correlated single photon counting (TCSPC) 
spectrophotometer was used for recording phosphorescence 
(PL) decays. The samples were excited at 370 nm by a spectral 
LED (model Spectra LED-370). Transmission electron 
microscopic (TEM) images were recorded by using a Philips 
JEM 2000FX electron microscope operated at 200  kV. 
Matrix Assisted Laser Desorption Ionisation (MALDI) mass 
spectra were recorded by using a time‐of‐flight (TOF) mass 
spectrometer (Bruker, Autoflex Speed) operated with a solid 
state laser (355 nm, 3 Hz, < 100 mJ). Inductively Coupled 
Plasma-Optical Emission Spectrometry (ICP-OES) analysis 
was performed in a Thermo Fischer instrument (iCAP Pro 
ICP-OES). Energy Dispersive X-Ray Fluorescence (ED-XRF) 
analysis was performed on a Shimadzu instrument (Model 
EDX-7000/8100).

Synthesis of Au‑SG and AuAg‑SG Cluster

The synthesis of Au-SG and AuAg-SG cluster were performed 
by following a literature reported procedure with minor 
modifications [54]. First we prepared a stock solution of 
100 mM L-Glutathione (L-GSH), 15 mM of HAuCl4 and 
15 mM of AgNO3 in three separate vials. For the synthesis 
of AuAg Cluster, we mixed 0.45 mL of L-GSH solution, 
1.35 mL of HAuCl4 solution and 0.15 mL of AgNO3 solution 
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in a clean and dry round bottom flask with another additional 
30 mL of Milli-Q water. Then NaOH (1 M, 60µL) was added 
drop wise in that mixture to fix the final pH of the solution at 
7. Afterwards, this round bottom flask (RB) was placed in an 
oil bath at 85 °C under stirring (600 rpm) and fitted with a 
reflux condenser for 6 h. The solution was then cooled to room 
temperature, purified using membrane filter (3000 Da) under 
high speed centrifugation (10,000 rpm) to get concentrated 
solution and finally dried using a fridge dryer. The Au-SG 
cluster was prepared under identical conditions without 
addition of AgNO3 in the reaction mixture.

Metal Ion Sensing Procedure

First the respective metal salts were dissolved in Milli-Q 
water with a final concentration of 2.65 mM. For preparation 
of aqueous metal cluster solutions, 1 mg of dried cluster was 
dissolved in 10 mL of Milli-Q water (100 ppm) and it was 
used as stock solution. Then 2 mL of the stock solution of 
the respective clusters were taken in a cuvette and the steady 
state luminescence spectra were recorded during gradual 
addition (10 μL at a time) of these metal salt solutions. 
Excitation wavelength was fixed at 395  nm for Au-SG 
cluster and 396 nm for AuAg-SG cluster.

Results and Discussion

Synthesis, Characterization and Optical Properties 
of Au‑SG and AuAg‑SG Clusters

Synthesis of monometallic Au-SG cluster and AuAg-SG 
bimetallic cluster were accomplished through a hustle free 
hydrothermal procedure under neutral pH and a 9:1 molar 
ratio of Au:Ag was maintained for the bimetallic cluster. The 
purified clusters were characterized by UV–Vis, PL, TCSPC, 
TEM, DLS and MALDI techniques. The representative TEM 
images and MALDI mass spectra for these two clusters are 
presented in Fig. 1. Highly mono-disperse ultra-small particles 
with average diameter of 1.2 ± 0.2 nm were observed for 
both the clusters (Fig. 1a, b). Mass spectrometric analysis of 
both clusters were also measured, which showed the major 
molecular peak (weight) of 5.1 kDa and 4.8 kDa for Au-SG 
and AuAg-SG clusters respectively (Fig. 1c, d). However, 
the broad mass spectral pattern with abundance of few other 
smaller peaks indicate that in molecular level these clusters 
are poly dispersed. The average hydrodynamic diameter (Dh) 
for these two clusters dispersed in water media were also 
measured by dynamic light scattering (DLS) technique to get 
an idea about their solution phase behaviour and stabilities. We 
observed that their hydrodynamic diameter is very identical 
(~ 2.5 nm), which indicates their good aqueous dispersion and 
non-aggregation nature. The higher hydrodynamic diameter 

as compared to diameter observed from TEM measurement 
is quite expected as the associated ligand and solvents 
surrounding the metal cluster makes Dh value larger.

Next the solution phase optical (UV–Vis) absorption 
spectra and emission spectra were recorded for these two 
clusters at room temperature (298 K). Both clusters exhibit 
strong UV light absorption profiles as the absorbance 
increases strongly in the UV region as compared to visible 
region of the spectra (Fig. 2). Both clusters showed strong 
orange-red emission under 365  nm UV light source 
(Fig. 2, inset). Hence, we systematically analysed their 
solution phase emission behaviour and first measured 3D 
emission profiles to know exact excitation and emission 
wavelengths (Figs. S1 and S2). The optimized λex and 
λemi values for Au-SG cluster are 395 nm and 585 nm 
respectively and for AuAg-SG cluster, the excitation and 
emission wavelengths are 396 nm and 605 nm respectively 
(Fig. 2). Thus, a relatively large stokes shift of 190 nm and 
207 nm were observed for Au-SG and AuAg-SG clusters. 
The quantum yield measured through integrated sphere 
methods were 7% and 19% respectively, which could be 
considered high for metal clusters. The luminescence 
decay profiles for both the clusters were measured to 
calculate the excited state lifetime values (Figs. 3, S3 
and Table 1). The best fitted decay profiles for both the 
clusters gave two lifetime components, 0.26 μs (86%) 
and 2.84 μs (14%) with an average τ value of 0.62 μs for 
Au-SG cluster. For AuAg-SG cluster, the life time values 
are 0.71 μs (62%) and 2.77 μs (38%) with an average τ 
value of 1.49 μs. Such long luminescence lifetime values 
in the microsecond range indicates that the emission of 
both these clusters are phosphorescence in nature. We may 

Fig. 1   TEM images with particle size histograms (a, b) and MALDI 
mass spectra (c) and (d) of Au-SG cluster and AuAg-SG cluster respec-
tively
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attribute the origin of such emission to ligand-to-metal 
charge transfer (LMCT) or ligand-to-metal–metal charge 
transfer (LMMCT) based excitation followed by emission 
via metal-centered triplet excited state [22]. The stability 
of the AuAg-SG cluster with respect to pH, UV light and 
oxygen purging and its excitation wavelength dependent 
emission spectra were also measured (Figs. S4, S5, S6, 
S7 and S8). The emission wavelength remains same upon 
excitation with varying wavelength (340 to 450 nm range), 
indicating the fixed band gap of 605 nm but the intensity is 
found to be highest with excitation wavelength of 396 nm. 
The emission intensity decreases while purging oxygen 

gas through the cluster solution, which again confirms the 
involvement of triplet state as emissive state. The emission 
is quite stable under dark conditions as well as under UV 
light irradiation, indicating its stability against photo 
bleaching. The emission of AuAg cluster is enhanced 
at low pH possibly due to influence of ligands through 
attending specific packing surrounding the cluster.

Metal Ion Sensing by Au‑SG and AuAg‑SG Clusters

The major emphasis of the present work was to find out 
the differential sensing behaviour of these two clusters for 

Fig. 2   Room temperature solu-
tion phase (aqueous) UV–Vis 
spectra, excitation spectra and 
emission spectra of Au-SG 
cluster (a) and AuAg-SG cluster 
(b); the inset figure shows the 
solution phase colour of the 
respective clusters upon illumi-
nation under 365 nm UV lamp

Fig. 3   TCSPC results to measure the phosphorescence decay profile and excited state lifetime values of AuAg-SG cluster during gradual addi-
tion (0 μM to 113.2 μM) of (a) Fe3+ ion, (b) Cu2+ ion, (c) Hg2+ ion and (d) Cd2+ ion
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metal ions and understanding the photo physical events 
associated with it. To accomplish this target the solution 
phase titration of various metal salts were performed 
with these two clusters at room temperature (298 K) by 
simultaneously measuring their steady-state emission spectra 
as described in the experimental section. First the titration 
was performed with Au-SG cluster and the results are 
presented in Figs. S9 and S10. We could observe significant 
quenching (turn-off) of the emission peak for two metal 
ions (Fe3+ and Hg2+) while other metal salts are innocent 
towards the emission quenching. Careful investigation 
revealed that Au-SG cluster is most effective for sensing 
Fe3+ followed Hg2+ with quenching efficiencies of 79% and 
45% respectively. The normalized emission intensity (I0/I) 
was also plotted against concentrations for these metal ions 
by following the Stern–Volmer equation (Eq. 1) (Fig. S9) 
and the calculated Stern − Volmer constants were found to 
be 4.6 × 105 M–1(Fe3+) and 1.95 × 104 M–1(Hg2+).

[where I0(λ) is the PL intensity at a specified emission 
wavelength λ in the absence of a quencher, I(λ) denote 
the PL intensity at emission wavelength λ at a quencher 
concentration [Q], and KSV(λ) represents the Stern − Volmer 
quenching constant at emission wavelength λ.]

The lowest detection limit for Fe3+ and Hg2+ were found to 
be 100, 135 nM respectively. Similar emission spectroscopic 
titrations were also performed by taking AuAg-SG cluster 
as probe against all these metals salts under identical 
conditions (Fig. 4). Very interestingly we could observe 
emission quenching (turn-off) for Cu2+, Fe3+ and Hg2+, 
but emission enhancement (turn-on) for Cd2+ ion while all 
other metal salts cause negligible change of the emission 
intensity of AuAg-SG cluster (Figs. S11, S12, S13, S14 
and S15). The calculated Stern − Volmer constants were 
found to be 4.88 × 105 M–1(Fe3+), 2.4 × 106 M–1(Cu2+) and 

(1)I
0
(λ)∕I(λ) = K

SV
(λ)[Q] + 1

1.7 × 105 M–1(Hg2+) and –[4 × 103 M–1] (Cd2+). With respect to 
pristine AuAg-SG cluster, the emission quenching percentage 
in presence of Cu2+, Fe3+ and Hg2+ metal ions are 99%, 72% 
and 69% respectively and emission enhancement for Cd2+ ion 
is 220%. The lowest detection limit for Cu2+, Fe3+, Hg2+ and 
Cd2+ were found to be 20, 90, 95 and 75 nM respectively. A 
comparative chart on detection limit for various metal ions 
reported previously by various metal clusters and the present 
work is shown in Table S1. The result is of high significance as 
these two luminescent clusters could be used as selective metal 
ion sensor with high sensitivity at neutral pH conditions. In 
addition, it would be interesting to understand the underlying 
mechanism of this differential sensing behaviour of Au and 
AuAg clusters. Especially the turn on sensing for Cd2+ ion 
by AuAg cluster may open up the strategy to synthesize a 
new class of trinuclear cluster with high emission quantum 
yield. The visual colour change of AuAg-SG cluster under UV 
(365 nm) light during gradual addition of Cd2+ ions (turn-on) 
and Fe3+ ions (turn-off) are also presented (Fig. S15).

Dynamic Light Scattering (DLS) and TCSPC Analysis

To understand the sensing mechanism we have measured 
the hydrodynamic diameter (Dh) and excited state life times 
(τ) of the both clusters during gradual addition of some 
selected metal salts. In general the luminescence quenching 
phenomenon occurs through photo-induced electron transfer 
(PET) process via static or dynamic interaction between 
probe and the analyte [42–50]. However, the turn-on 
sensing is uncommon and the underlying mechanism may 
be very distinct for different probes [51–53]. The TCSPC 
measurement was performed to record the excited state 
lifetime values of AuAg cluster upon gradual addition of 
Cu2+, Fe3+, Hg2+ and Cd2+(Fig. 3 and Table 1). In parallel, 
DLS measurement was performed for Fe3+ (turn-off) and 
Cd2+ (turn-on) titrations with AuAg cluster to see any 

Table 1   The summary of excited state lifetime values of AuAg-SG cluster during gradual addition of Cu2+, Fe3+, Hg2+ and Cd2+ ions 
(0–113.2 μM) by using an excitation wavelength of 370 nm (spectra LED), and the emission was monitored at 604 nm

Conc Cu2+ Fe3+ Hg2+ Cd2+

µM τ1(µs) τ2(µs) τ1(µs) τ2(µs) τ1(µs) τ2(µs) τ1(µs) τ2(µs)

0 0.71 (62%) 2.77 (38%) 0.71 (62%) 2.77 (38%) 0.71 (62%) 2.77 (38%) 0.71 (62%) 2.77 (38%)
13.2 0.43 (58%) 1.78 (42%) 0.69 (64%) 2.87 (36%) 0.51 (65%) 2.10 (35%) 0.56 (59%) 2.63 (41%)
26.3 0.27 (64%) 1.40 (36%) 0.77 (69%) 2.96 (31%) 0.52 (70%) 2.03 (30%) 0.58 (62%) 2.65 (38%)
39.2 0.19 (71%) 1.24 (29%) 0.76 (69%) 2.90 (31%) 0.44 (67%) 1.78 (33%) 0.58 (60%) 2.66 (40%)
51.9 0.20 (72%) 1.18 (28%) 0.67 (56%) 2.76 (44%) 0.49 (73%) 1.91 (27%) 0.61 (63%) 2.70 (37%)
64.5 0.17 (77%) 1.10 (23%) 0.64 (60%) 2.72 (40%) 0.45 (71%) 1.76 (29%) 0.58 (61%) 2.63 (39%)
76.9 0.16 (84%) 1.13 (16%) 0.69 (58%) 2.80 (42%) 0.53 (78%) 2.05 (22%) 0.58 (61%) 2.68 (39%)
89.2 0.16 (89%) 1.18 (11%) 0.78 (66%) 3.10 (34%) 0.46 (74%) 1.86 (26%) 0.54 (60%) 2.60 (40%)
101.3 0.15 (89%) 1.19 (11%) 0.67 (62%) 2.91 (38%) 0.51 (78%) 2.03 (22%) 0.61 (61%) 2.70 (39%)
113.2 0.14 (92%) 1.22 (08%) 0.69 (62%) 2.98 (38%) 0.48 (77%) 1.96 (23%) 0.56 (59%) 2.63 (41%)

2275Journal of Fluorescence (2022) 32:2271–2280



1 3

Fig. 4   Luminescence spectroscopic titration of AuAg-SG cluster with 
incremental addition (0 μM to 113.2 μM) of (a) Fe3+, (b) Cu2+, (c) Hg2+ 
and (d) Cd2+ respectively, in water at 298 K under neutral pH of 7.5;  

(e) and (f) are Stern–Volmer plots obtained for these metal ions from the 
above spectral intensities
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1 3

change of the Dh values (Fig. 5). The τ values of pristine 
cluster (0.71 and 2.77 μs) decreases minutely after addition 
of 1.13 μM Cu2+ to 0.14 and 1.22 μs, and after addition of 
1.13 μM Hg2+ to 0.48 and 1.96 μs. The τ value minutely 
increases to 0.69 and 2.98 μs after addition of same amount 
of Fe3+ and remains almost same (0.56 and 2.63 μs) after 
adding same amount of Cd2+ as shown in Table 1. The 
variation of τ1 and τ2 values of AuAg cluster upon varying 
addition of these four metal ions are also shown in Fig. 3. 
However, in all these studies the variation of τ values 
between pristine cluster and after addition of 1.13 μM metal 
salts is very minimal. The result clearly indicates static 
(ground state) interaction between the AuAg-SG cluster 
and metal ions. On the other hand the Dh value of pristine 
AuAg cluster is 2.5 nm, but after gradual addition of Fe3+ 
ion, it increases sharply and finally reaches to 1200 nm 
(Fig. 5). This clearly indicates that Fe3+ induces strong 
agglomeration by ligating with SG ligands (Scheme 1) and 
the emission quenching results through PET process from 
cluster to ligated Fe3+ ions. On the contrary, the Dh value of 
AuAg cluster remains same upon gradual addition of Cd2+ 
ions. We can postulate that here Cd2+ ions interacts with the 

cluster surface and forms an alloy rather than interaction 
with SG ligands. The enhanced luminescence originates 
from the cluster core due to formation of CdAuAg alloy 
with higher rigidity and hence lower vibrational relaxation. 
The TCSPC and DLS measurements of Au-SG cluster with 
gradual addition of Fe3+ ions were also recorded (Figs. S3 
and S17) and the results are very identical with AuAg-SG 
cluster and Fe3+ ion. The τ values of pristine Au-SG cluster 
are 0.26 and 2.84 μs and after addition of 133.2 μM of 
Fe3+, it remains almost same (0.25 and 2.85 μs) (Fig. S3) 
although the Dh value increases sharply from 2.5 nm to 
415 nm (Fig. S17). We can postulate that Fe3+ binds with 
the SG ligands and through inter cluster linkages, high 
degree of agglomeration takes place in solution. From 
these analysis we came to conclusion that there are two 
distinct mechanisms operative here which is analyte (metal 
ion specific). For Cd2+ ion sensing by AuAg-SG cluster, 
the metal ion is binding with the cluster surface to form 
an alloy with turn-on luminescence response. This was 
further supported by isolating the cluster after titration 
with Cd2+ion and finding the metal content through ICP-
OES and ED-XRF experiments (Fig. S18 and Table S2). 

Fig. 5   Hydrodynamic diameter of aqueous solution of AuAg-SG cluster during gradual addition of Fe3+ion (a) and Cd2+ ion (b)
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The ICP-OES data and ED-XRF data shows the presence 
of Cd along with Au and Ag in the cluster implying its 
interaction the cluster surface. On the other hand other 
metal ions (Fe3+, Cu2+, Hg2+) induced extensive cluster 
agglomeration through binding the SG ligands and results 
turn-off luminescence by PET process.

Conclusion

In conclusion, the present work successfully demonstrates 
the synthesis and sensing application of glutathione 
stabilized phosphorescent gold (Au-SG) and gold-silver 
(AuAg-SG) bimetallic nanoclusters for metal ions. 
Pronounced emission quenching is observed in case of 
metal ions of Fe3+, Cu2+, Hg2+, whereas, the emission 
enhancement occurs while adding Cd2+ ions to AuAg 
cluster. High Stern − Volmer constant, low detection limit 
along with simple protocol, naked eye detection, low cost, 
fast processing time are very promising findings for their 
practical application. In addition to sensing application, 
the turn on sensing of Cd2+ ions by AuAg-SG cluster 
is a new finding and the mechanistic insight shows that 
a tri-metallic alloy cluster may be forming with much 
enhanced emission. The finding indicates the opportunity 
to synthesize highly luminescent Cd doped AuAg cluster 
with the possibility of their large scale synthesis and 
potential applications.
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