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Abstract
We synthesized an original reversible colorimetric chemosensor PDJ ((E)-9-((2-(6-chloropyridazin-3-yl)hydrazono)methyl)-
2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol) for the detection of F−. PDJ displayed a selective colorimetric detec-
tion to F− with a variation of color from colorless to yellow. Limit of detection of PDJ for F− was calculated as 12.1 µM. The 
binding mode of PDJ and F− turned out to be a 1:1 ratio using Job plot. Sensing process of F− by PDJ was demonstrated 
by 1H NMR titration and DFT calculation studies that suggested hydrogen bond interactions followed by deprotonation. 
Moreover, the practicality of PDJ was demonstrated via a reversible test with TFA (trifluoroacetic acid).
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Introduction

Fluoride is a trace element present in our bodies, which helps 
to care tooth, build dental enamel and prevent osteoporosis 
[1–5]. However, even at low concentration, long-term con-
sumption causes bone fluoridation, decreased thyroid activ-
ity, bone disease, and adversely affecting the immune system 
[6–10]. In addition, fluoride is widely applied in industries 
such as pesticide production containing fluoride and pro-
duction of steel, aluminum and ceramics. By this industrial 
spread, fluoride is increasing irreversible pollution to the 
environment [11–14]. Thus, monitoring and sensing fluoride 
are of great importance to health care and environment.

So far, fluoride detection techniques can be classified into 
several types, such as electrode methods, 19F NMR analysis, 
fluorescence or colorimetric detection [15–20]. Among the 
various approaches, the most attractive is the colorimetric 
sensor that can detect fluoride via color changes visually 
without relying on expensive device use. In addition, colori-
metric sensors have diverse advantages like low cost, easy 
method, quick response, and great selectivity [21–26].

Fluoride interacts with NH or OH groups through strong 
hydrogen bonds [27]. Therefore, a variety of colorimetric 

chemosensors which include NH or OH groups, have been 
designed to sense fluoride [28–34]. Julolidine moiety having 
an OH group is well known as a chromophore and great proton 
donor [35–40]. Pyridazine moiety acts as an electron withdraw-
ing group and is also used in various biochemical and phys-
icochemical applications [41]. Therefore, we predicted that the 
combination of the pyridazine group and the julolidine one may 
show deformation of energy transition via hydrogen bond inter-
actions and unique sensing properties to fluoride.

Herein, we illustrate a novel reversible chemosensor 
PDJ, which was produced in one step by coupling 3-chloro-
6-hydrazinylpyridazine with 8-hydroxyjulolidine-9-
carboxaldehyde. PDJ could sense F– by a color variation from 
colorless to yellow through the naked eye, show reversible 
reaction, and be reused by TFA (trifluoroacetic acid). Binding 
pattern and sensing mechanism of PDJ to F– were presented 
by Job plot, 1H NMR titration, ESI-mass spectral analyses and 
calculations.

Experiments

General Information

With a Varian spectrometer, 1H and 13C NMR data were 
afforded. Absorption and ESI-MS data were given with 
a Perkin Elmer spectrometer and a ACQUITY QDa, 
respectively.

 *	 Cheal Kim 
	 chealkim@snut.ac.kr

1	 Department of Fine Chem, SNUT (Seoul National Univ. 
of Sci. and Tech.), Seoul 01188, Korea

/ Published online: 13 August 2021

Journal of Fluorescence (2021) 31:1675–1682

http://orcid.org/0000-0002-8692-2457
http://crossmark.crossref.org/dialog/?doi=10.1007/s10895-021-02801-5&domain=pdf


1 3

Synthesis of PDJ 
((E)‑9‑((2‑(6‑chloropyridazin‑3‑yl)hydrazono)
methyl)‑2,3,6,7‑tetrahydro‑1H,5H‑pyrido[3,2,1‑ij]
quinolin‑8‑ol)

3-Chloro-6-hydrazinylpyridazine (0.9x10-3 mol, 0.133 g) 
and 8-hydroxyjulolidine-9-carboxaldehyde (1.2x10-3 mol, 
0.272 g) were dissolved in methanol (5.0 mL). The mixture 
was stirred for 8 h after a few drops of CH3COOH were 
added. The yellowish-brown powder formed. Then, it was 
rinsed with CH3OH, filtered and dried (yield: 32%). 1H 
NMR: 11.32 (s, 1H), 10.77 (s, 1H), 8.08 (s, 1H), 7.60 (d, 
J =9.3 Hz, 1H), 7.21 (d, J =9.5 Hz, 1H), 6.71 (s, 1H), 3.15 
(m, 4H), 2.60 (m, 4H), 1.85 (m, 4H). 13C NMR: 157.1(1C), 
153.4(1C), 146.7(1C), 146.5(1C), 144.7(1C), 129.8(1C), 
127.5(1C), 115.3(1C), 112.6(1C), 106.4(2C), 49.2(1C), 
48.8(1C), 26.7(1C), 21.5(1C), 20.7(1C), 20.3(1C). ESI-MS 
for [PDJ + H+], calcd, 344.13 (m/z); found, 344.34.

UV–vis Titration

A PDJ stock (5.0x10–3 M) was provided in 1,000 μL of 
DMSO. 12 μL of PDJ (5.0x10–3 M) was diluted with 2.986 
mL of CH3CN to produce 2.0x10–5 M. TEAF (tetraethylam-
monium fluoride, 1x10–4 mol) was dissolved in CH3CN (1,000 
μL) and 3.0 – 33.0 μL of the F– (1x10–1 M) was added to 
2.0x10–5 M of PDJ. UV-vis spectra were measured after 8 s.

Job Plot

Solutions having PDJ (100 μM) and TEAF (100 μM) were 
made. Amounts of PDJ and F– kept steady (3,000 μL) and 
acetonitrile as solvent was employed. UV-vis spectra were 
measured after 8 s. Job plot was drawn by plotting against the 
molar fraction of fluoride under the constant total concentra-
tion (100 μM). A is the absorbance of PDJ after addition of 
F–, and A0 is the absorbance of the free PDJ at 414 nm.

Competitive Test

A PDJ stock (5.0x10-3 M) was provided in 1,000 μL of 
DMSO. In cells containing 3,000 μL of CH3CN, 27 μL 
of other anion stocks (I−, NO2

−, Br−, SCN−, OAc−, Cl−, 
H2PO4

−, N3
−, BzO−, CN− and S2−; 100 mM) was diluted to 

produce 45 equiv. 27 μL of TEAF (1x10-1 M) was added to 
each cell. 12 μL (5.0x10-3 M) of PDJ was added to the cell. 
UV-vis spectra were measured after 8 s.

1H NMR Titration

Five NMR tubes containing PDJ (4.8 mg, 1.4x10–5 mol) 
dissolved in DMSO-d6 (1,400 μL) were provided. Five var-
ied equivalents (0, 0.5, 1, 2 and 5) of TEAF dissolved in 
DMSO-d6 were put into five NMR tubes. 1H NMR spectra 
were measured after 8 s.

Reversible UV–vis Titration

A PDJ stock (5.0x10–3 M) was provided in 1,000 μL of 
DMSO and a F– stock (100 mM) was provided in CH3CN 
(1 mL). 12 μL of PDJ (5x10–3 M) and 27 μL of F– were 
diluted with 2.961 mL of CH3CN. Then, 1.2 – 18.0 μL of 
TFA (5x10–2 M) were added to a mixture of PDJ and F–. 
UV-vis spectra were measured after 8 s.

Theoretical Studies

To apprehend geometry structures and energy transition 
states of PDJ and PDJ with F–, calculations were worked 
through Gaussian 16 program [42]. We used B3LYP and 
DFT calculations for geometry optimization, and applied 
the 6-31G(d,p) basis set to all atoms [43–46]. Imaginary fre-
quencies were not displayed for optimized patterns of PDJ 
and PDJ with F–, indicating that the optimized geometry 
signified local minima. To consider the solvent interaction 

Scheme 1   Synthetic route of PDJ
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to PDJ, IEFPCM model was applied in all DFT calculations 
[47]. PDJ was placed into a small cavity surrounded by a 
dielectric continuum of given solvent CH3CN (ε = 35.688). 

Based on the optimized patterns of PDJ and PDJ with F–, 
TD-DFT calculations were performed and twenty of UV-vis 
transition states were investigated.

Fig. 1   (a) Absorbance varia-
tion of PDJ (2×10–5 M) with 
varied anions (45 equiv). (b) 
Colorimetric response of PDJ 
(2×10–5 M) upon addition of 
varied anions (45 equiv)

Fig. 2   Absorbance variations of PDJ (2×10–5  M) with increment of 
F−

Fig. 3   Determination of the detection limit of PDJ (2×10–5 M) for F− 
on the basis of the calibration curve
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Results and Discussion

PDJ was synthesized by the coupling reaction between 
3-chloro-6-hydrazinylpyridazine and 8-hydroxyjulolidine-
9-carboxaldehyde (Scheme 1). PDJ was affirmed by 1H 
NMR, 13C NMR and ESI-MS (Figs. S1, S2 and S3).

Colorimetric Response of PDJ to F−

Colorimetric probing capabilities of receptor PDJ with var-
ied anions in CH3CN were studied with UV-vis spectroscopy 
(Fig.1a). On addition of anions (45 equiv), PDJ exhibited 
little variation in absorption spectra except CN– and F–. The 
addition of CN– to PDJ displayed that the absorbance at 
414 nm increased slightly. However, its solution color did 
not change. In contrast, the addition of F– to PDJ displayed 
that the absorbance at 414 nm remarkably increased and 
its solution color varied from colorless to yellow (Fig. 1b). 
This outcome suggested that PDJ can be a clearly selective 
colorimetric receptor for F–.

Binding characters of PDJ with fluoride were investigated 
through UV-vis titration (Fig. 2). On the addition of F–, the 
absorbance at 372 nm consistently decreased and that at 414 
nm increased constantly with a saturation at 45 equiv of F–. 
Complete isosbestic point emerged at 388 nm, meaning that 
a species was formed from the interaction of PDJ and F–. 
The bathochromic shift drove us to presume the transition of 
intramolecular charge transfer (ICT) band via deprotonation 
of PDJ by F– [48].

Job plot was executed to comprehend the binding stoi-
chiometry of PDJ and F– (Fig. S4). When the ratio ([F–]/
([PDJ]+[F–])) was 0.5, the value of A-A0 at 424 nm was the 
largest, suggesting that PDJ reacted with F– through a 1:1 
ratio. Binding constant of PDJ with F– was afforded to be 
8.9×10 M–1 (R2 = 0.9914) with Li’s equation (Fig. S5) [49]. 
Detection limit of PDJ for F– was calculated 12.1 μM using 
3σ/K (Fig. 3), which is low compared to those of colorimet-
ric F– sensors (Table S1) [50].

A competing test was applied to extend the sensing ability 
of PDJ (Fig. 4a). S2– inhibited naked-eye sensing of F– by 

Fig. 4   (a) Competitive selectiv-
ity of PDJ (2×10–5 M) to F− (45 
equiv) with various anions 
(45 equiv). (b) Colorimetric 
response of PDJ (2×10–5 M) to 
F− (45 equiv) with other anions 
(45 equiv)
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PDJ. The rest of the anions interfered little with absorb-
ance (10 – 40%) at 414 nm. However, there was no problem 
observing color changes with the naked eye (Fig. 4b). These 
outcomes signified that PDJ may work as a clearly colori-
metric sensor for fluoride with varied competing anions.

The 1H NMR titration further demonstrated the reaction 
between PDJ and fluoride (Fig. 5). The OH proton (H5) and 
the NH proton (H3) of PDJ were displayed, respectively, as 
a singlet at 11.3 ppm and 10.8 ppm. With addition of half 
equiv of F–, the H3 disappeared and the H5 was reduced 
owing to H-bonding between fluoride and H3 and H5. With 
addition of one equiv of F–, the H5 also disappeared. With 
excess addition of F– to PDJ, a new triplet peak at 16.2 ppm 
was displayed, signifying the generation of FHF– species 
through deprotonation of H5 in PDJ by F–. This presumed 
that the negative charge formed from the deprotonation of 
a hydroxyl group of PDJ by fluoride might be delocalized 

through the benzene ring and Schiff base. Deprotonation 
of H5 in PDJ by F– was further affirmed by an ESI-MS test 
(Fig. S6). Negative-ion data of PDJ with F– displayed the 
number of 342.19 (m/z), assignable to [PDJ – H+]– (calcd; 
342.11). Based on Job plot, 1H NMR titrations and ESI-MS, 
the appropriate probing process of F– by PDJ was suggested 
in Scheme 2.

To examine the reversibility of PDJ to F–, TFA was put to 
the solution of PDJ and F–. (Fig. 6). Upon addition of TFA, 
absorbance at 414 nm constantly decreased and that at 372 
nm continually increased. The last UV-visible spectrum was 
same as that of PDJ. On addition of F– again, the absorbance 
of 372 and 414 nm was returned. The variations of absorb-
ance were reversible even in third cycles with the subse-
quently alternating addition of F– and TFA (Fig. S7). These 
results suggested that PDJ can be easily recycled through 
treatment with appropriate reagents like TFA.

Fig. 5   1H NMR titration of PDJ with F−

Scheme 2   Proposed probing mechanism of PDJ for F−
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Theoretical Calculations

With reference to the outcomes of ESI-MS and Job 
plot, optimized structures of PDJ and PDJ with F– were 
investigated (Fig. 7). Dihedral angle of PDJ was 179.632° 
and exhibited a planer structure (Fig. 7a). Dihedral angle of 
PDJ with F– was –2.246° and also showed a planer structure 
(Fig. 7b).

Based on energy-optimized patterns of PDJ and PDJ 
with F–, TD-DFT calculations were performed. For PDJ, the 
big absorption band occurred from the HOMO → LUMO+1 
(372.37 nm, Fig. S8), indicating that ICT occurred from the 
julolidine to the pyridazine. For PDJ with F–, absorption 
band relevance with red-shift stemmed from HOMO → 
LUMO+1 transition (415.96 nm, Fig. S9) and exhibited π 
→ π* transition. In the category of the major excited states 
of PDJ and PDJ-F–, their molecular orbitals and transition 
energies are shown in Fig. S10. With addition of F– to PDJ, 
the decrease of HOMO to LUMO+1 energy gap would be 
caused by the deprotonation of –OH proton and hydrogen 
bonding of –NH proton, which subsequently results in 
bathochromic shift. In addition, the red-shift recorded in the 
UV-visible experiment was well consistent with the calcu-
lated results. Based on diverse spectroscopic analyses and 
calculations, we envisioned the plausible detection process 
of PDJ to F– (Scheme 2).

Conclusion

We synthesized a reversible colorimetric chemosensor PDJ 
for detecting F–. PDJ exhibited selectivity only to F– by 
responding colorless to yellow. The limit of detection for 
F– was 12.1 μM. Especially, PDJ can detect F– with little 
interference in other anions except for S2–. Moreover, PDJ 

Fig. 6   Absorbance variations of PDJ (2×10–5  M) with increment of 
TFA

Fig. 7   Energy-optimized patterns of (a) PDJ and (b) PDJ with F−
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can be simply recycled through treatment with appropriate 
reagents such as TFA. The binding character and sensing 
process of PDJ with F– were demonstrated by Job plot, 1H 
NMR titration, DFT calculation and ESI-MS. We believe 
that a new reversible sensor PDJ may contribute to design-
ing a useful fluoride probe.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10895-​021-​02801-5.
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