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Abstract
A PASE (pot, step, atom, economic) synthetic approach to 5-aryl-6-arylthio-2,2′-bipyridine and 6-arylthio-2,5-diarylpyridine
ligands/fluorophores has been reported via SNH in 6-aryl-5H-1,2,4-triazines/aza-Diels-Alder reaction sequence. In this article,
the “1,2,4-triazine” methodology was successfully used for the synthesis of C6-thiophenol-substituted (2,2′-bi)pyridines as it is
well known that thio-substituted (bi)pyridines and their aza-analogs are of wide practical interest. The photophysical properties of
the obtained compounds are studied and compared with those reported earlier for 6-substituted 2,2′-bipyridines. The influence of
the nature of substituents in the 6-arylthio(bi)pyridine core on the photophysical properties is discussed. It was observed that the
new compounds exhibited promising photophysical properties and could be considered as potential push-pull fluorophores. In
addition, they demonstrated greater Stokes shift values compared to the previously described 6-H, 6-arylamino and 6-
pentafluoro-2,2′-bipyridines and higher fluorescence quantum yields values compare to pentafluorophenyl-substituted 2,2′-
bipyridines. Depending on a nature of (bi)pyridine fluorophore LE (locally excited) and/or ICT (intramolecular charge transfer)
state were prevailing in emission spectra.

Keywords 6-Arylthio(bi)pyridines .1,2,4-Triazine .Metal-free .C-Hfunctionalization . Internalchargetransfer(ICT) .Push-pull
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Introduction

2,2′-Bipyridines are perhaps the earliest [1, 2] and most com-
mon ligands [3–5]. Their fragments are part of bioactive com-
pounds [6] including antitumor ones [7], as well as they are
promising fluorophores [8–10]. To ensure acceptable
photophysical properties, namely, long-wavelength absorp-
tion and emission maxima, the presence of an extended π-
system in such bipyridines is important.

The main object of this work is arylthio-functionalized de-
rivatives of 5-aryl-2,2′-bipyridines which showed promising
photophysical properties [11]. It was demonstrated that the
photophysical properties of these fluorophores can be tuned
bymeans of synthetic modification. In particular, C5-aromatic
substituents can be modified by means of the introduction of
various functionali ties, including halogen atoms,
phenylethynyl moieties or extra aromatic rings, including
annelated ones [6]. The edge pyridine ring of the bipyridine
core could also be modified by the introduction of
(het)aromatic residues or annelation of aromatic rings
[12–14]. Modification of the central pyridine ring may also
be carried out. In particular, the possibilities of introducing
various fragments, such as arenes, phenylethynes [15] as well
as the annelation of extra aromatic rings [11] were reported.
Additionally, we have demonstrated a possibility of the mod-
ification of the central pyridine via so called “1,2,4-triazine
methodology” by means of the pre-modification of 1,2,4-tri-
azine precursors by introducing the residues of anilines
[16–18], aliphatic alcohols [19], and pentafluorobenzene
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[20] into the C5 position and the following aza-Diels-Alder
reaction to afford the C6-substituted 2,2′-bipyridines. In this
article, in continuation our research, we wish to report a con-
venient synthetic approach towards 5-aryl-6-arylthio-2,2′-
bipyridine and 6-arylthio-2,5-diarylpyridine fluorophores as
well as the studies of photophysical properties of these
compounds.

Thio-substituted (bi)pyridines and their aza-analogs are of
wide practical interest. For instance thiopyrimidines were re-
ported as GluR5 antagonists [21]. 3-(Perfluoro)arylthio-4,4′-
bipyridines were proposed as chalcogen and π-hole donors for
the stereoselective HPLC separation purposes [22]. C6-
Alkylthio-2,2′-bipyridines were reported as ligands for
Сu(II) complexes for light-emitting electrochemical cells [23].

A relatively limited number of synthetic approaches to
thio-substituted (bi)pyridines has been reported to date.
Namely, the heterocyclization reaction under microwave irra-
diation can be used [24]. The ipso-substitution of halogen
atom in the (bi)pyridine core by the thiophenol residue was
also reported, in particular, bromine atom in a pressure vessel
conditions [21], the substitution of bromine atom in the pres-
ence of sodium hydride [23] or chlorine atom in the presence
of alkali [25]. In addition, the Pd-catalyzed cross-coupling
between 6-bromobipyridine and thiophenol was reported
[26]. Finally, thio(het)arene-substituted-2,2′-bipyridines were
obtained via 1,2,4-triazine precursors by the ipso-substitution
of chlorine atom(s) by thio(het)arene residues and followed by
aza-Diels-Alder reaction sequence [27–29].

Scheme 1 Reagents and conditions: i) 5a-c (R1 = H (a), 3-OMe (b), 4-OMe (c)) THF, CF3COOH, reflux, 30 min, then BzCl, reflux, 30 min; ii) 2,5-
norbornadiene, 1,2-dichlorobenzene, 215 °C, 20 h; iv) 1-morpholinocyclopentene, neat, reflux, 20 h.

Fig. 1 Chemical structures of
fluorophores 3a-d, 4a-b
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In terms of the above reported “1,2,4-triazine” methodolo-
gy, it is worthy to mention a more convenient approach for
obtaining multifunctionalized 2,2′-bipyridines via the nucleo-
philic substitution of hydrogen atom (SNH-reaction) in 1,2,4-
triazines and aza-Diels-Alder reaction sequence. Such meth-
odology has previously been successfully used for the synthe-
sis of (bi)pyridines substituted with residues of carboranes
[30], acetylenes [31], polynuclear aromatic hydrocarbons
[32], coumarins [33], pentafluorobenzene [20], C-H active
compounds [34], alcohols [19] and even hydroxyl-group as
a way to obtain 2,2′-bipyridin-6-ones [35]. In this article, the

“1,2,4-triazine” methodology was successfully used for the
synthesis of C6-thiophenol-substituted (2,2′-bi)pyridines.

Results and Discussion

To synthesize the 5-arylthio-3-(2-pyridyl)-1,2,4-triazines the
previously reported [36] procedure was initially used via the
deoxygenative nucleophilic substitution of hydrogen in 5-H-
1,2,4-triazine-4-oxides. However, in case of 3-(2-pyridyl)-
1,2,4-triazine-4-oxides 1a-c the followingmethod was follow-
ed: namely by a short-time refluxing in acetone in the presence
of benzoyl chloride which led to the formation of a mixture of
products, probably, due to the reaction of thiophenol both as
S- and C-nucleophile. While the same reaction in THF instead
of acetone resulted in the formation of the target products 2a-c
in up to 78% yields. The same conditions were used for
obtaining 5-arylthio-3-(4-fluorophenyl)-1,2,4-triazine 2d,
and for obtaining compounds 2e-h the previously described
[36] conditions were successfully used.

Further aza-Diels-Alder reaction between the compounds 2
and 2,5-norbornadiene in 1,2-dichlorobenzene in a pressure
vessel was carried out as described earlier [37–39] which
afforded the target 2,2′-bipyridines 3a-d in 75–82% yields
(Scheme 1, Fig. 1). Cyclopentene-fused bipyridines 4a-bwere
prepared via the solvent-free reaction [40] between the corre-
sponding 1,2,4-triazines 2 and 1-morpholinocyclopentene un-
der neat conditions. The purification of the obtained products
was performed by means of flash chromatography.

In a similar way thiophenol-substituted pyridines 3e-h
were obtained for studying their photophysical properties with

Scheme 2 Reagents and conditions: i) 5a, c (R2 = H (a), OMe (c)) THF, CF3COOH, reflux, 30 min, then BzCl, reflux, 30 min; ii) 5a, d (R2 = H (a), OH
(d)), acetone, CF3COOH, reflux, 5 min, then BzCl, reflux, 10 min; iii) 2,5-norbornadiene, 1,2-dichlorobenzene, 215 °C, 20 h.

Fig. 2 Absorption spectra (2 × 10−5 M) of the fluorophores 3–4 in
acetonitrile
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respect to thiophenol-substituted bipyridines 3a-d, 4a-b
(Scheme 2).

Photophysical Properties

UV-vis and Photoluminescence (PL) Properties

Spectroscopic measurements for the new fluorophores 3–4
were performed in acetonitrile as an aprotic solvent with an
average value of the orientational polarizability (Δf = 0.3).
This eliminates the possibility of additional distortion of the
results due to protonation. In addition, this reduces the possi-
bility of a bathochromic shift of the absorption and emission
maxima (since fluorophores 3–4 as polar compounds) to ex-
hibit a high sensitivity to the polarity of the solvent. Indeed, it
is known that upon increasing the solvent polarity the effect of

reducing the energy of the excited state is enhanced. That
leads radiation at lower energies or, in other words, in a longer
wavelength region of a spectra [41]. Absolute quantum yields
were measured using the integrating sphere of a Horiba-
Fluoromax-4 spectrofluorimeter in CH3CN and acetonitrile.

The non-normalized absorption and emission spectra of
ligands 3–4 are shown in Fig. 2, 3 to carry out a comparative
analysis of the results.

All absorption spectra are similar and contain two broad
absorption bands in the near UV region with λmax ~ 280 nm
and λmax ~ 325 nm, which corresponds to S0→ S1, S0→ S2
electronic transitions. Characteristic emission spectra of the
ligands 3c and 3d are well structured and contain two bands
related to both the locally excited (LE) state (λmax = 372 nm
(3d), λmax = 364 nm (3c)) and the ICT state (λmax = 443 nm
(3d), λmax = 420 nm (3c)). In this case, the Stokes shift values

Fig. 3 Emission spectra (10−5 M)
of the fluorophores 3–4 in
acetonitrile

Fig. 4 Emission spectra (left) of the fluorophore 3a throughout the range of various solvents and Lippert-Mataga plot (right) with two different excitation
states (LE-state and ICT-state for 3a)
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are in the range of 40–50 nm, which leads to the conclusion
that the state of fluorophores 3c and 3d predominates in a LE
state (the group of the LE state). At the same time, for com-
pounds 4a, 4b, 3a and 3b, the emission spectra are presented
as by a continuous unstructured band with a maximum wave-
length of 420–440 nm and with an average Stokes shift of
about 100 nm. Such characteristics make it possible to attri-
bute them to the group with the predominant intramolecular
charge transfer (ICT state group).

As for the fluorescence quantum yields for the compounds
3–4, their values were up to 10.6%, and the maximum value
was observed for the compound 4a. Moreover, the introduc-
tion of a cyclopentene fragment mostly does not affect the
fluorescence quantum yield values. Thus, a comparison of
the quantum yields for the related compounds 4a and 3b, as
well as 4b and 3c shows no significant difference.

It turned out that the introduction of a condensed
cyclopentene fragment into the central pyridine ring in com-
pounds 4 affected the π-conjugation indirectly, i.e., the ab-
sorption maxima remained unchanged. But the molar extinc-
tion coefficient decreased, while the lifetime of the excited
state increased on average by 2.5–3 times. For example, for
compound 4a εM = 7500M−1 cm−1, τ = 7.2 ns, while for com-
pound 3b εM = 9900 M−1 cm−1, τ = 2.7 ns.

LE-State Vs ICT-State for Fluorophores; Solvatochromic
Properties

To clarify the nature of intramolecular charge transfer in the
excited state and the solvent effect on the fluorescent behavior
of chromophores, the study of the general effect of solvents
for several fluorophores 3–4 was carried out (Table 2).

Fig. 5 Emission spectra (left) of the fluorophore 3с only in the non- and low-polarity regions (Δf < 0,2) and Lippert-Mataga plot (right) with one
excitation state (LE-state)

Fig. 6 Emission spectra (left) of the fluorophore 4а in various solvents and Lippert-Mataga plot (right)
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Table 1 The photophysical properties of new fluorophores 3a-d and
4a-b and previously reported 5-aryl-2,2′-bipyridines. a Absorption spectra
weremeasured at rt. in CH3CN in a range from 220 to 350 nm; b Emission
spectra weremeasured at rt. in CH3CN;

c Photoluminescence lifetimes (τ)

of fluorophores were measured at rt. in CH3CN;
d Chi squared (χ2) values

obtained from fitting of the emission decays (λex = 310 nm) at λem, max

nm; e Absolute quantum yields were measured in the Integrating Sphere
by using the Horiba-Fluoromax-4 at rt. in CH3CN.

5 225, 253, 289,

323

364, 420 0,77 41 2,7 1,05 9.1 (323 nm)

6 232, 285, 325 372, 418, 443 0,58 47 2,0 1,11 2.3 (325 nm)

7

Ref. [39]

233, 292 302, 310, 316, 

361, 379, 399

10 2.0

8

Ref. [17]

300 351 51 5.4
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In this case, a number of solvents was selected, and the
value of the orientation polarizability Δf of the subsequent
solvent in the series differed from the previous one by no
more than 0.05 units. The largest Stokes shifts of 117 nm
for compound 4a were observed in highly polar aprotic
solvent DMF and of 114 nm for the compound 4b in a
protic solvent methanol. Solvatochromic shift of more than
100 nm usually originates from the redistribution of inter-
nal charge transfer in the excited state and a change in the
difference between the dipole moments in the ground and

excited states of the fluorophore [41]. In order to prove this
fact mathematically, the dependence of the Stokes shift
values in cm−1 versus the orientation polarizability of sol-
vents were plotted in accordance with the Lippert-Mataga
equation.

It turned out that, for fluorophores 3a and 3b, the Lippert-
Mataga plots do not obey a linear relationship over the whole
range of solvent polarity, and each plot is represented by two
independent approximating lines, which indicates the exis-
tence of two different excited states (Fig. 4).

Table 1 (continued)

9

Ref. [17]

295, 356 445 89 48.3

10

Ref. [20]

290 312, 319, 366,

384, 404

22 <0.1

11

Ref. [11]

298 357 59 3.2

12

Ref. [20]

292 303, 310, 318,

359, 377, 396

11 1.0

13

Ref. [17]

358 454 96 42,0

14

Ref. [11]

302 360 58 17,0

15

Ref. [20]

293 304, 312, 319,

363, 382, 402

11 2,8
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Table 2 Spectroscopic data of fluorophores 3–4

3a λabs max, nm λem max, nm Stokes shift, cm−1

Cyclohexane 244, 287, 329 395 5079

Toluene 330 406 5672

1,4-Dioxane 289, 327 409 6131

Chloroform 285, 329 416 6357

Ethylacetate 284, 237 411 6250

THF 240, 286, 328 414 6333

DCM 253, 286, 328 418 6564

DMSO 286, 329 433 7300

Acetonitrile 255, 276, 325 423 7128

MeOH 256, 326 435 7686

3b λabs max, nm λem max, nm Stokes shift, cm−1

Cyclohexane 245, 288, 330 394 4922

Toluene 330 402 5427

1,4-Dioxane 289, 327 407 6011

Chloroform 289, 329 414 6240

Ethylacetate 286, 325 407 6199

THF 225, 288, 328 409 6038

DCM 242, 288, 327 413 6368

DMSO 289, 328 428 7123

Acetonitrile 274, 326 421 6922

MeOH 253, 286, 326 370 (sh), 427 7256

3c λabs max, nm λem max, nm Stokes shift, cm−1

n-Heptane 327 391 5005

Toluene 328 400 5488

1,4-Dioxane 291, 326 400 5674

Chlorobenzene 329 405 5704

Chloroform 292, 328 406 5857

3d λabs max, nm λem max, nm Stokes shift, cm−1

n-Heptane 320 352 2841

Toluene 323 358 3027

1,4-Dioxane 289, 323 363 3411

Chlorobenzene 321 363 3604

Chloroform 286, 327 373 3771

4a λabs max, nm λem max, nm Stokes shift, cm−1

Cyclohexane 253, 286, 330 407 5733

Toluene 327 416 6543

1,4-Dioxane 284, 327 423 6940

Chloroform 327 421 6828

Ethyl acetate 327 423 6940

THF 241, 273, 328 426 7014

DCM 242, 326 427 7256

DMSO 259, 328 445 8016

Acetonitrile 274, 327 434 7540

MeOH 274, 322 424 7471

4b λabs max, nm λem max, nm Stokes shift, cm−1

Cyclohexane 221, 253, 286, 331 400 5211

Toluene 327 406 5950

1,4-Dioxane 284, 325 412 6497

Chloroform 284, 325 417 6788
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The transition dipole moment (Δμ) for the compound 3а
was calculated from the slope of the Lippert-Mataga plot and
amounted to 8.6D in the region of low and medium polar
solvents (Δf <0.2) and 13.0D in the region of polar solvents
(Δf > 0.2). Approximately similar values were obtained for

3b (8.9D and 12.1D). Thus, high magnitude of the dipole
moment (Δμ > 10 D, at R2 > 0.95) for the fluorophores 3a-
3b in the region of highly polar solvents indicate a clear pre-
dominance of the ICT-state. In this case, the nonlinear rela-
tionship between the Stokes shift values and the solvent

Table 2 (continued)

3a λabs max, nm λem max, nm Stokes shift, cm−1

Ethyl acetate 282, 324 413 6651

THF 225, 281, 329 415 6299

DCM 228, 283, 324 418 6941

DMSO 284, 325 433 7675

Acetonitrile 250, 282, 324 424 7280

MeOH 279, 314 428 8483

Table 3. Photophysical characteristics of 2,5-diaryl-6-arylthio-
pyridines 3e-h. a Absorption spectra were measured at rt. in CH3CN in
a range from 220 to 350 nm; b Emission spectra were measured at rt. in

CH3CN;
c Absolute quantum yields were measured in the Integrating

Sphere by using the Horiba-Fluoromax-4 at rt. in CH3CN.

4 253, 322 458 0.1
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polarity may indicate an additional intercrossed excited state
of these fluorophores. [42]

On the contrary, the solvatochromic shift of the emission
maxima for the compounds 3c and 3d was observed only in
the non- and low-polarity regions. The high degree of the
approximation of both Lippert-Mataga plots (R2 > 0.95) made
it possible to determine the difference in dipole moments,
which was 4.9D and 7.2D, respectively, which can clearly
be attributed to the prevailing LE-state (Fig. 5) and also see
the Supplementary Information for compound 3d.

Despite the regular solvatochromic shift on going from
nonpolar cyclohexane to strongly polar DMF, for the com-
pounds 4a and 4b, the permanent dipole moments were
8.3D and 9.7D, respectively, taking into account the low sec-
ond order approximation reliability (R2 ~ 0.8). At the same
time, it was not possible to separate two sections with high
approximations in the Lippert-Matag plots. Thus, for the com-
pounds 4a and 4b, the low linear relationship between the
Stokes shift values and the solvent polarity, along with low
values of transition dipole moment (Δμ < 10D), may indicate
a large contribution of both the LE-state in the solvents of low
polarity and the ICT-state in the solvents of high polarity due
to the hampered π-conjugation caused by the presence of
pyridine-fused cyclopentane fragments (Fig. 6).

We have compared the photophysical properties of new
fluorophores with some of their analogs of the 5-aryl-2,2′-
bipyridine series having different substituents at position C6.
Thus, the introduction of the arylthio group at the position of
C6 changes dramatically its photophysical properties of the
designed fluorophore in the direction of enhancing “push-
pull” properties compared to 6-unsubstituted analogues with
or without cyclopentane fragment (Table 1, entry 8) (Table 1,
entries 11 and 14). At the same time, the degree of π-
conjugation increased significantly, which led to a significant
bathochromic shift of the absorption and emission spectra, an
increase in the Stokes shift by 1.5–2 times, and also an in-
crease, in some cases, the fluorescence quantum yields. Based
on all above, one can conclude that in new chromophores the
ICT state is prevailing.

A comparison of the new compounds 3 and 4 with their
arylamine-substituted analogs (Table 1, entries 9 and 13)
showed that the replacement of the aniline residue with a
thiophenol fragment in some cases causes an increase in the

Stokes shift, for example, from 89 to 110 nm (entries 1 and 9).
At the same time, due to the heavy-atom effect which in-
creases the rate of intersystem crossing [43] the new
fluorophores 3 and 4 have lower fluorescence quantum yield
values compare to 6-arylamino-substituted 2,2′-bipyridines
(2–10% vs up to 48%).

Compare to pentafluorophenyl-substituted 2,2′-bipyridines
(Table 1, entries 10, 12, and 15) compounds 3–4 exhibited
much higher fluorescence. Thus, the fluorescence quantum
yields values for pentafluorophenyl-substituted 2,2′-
bipyridines were not exceeding 1%, while for the compounds
3–4 the quantum yield value was observed as high as 10%.
The Stokes shift values for pentafluorophenyl-substituted
2,2′-bipyridines were also, as a rule, noticeably lower.

Along with N^N ligands, a photophysical studies of
thiophenol-substituted C^N ligands 3e-h were carried out
(Scheme 2, Table 3). These compounds demonstrated fluores-
cence quantum yields values as low as 2.3%, and this is less
than the above mentioned N^N ligands 4a-b, 3a-d. 4-
Fluorophenyl-substituted pyridines and 5-(4-fluorophenyl)
substituted bipyridines are of particular interest as isoelectron-
ic analogs (Fig. 7).

It is worthy to mention that recently a detailed analysis of
the energies of intermolecular interactions and supramolecular
a r c h i t e c t u r e s o f py r i d i n e and f l uo r obenz ene /
pentafluorobenzene was carried out [44]. It was shown that
the pyridine type nitrogen atom and fluorine atoms as substit-
uents in the aromatic ring induce a molecular arrangement of
one type in the solid state which manifested the isotypic trans-
formation principle. It was logical that the replacement of the
fluorophenyl group in compound 3e with the 2-pyridyl group
in fluorophore 3d did not actually lead to noticeable changes
in the photophysical properties of the ligands. On the other
hand, the photophysical properties of 6-thiophenol-substituted
pyridines were also differ from fluorophenyl-substituted C^N
and N^N ligands, including 6-pentafluorophenyl-substituted
2,2′-bipyridine (Table 1, entry 7), whose photophysical prop-
erties are very similar to 2,2′:6,2″-terpyridine analogue
(terpy).

In conclusion, we have reported a PASE approach to 6-
arylthio-2,5-diarylpyridines and 5-aryl-6-arylthio-2,2′-
bipyridines, including cyclopentene-fused bipyridines. New
compounds exhibited promising photophysical properties

Fig. 7 A number of 4-fluorophenyl-substituted pyridines and 5-(4-fluorophenyl) substituted bipyridines and terpy
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and could be considered as potential push-pull fluorophores.
In particular, they demonstrated greater Stokes shift values
compared to the previously described 6-H, 6-arylamino and
6-pentafluoro-2,2′-bipyridines and higher fluorescence quan-
tum yields values compare to pentafluorophenyl-substituted
2,2′-bipyridines. Depending on a nature of (bi)pyridine
fluorophore LE and/or ICT state were prevailing in emission
spectra.
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material available at https://doi.org/10.1007/s10895-021-02714-3.
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