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Abstract
Carbon quantum dots (CQD) as the result of their exceptional physical and chemical properties show tremendous potential in
various field of applications like cell imaging and doping of CQDs with elements like nitrogen and phosphorous increase its
fluorescence property. Herein, we have synthesized fluorescent nitrogen and phosphorous codoped carbon quantum dots
(NPCQDs) via a one-pot hydrothermal method. Sesame oil, L-Aspartic acid, and phosphoric acid were used as carbon, nitrogen,
and phosphorous sources, respectively. UV-Vis spectrophotometer, fluorescence spectrometer, Fourier transform infrared spec-
trometer (FTIR), X-ray diffraction spectrometer (XRD), field emission scanning microscopy (FESEM), and transmission elec-
tron microscopy (TEM) were employed to characterize the synthesized fluorescent NPCQDs. The as-synthesized NPCQDs with
a particle size of 4.7 nm possess excellent water solubility, high fluorescence with high quantum yield (46%), high ionic stability,
and resistance to photobleaching. MTT assay indicated the biocompatibility of NPCQDs and it was used for multicolor live-cell
imaging. Besides, the NPCQDs show an effective probe of iron ions (Fe3+) in an aqueous solution with a high degree of
sensitivity and selectivity. The DPPH assay showed its good antioxidant activity.
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Introduction

Iron (Fe3+) is one of the essential trace elements in living
organisms since it has an important role in enzyme catalysis,
cellular metabolism, a cofactor in enzyme-based reactions,
and oxygen transport in hemoglobin [1–6]. The presence of
Fe3+ above the maximum permissible level or in deficiency
can disturb the cellular homeostasis, and result in various dis-
eases, such as anemia, arthritis, intelligence decline, heart

failure, diabetes, and cancer [7–12]. Moreover, the presence
of excess Fe3+ ions in water confronts the water quality by
introducing bad odor and color. Therefore, detecting Fe3+ in
living organisms and water is important from a health perspec-
tive. In recent time, detection of Fe3+ ion level using carbon
quantum dots based materials as the fluorescent probe has got
intense attention [13–16].

Since its accidental discovery in 2004 by Xu et al. [17] at
the time of purifying single-walled carbon nanotubes
(SWCNTs) fabricated by arc-discharge methods, carbon
quantum dots has been inspiring intensive research efforts.
Sun et al. have reported the planned synthesis of CQD for
the first time in 2006 [18, 19]. Since then several research
articles reported showing the fascinating properties of dis-
crete, quasi-spherical CQDs with sizes below 10 nm
[20–22]. CQDs can be amorphous or nanocrystalline with
sp2 carbon clusters and some diamond-like structures formed
by sp3 carbons [23, 24]. CQDs are rich with carboxyl and
hydroxyl functional groups at their surface, thus imparting
them with excellent water solubility and the suitability for
subsequent functionalization with various organic, polymeric,
inorganic, or biological species [20, 22, 25]. The presence of
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the surface states greatly modifies the optical properties of
CQDs. Such surface states can be originated from the pres-
ence of vacancies, impurities, dopants, and chemisorbed spe-
cies [26]. The optical properties can be effectively improved
as CQDs doped with heteroatoms due to the incorporation of
the element into the nanocrystal core and/or effective surface
passivation [27, 28]. The most common doping atoms are
nitrogen [29], sulfur [30], and other elements like boron, phos-
phorous, copper, and gadolinium have also been used
[31–33].

Hydrothermal method is one of the best method for syn-
thesis of fluorescent CQDs using different precursors [34, 35].
Nowadays, several researchers have strived for the prepara-
tion of fluorescent CDs using facile and less harmful organic
chemicals. However, the synthesis of CQDs from natural and
cheaply available precursors have shown an indispensable for
the sustainability for practical applications. Various natural
products such as orange juice [36], Saccharum officinarum
juice [37], protein [38], carbohydrate [39], and others were
used as a precursor for the preparation of photoluminescent
CQDs. The quantum yield and fluorescent properties of CQDs
are varied with different sources.

Hence, this study is intended to synthesis fluorescent nitro-
gen and phosphorous co-doped carbon quantum dots
(NPCQDs) using easily available sesame oil as carbon source,
L-Aspartic acid as nitrogen source, and diluted phosphoric
acid as phosphorous source. The synthesized NPCQDs were
characterized and used for sensing of iron (III) ions in solution
and live-cell imaging. Besides, the antioxidant activity was
investigated using DPPH assay method, and the result showed
that the prepared NPCQD is an effective antioxidant.

Experimental Section

Chemicals and Reagents

Sesame oil was purchased from the local store nearby Adama
Science and Technology University, Ethiopia, and NPCQDs
were synthesized using sesame oil as carbon source through
the hydrothermal method. L-Aspartic acid was obtained from
HiMedia Laboratories, Mumbai, India. Orthophosphoric acid
was obtained from Merck life science, Mumbai, India.
Throughout the study, analytical grade reagents were used
without any purification. The deionized water was used
throughout experiment.

Preparation of NPCQDs

In a typical procedure, 15 mL of clear sesame oil, and 0.20 g of
L-Aspartic acid dissolved in 10mL of 0.1MH3PO4were taken
in 100 mL Teflon-lined stainless steel autoclave. The autoclave
was placed in a furnace at 200 °C for 8 h. The black paste was

collected after it cools down to room temperature then dis-
solved in 25 mL of water. The brown solution was centrifuged
for 15 min at 3000 RPM to remove insoluble matter and then
centrifuged at 12000 RPM for 20 min repeatedly three times to
remove larger size particles. The resulting NPCQDs solution
was kept in a refrigerator at 4 °C for further use.

Characterizations

The morphology and microstructures of the synthesized
NPCQDs were determined by TEM and high-resolution trans-
mission electron microscopy (HRTEM, Jeol/JEM 2100,
LaB6) operated at 200 kV. Elemental composition of the sam-
ples were determined using field emission scanning electron
microscopy (FESEM, Zeiss Ultra-60) equipped with X-ray
energy dispersive spectroscopy (EDS). XRD pattern were re-
corded using PANalytical X’pert pro diffractometer using Cu-
kα1 radiation (45 kV, 1.54056 Å; scan rate of 0.02 degree/s).
FTIR spectra were obtained over the range of 500–4000 cm−1

using FTIR Spectrometer (Bruker). Fluorescence properties of
the samples we re measu red wi th F luo romax-4
Spectrofluorometer (HORIBA Scientific). UV–Vis absorp-
tion spectra were obtained using a UNICAM UV 500
(Thermo Electron Corporation).

Quantum Yield

Quinine sulfate in 0.1 M sulphuric acid with the quantum
yield of 54% at 365 nm was used as a reference to determine
quantum yield of the prepared fluorescent NPCQDs following
the reported protocol [40]. The UV−Vis absorption at 365 nm
and PL emission spectra after excitation at 365 nm of
NPCQDs and reference was measured, respectively where
absorbence were kept under 0.05 to minimize the re-
absorption effects,.

Fig. 1 (Solid line) UV-Vis absorption spectrum of NPCQDs (inset
NPCQDs solution (a) under daylight (b) under ultraviolet radiation) and
(Broken line) Emission spectra at 360 nm Excitation
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QYsamp ¼ QYref Isamp=Iref
� �

Aref=Asamp

� �
nsamp

2=nref
2

� � ð1Þ

where QYsamp and QYref are quantum yield of sample and
reference, Isamp and Iref are emission intensity, Asamp and
Aref are UV-Vis absorbance, nsamp and nref are refractive index
of sample and reference, respectively.

Quantitative Determination of Iron (III) Ions and
Selectivity Study

For the quantitative determination of iron (III) ions (Fe3+),
NPCQDs solution with UV-Vis absorbance of 0.04 was pre-
pared in a pH 7.4 phosphate buffer solution. 3 mL of this
solution was taken in vials and mixed with 200 μL of different
concentrations of Fe3+ solution then aged for 5 min to attain
equilibration. The FL spectra of the solutions were recorded.
The selectivity for a Fe3+ was confirmed by adding other metal
ions solutions (Na+, K+, Ag+, Mg2+, Cu2+, Ni2+, Ca2+, Cd2+,
Zn2+, Fe2+, Ba2+, Pb2+, Al3+) instead of Fe3+ in a similar way.

Cytotoxicity Study

Human breast adenocarcinoma (MCF7) cell was used as
a strain to evaluate invitro cytotoxicity of NPCQDs

following MTT Assay method [13]. The cells were cul-
tured in 96-well tissue culture plates at a density of
1×104 cells per well following the same procedure used
by Aschalew et al. [41]. After adhering, the cells were
incubated with a medium containing different doses of
NPCQDS for 24 h. The medium from each well was
removed after incubation and then the cells were
washed using phosphate buffered solution. A fresh me-
dium containing 10 μL of 0.5 mg mL−1 solution of
MTT was added to each well and incubated for 4 h
and then the medium was replaced with DMSO
(150 μL) followed by shaking for 15 min to dissolve
the formazan crystals. Multimode microplate reader
(Biotek, Cytation3) was used to record the absorbance
of each well at 570 nm. The untreated cells were used
as controls for calculating the relative percentage of cell
viability from the following equation:

%Cell viability

¼ A570 in treated sample=A570 in control sampleð Þ
� 100% ð2Þ

Fig. 2 a Fluorescence emission spectra with excitation wavelengths from
310 nm to 420 nm of NPCQDs, b Up-converted Fluorescence emission
spectra of NPCQDs at excitation wavelengths from 600 nm to 800 nm, c

3D Fluorescence Spectra of NPCQDs (Excitation with radiation from
300 nm to 400 nm and Corresponding Emission, (d) Excitation and
emission contour map of NPCQDs
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Multicolor Cell Imaging

Fluorescent imaging ability of NPCQDs was tested using
MCF7 Cells [42]. The cells were seeded in 6-well culture
plates at 105 cells per well density in DMEM containing
10% Fetal bovine serum (FBS) and incubated for 24 h at
37 °C and 5% CO2 following the same procedure used by
Aschalew et al. [41]. Then the medium was replaced with a
fresh medium containing 0.025 mg mL−1 NPCQDs and fur-
ther incubated for 6 h. After that, the cells were washed three
times with PBS to remove extracellular NPCQDs, fixed with
paraformaldehyde (4%), and mounted using glycerol (50%).
Zeiss LSM 510Meta confocal Microscopy was used to record
fluorescent images at laser excitations of 405, 488, and
561 nm.

Antioxidant Activity of NPCQDs

Antioxidant activity of NPCQDs was assessed by 2, 2-
diphenyl-1-picrylhydrazyl (DPPH) assay methods with some
modification [43, 44]. In a typical process, 2 mL (100 μM) of
DPPH prepared by using ethanol as solvent was taken, and
1 mL of different concentrations of NPCQDs solution were
mixed and reaction mixture sonicated and kept in dark for 1 h.

Time-dependent radical scavenging of NPCQDs was tested
by mixing 2 mL (100 μM) of DPPH solution and 1 mL of
100 μg mL−1 of NPCQDs solution and then UV-Vis absor-
bance of mixture measured after different time of reaction.
The deep violet color of DPPH solution gradually changed
to pale yellow in the presence of NPCQDs. This property
allows visual monitoring of the reaction, and UV-Vis absor-
bance of reaction solution measured and the radicals scaveng-
ing efficiency of NPCQDs was determined from the change in
the percentage of absorption at 517 nm. DPPH scavenging
efficiency is calculated using the following equation:

Radical Scavenging %ð Þ ¼ 100x Ac–Asð Þ=Ac ð3Þ
Where Ac and As are the absorbances of control and sample at
517 nm, respectively.

Result and Discussions

Characterization

To explore the optical properties, the absorption and fluores-
cence emission spectra were recorded and as it is depicted in
Fig. 1 (solid line), the UV-Vis absorption spectra show two

Fig. 3 a Fluorescence intensity of NPCQDs at excitation wavelength of 365 nm indicating ionic strength with NaCl solution of concentration 0.25M to
2 M, b pH effect in acidic media with pH of 7 to 2, c pH effect in basic media with pH of 7 to 12, d stability after irradiation at different time

766 J Fluoresc (2021) 31:763–774



peaks at 353 nm and shoulder peak at 251 nm, which corre-
spond to n-π* transitions of C=O, C-N and C-P bonds and
π-π* transition of C=C bonds, respectively [45, 46]. As
shown in Fig. 1 inset (a) the solution has yellowish-brown
color under daylight and it became bright green under long
wavelength ultraviolet irradiation indicating the green fluores-
cence of the synthesized carbon quantum dots (Fig. 1 inset b).
The excitation-emission spectra of the synthesized NPCQDs
is indicated in Fig. 1 (broken line) which shows the fluores-
cence at maximum emission wavelength of 479 nm after ex-
citation at 370 nm. The narrow size distribution of the pre-
pared NPCQDs can be revealed from full-width at half max-
imum (FWHM) value of 86 nm [21, 47].

A detailed fluorescence study was carried out by exciting
the as-synthesized NPCQDs at different excitation wave-
lengths. As shown in Fig. 2, the sample shown strong fluores-
cence with symmetrical peaks and emission wavelength were
not depending on the excitation wavelength. However, the
emission intensity increased as excitation wavelength in-
creased from 310 nm to 370 nm, and maximum emission
intensity obtained at excitation wavelength of 370 nm

(Fig. 2a). Further increase in excitation wavelengths resulted
in decrease of emission intensity. This variation in emission
intensity with excitation wavelegnth is because of different
energy levels incorporated into the NPCQDs by different sur-
face groups such as C-O, C=O, O=P-OH, C-N-H and O=C-
OH and it indicated that the fluorescence originated from
quantum confinement effect [48]. In addition to down-
converted fluorescence emission, as shown in Fig. 2b,
NPCQDs show up-converted fluorescence emission with
emission wavelength at 468 nm when excited at higher wave-
length radiation. 3D fluorescence emission spectra of the
NPCQDs with excitation wavelengths varying from 300 nm
to 400 nm in 4 nm increments is shown in Fig. 2c and the
result indicated symmetrical emission peaks. Excitation and
emission contour map of NPCQDs (Fig. 2d) depicted
multicolour emission. The fluorescence emission of
NPCQDs may be due to π-plasmon absorption in the core
carbon nanoparticles and it may also be affected by surface
chemistry of the as synthesized nanomaterials [49, 50]. The
analysis result of the as synthesized NPCQDs has shown high
FL quantum yield of about 46% which is relatively high

Fig. 4 a, b and c Representative TEM d HRTEM images, e SAED and f particle size distribution histogram of NPCQDs
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compared to carbon quantum dots derived from natural prod-
ucts [51–53].

Fluorescence stability of the synthesized NPCQDs toward
ionic strength was studied by changing concentration of sodi-
um chloride (0.25M to 2MNaCl) and the result indicated that
concentration of salt has no significant effect on fluorescence
of NPCQDs (Fig. 3a). Changing pH of NPCQDs changed the
fluorescence intensity of the NPCQDs but has no effect on
emission wavelength. As pH decreased from 7 to 2, the FL
intensity increased (Fig. 3b) and as pH increased from 7 to 12,
the FL intensity decreased (Fig. 3c) and the change in emis-
sion intensity may be due to protonation and deprotonation of
the NPCQDs at different media [48]. Moreover, the NPCQDs
have revealed high photostability in that neither no shift in
emission wavelength nor no significant reduction in FL inten-
sity as the material irradiated with ultraviolet radiation from
1 min to 24 h (Fig. 3d) and after three months storage there is
no change in fluorescence intensity.

Morphology and structural properties of NPCQDs were
determined using TEM and HRTEM (Fig. 4a-e). ImageJ soft-
ware was used to calculate the particle size of the as prepared
NPCQDs from TEM image and the size distributed in diam-
eter range of 2–8 nm with an average of 4.7 nm based on
statistical analysis of about 100 dots (histogram in Fig. 4f).
The holes in the selected area electron diffraction (SAED)

(Fig. 4e) indicated the particle formation and the graphitic
amorphous nature of the NPCQDs. The as synthesised
NPCQDs exhibit a lattice spacing of 0.25 nm (Fig. 4d) which
is close to the (102) facet of sp2 graphitic carbon [54, 55]. X-
ray diffraction (XRD) patterns (Fig. 5b) showed a broad and
intense diffraction peak centered at 2 = 230 and weak peak at
2 = 420 which assigned to (002) and (101) diffraction pattern
of graphitic carbon which indicated the amorphous nature of
the NPCQDs and is in accordance with previous structure
analysis on disordered amorphous graphitic carbon quantum
dots [56].

Fourier transform infrared spectroscopy (FTIR) analysis
was used to get information about the surface functional group
of NPCQDs. The FTIR spectrum depicted in Fig. 5a con-
firmed the presence of different functional groups in the syn-
thesized NPCQDs. There is a broad overlapping strong band
in the range 3070–3600 cm−1 that can be assigned to the
carboxyl O–H and amine N–H bonds stretching vibration
[57]. The C-O bond vibrational band at 1076 cm−1 confirmed
the presence of primary –OH groups on the surface of
NPCQDs. The appearance of bands at 2934 cm−1 confirmed
presence of aliphatic C-H bonds. The weak and broad band at
2154 cm−1 and weak sharp band at 2348 cm−1 indicated the
presence of O=P-OH bond [58]. The band at 1271 cm−1 indi-
cated the presence of C-N bond. The band at 1544 cm−1 can be

Fig. 5 a FTIR spectrum, b XRD peak of NPCQDs, c EDS spectrum (inset table elemental composition of NPCQDs) and d FESEM image
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assigned to N-H vibration and deformation which indicated
the presence of amino functional group [59]. The band at
1668 cm−1 indicated asymmetric and symmetric bond vibra-
tion of carboxylic C=O functional group [60]. Moreover, the
presence of stretching and bending vibrational bands for C–H
and stretching vibrations for C = C in aromatic hydrocarbons
at 3060, 770 and 1434 cm−1 confirmed the presence of the
aromatic skeleton (sp2 hybridized carbon) in the prepared
NPCQDs [61]. The band at 610 cm−1 due to out of plane
bending of P-OH confirmed the presence of P atom in
NPCQDs [62]. Therefore, the FTIR result indicated the pres-
ence of nitrogen and phosphorous in the prepared NPCQDs.

Shining surface paper sheet layer like FESEM images in
Fig. 5d indicated the graphitic amorphous nature of NPCQDs
[41]. Result from elemental composition analysis of FESEM/
EDS spectrum (Fig. 5c) revealed the presence of C, O, N and
P in the as synthesized material indicating well formation of
nitrogen, phosphorous co-doped carbon quantum dots.

Fluorescence Quantitative Assay of Fe3+ Ions

In recent time, fluorescence quenching based selective detec-
tion of metal ions has become the interesting research area
[13]. Selectivity study of the fluorescence sensing of Fe3+ ions

Fig. 6 a Fluorescence spectra of NPCQDs solution in the presence of
different concentrations of Fe3+ and b plot of concentration versus (Io-I)/
I, c Fluorescence quenching response of NPCQDs to different metal ions,

d Specific FL quenching response of NPCQDs to Fe3+ ions in presence of
other cations

Scheme 1 Scheme showing
Fluorescence quenching of
NPCQDs by Fe3+ ions
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using NPCQDs over other compiting ions (Na+, K+, Mg2+,
Mn2+, Cu2+, Ni2+, Ca2+, Co2+, Cd2+, Zn2+, Fe2+, Sn2+, Ba2+,
Hg2+, Pb2+, Al3+) were tested separately by adding 30 μL of
10−4 M solution of cations to 3 mL of phosphate buffered
NPCQDs solutions and fluorescence recorded. Fe3+ and
Hg2+ showed fluorescence quenching while other cations
quenching were insiginicant (Fig. 6c). Interference of the
above cations with Fe3+ were investigated by taking 30 μL
of 10−4 M solution of cations with 30 μL of 10−4 M of Fe3+

ions and then fluorescence recorded. The result (Fig. 6d)
confiremed that the presence of the cations not interfere with
fluorescence sensing of Fe3+.

The fluorescence sensing performance of the NPCQDs
based on fluorescence probe was assessed by adding different
concentrations of Fe3+(0–400 μM) in to the NPCQDs solu-
tion. The fluorescence of NPCQDs was quenched in presence

Fig. 7 Benesi-Hildebrand plot of 1/(I-I0) as a function of 1/[Fe3+]

Fig. 8 a Cell viability of MCF7
cells by MTT assay b, c, d and e
confocal fluorescence
microscopic images of NPCQDs
labelled MCF7 cells under bright
field, 405 nm excitation, 488 nm
excitation and 561 nm excitation,
respectively
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of Fe3+ ion (Scheme 1) and the fluorescence quenching inten-
sity depend on concentration of Fe3+. Fluorescence spectra in
the presence of various concentrations of Fe3+ in NPCQDs are
shown in Fig. 6a. As concentration of Fe3+ increased, the
fluorescence intensity of the NPCQDs was decreased gradu-
ally. Correlation between the fluorescence quenching of
NPCQDs and concentration of Fe3+ was obtained as shown
in Figs. 6b. The fluorescence quenching efficiency can be
further described by the Stern–Volmer plot with a perfect
linear correlation coefficient of 0.992 in the linear range of
Fe3+ concentrations from 20 to 200 μM [63]. KSV of
quenching agent of Fe3+ was only 1.35 × 10−3, far more less
than that of dynamic quenching (commonly in the range of
102–103), and therefore, the quenching mechanism is a static
quenching mechanism [64] (Fig 7).

The Stern–Volmer equation thus achieved was:

Io=I ¼ 1:35x10−3 Fe3þ
� �þ 1:07057 ð4Þ

where I0 and I were the fluorescence intensities of NPCQDs in
the absence and presence of Fe3+ and [Fe3+] represented the
concentration of Fe3+.

The binding stoichiometery between NPCQDS and Fe3+

were determined by determining binding constant using
Benesi-Hildbrand plot [65] after plotting 1/(I-I0) virsus
1/[Fe3+] from the equation:

1= I−I0ð Þ ¼ 1= Kb I−Iminð Þ Fe3þ
� �� �

–1= I0−Iminð Þ ð5Þ

Where, I and I0 are the emission intensity of NPCQDs in
presence and absence of Fe3+ ion and Imin is the minimum
intensity of NPCQDs in presence of Fe3+ ion. The binding
constant, Kb was determined by dividing intercept for slope
of plot 1/(I-I0) vs 1/[Fe

3+]. Kb value was 8.80x10
2M−1 which

indicated good binding attraction between the fluorescent
NPCQDs and Fe3+ ions [66].

Cell Cytotoxicity and Live Cell Imaging

As a fluorescent probe, the potential use of the as synthesized
NPCQDs was evaluated for bioimaging and biolabeling in
live cells. The inherent cell viability of NPCQDs was assessed
in human breast adenocarcinoma (MCF7) cells through MTT
assay. NPCQDs exhibited extremely low cytotoxicity with

Fig. 9 a UV-Vis absorption spectra of DPPH solution in presence of 100 μg/mL NPCQDs at different time of reaction, b UV-Vis absorption spectra of
DPPH solution in different concentration of NPCQDs at fixed 1 h of reaction and c plot of concentration of NPCQDs versus % radical scavenging
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cell viability of about 89% even at relatively high concentra-
tion of 2 mg mL−1 and at 24 h of exposure time (Fig. 8a). In
addition, the bright-field optical images validated that there
were nomorphological change after the NPCQDs application,
indicating that the as-synthesized NPCQDs has good
biocompatibility.

As a bioimaging probe, the potential application of the
prepared NPCQDs was assessed by treating MCF7 Cells with
0.025 mg/mL of sesame oil derived NPCQDs. After incuba-
tion for 4 h, the MCF7 were washed to remove extracellular
NPCQDs and observed under fluorescent microscopy at laser
excitations of 405, 488 and 561 nm. We found that the la-
belled cells were brightly illuminated with multicolor images
due to strong fluorescence emitting from the NPCQDs distrib-
uted in the cytosol (Fig.8b-e) and exhibited blue, green and
red fluorescence corresponding to the laser excitation at
405 nm, 488 nm and 561 nm. The results indicated that the
highly water soluble, photostable fluorescent sesame oil de-
rived nitrogen and phosphorous co-doped carbon quantum
dots can serve as an excellent fluorescent bioimaging probe.

Antioxidant Activities of NPCQDs

DPPH assay is a standard method which provides a way to
evaluate antioxidant activity of materials. DPPH is a long-
lived, nitrogen containing free radical that can be used as a
free radical source and gets scavenged in the presence of an-
tioxidant and has deep purple colour in solution, which turns
yellow as soon as it interacts with an antioxidant. There are
few promising reports concerning carbon dots antioxidant ac-
tivity [44, 67]. In this study, we evaluated the antioxidant
activity of NPCQDs using DPPH assaymethod in comparison
to ascorbic acid as positive control. The gradual color change
of DPPH solution from deep violet to pale yellow in presence
of NPCQDs indicated the radical scavenging activity of
NPCQDs. As shown in Fig.8a, in presence of 100 μg/mL of
NPCQDs, as time increase from 1 min to 60 min the UV-Vis
absorbance of DPPH solution at 517 nm decreased indicating
that at longer contact time, more efficiency for radical scav-
enging. Antioxidant activity study using different concentra-
tion of NPCQDs at fixed time of 60 min indicated that as
concentration increased, the radical scavenging capacity in-
creased as shown in Fig.8b and c. Hence, the as synthesized
NPCQDs can be used as good antioxidant materials (Fig 9).

Conclusions

In summary, a facile, environmentally green hydrothermal
method was used to synthesis highly fluorescent nitrogen
and phosphorous co-doped carbon quantum dots (NPCQDs)
using sesame oil, L-Aspartic acid and phosphoric acid as car-
bon, nitrogen and phosphorous source, respectively.

Characterization result indicated that the synthesized
NPCQDs have narrow size distribution, bright fluorescence
with high quantum yield, pH dependent, highly ionic stable
and photostable fluorescence. Investigation for application
confirmed that the as synthesized NPCQDs can be used as
promising probe for Fe3+ ions in aqueous media. MTT assay
demonstrated that NPCQDs exhibited low cell toxicity and
excellent biocompatibility. The multicolor live cell imaging
of the NPCQDs was investigated and we conclude that the
NPCQDs may be used as an eco-friendly fluorescent
nanomaterial for potential multicolor imaging and sensing ap-
plications. The result from DPPH assay revealed that the pre-
pared sesame oil derived NPCQDs is promising for antioxi-
dant activity.
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