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Abstract
The application of fluorescence spectroscopy combined with chemometrics was explored in the current study for the detection of
stripe rust in wheat. The healthy and stripe rust leaves were collected from the disease screening nursery. The variations in the
blue-green region and chlorophyll fluorescence intensity in leaves provides the basis for the detection of stripe rust infection.
With the progress of disease, the variations in the synchronous fluorescence spectroscopy (SFS) spectrum was witnessed. SFS is
an excellent tool for the simultaneous measurement of multiple compound samples, in case of plants it generates evidence
regarding the occurrence of leaf fluorophore bands thus revealing the biochemical variations going on at different infection
stages. Based on the results of the current study, it is inferred that p-coumaric acid has the highest intensity in healthy samples
followed by the asymptomatic leaf samples, whereas the band intensity of α-tocopherol, sinapic acid, chlorogenic acid, ferulic
acid, tannins, flavonoid, carotenoids and anthocyanins increases in the diseased and the asymptomatic samples accordingly to the
rust infection. Principal component analysis (PCA) beautifully differentiated the healthy and the infected leaf samples. It is
evident that the asymptomatic samples are grouped with the diseased samples or independently; indicating the start of disease
infection, the decision that is hard to make with the visual assessments. The results of the current study suggest that the
fluorescence emission and the SFS spectral signatures acquired for stripe rust could be utilized as fingerprints for early disease
detection.
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Introduction

Wheat is the most important staple food crop [1] and is most
extensively grown crop that provides 20 percent of daily
protein/calories intake for 4.5 billion people around the globe
[2]. The predicted global population in 2050 is 9 billion, to
meet the expected increased demand of 60 percent, the annual
wheat yield must increase from the current level of 1% to at
least 1.6% [2]. The major constraint to the global wheat

production is biotic stresses which mainly includes the wheat
rusts. The three rusts of wheat namely; stripe (yellow) rust,
leaf (brown) rust and stem (black) rust are most feared ones
due to the rapidity with which they spread and devastate the
crop. According to Ali et al. [3] all the three rusts are distrib-
uted globally and cause massive losses in different environ-
ments favoring disease epidemics. Although, stripe rust is the
most destructive cereal rust compared to the leaf and stem
rusts [4] and it has been witnessed as a rising problem with
worldwide recurrent invasions due to combination of various
factors including highmigration and mutation capacity, adapt-
ability, presence of recombinant & diverse nature of popula-
tions and development of new variants via sexual cycle [3].
The stripe rust of wheat is caused by Puccinia striiformis f.sp.
tritici, which is an airborne biotrophic fungal pathogen [5].
This disease has the capability of fast spreading to the new
regions and crop cultivars [6]. The stripe rust fungus grows on
the plant leaves and produce elongated lesions (stripes) of
yellow-orange spores, thus reducing the photosynthetic area
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and sugar production [4]. All the plant growth stages are sus-
ceptible to the infection. Yield losses ranges from negligible to
complete, depending upon the wheat variety and the disease
incidence.

In Pakistan, rust diseases can threaten the production of
wheat crop when appear in epidemic, as happened in 1977-
78 and 1989-90 when leaf and stripe rusts caused huge eco-
nomic losses. The Himalayan region of Pakistan has been
identified as the center of diversity and the center of origin
for stripe rust, where it is developing the new races on its
alternate host Berberis vulgaris [5–7]. The practical and eco-
nomical solution to avoid losses caused by rust diseases is the
cultivation of resistant wheat varieties. Due to the mutation
ability, new races of rust continue to develop causing break-
down of resistant genes as witnessed in leading wheat varie-
ties; Inqlab-91, Sehar-06 and Galaxy-13 of Pakistan. As a
result, the resistant varieties are becoming susceptible; leading
to higher disease incidences each year. Thus, it is imperative
to detect the disease as early as possible to deploy the preven-
tive control measures. Fungicide treatment is warranted for the
control of stripe rust if 2–5% disease develops on a susceptible
variety [4]. Hence, the early disease detection will assist in the
timely application of the fungicides.

Mostly the leaf infections are determined using the poly-
merase chain reaction (PCR) based techniques, where single
step mistake leads to the false results [8]. These techniques
including wet chemical approaches are time taking, labor in-
tensive and costly as well which makes their large-scale ap-
plication practically impossible [9]. To overcome the short-
comings of PCR and visual assessments the scientists have
used the alternate methods that includes the non-invasive
and non-destruct ive opt ical techniques [10–12].
Fluorescence and Raman spectroscopy are the commonly
used techniques. The higher sensitivity and specificity rate
of fluorescence spectroscopy makes it a promising diagnostic
tool [13] and can be used in plants to monitor; physiological
state, health, nutrient/ environmental stresses and diseases [9,
14].

Several studies have been reported assessing the suitability
of fluorescence spectroscopy for the detection of rust diseases
in wheat [15–24] but no study encompassing the use of syn-
chronous fluorescence spectroscopy (SFS) has been reported
for early diagnosis of rust infections and the associated mo-
lecular changes. The aims of current paper are to; (i) explore
the opportunity to identify the stripe rust in wheat with no
visible signs of disease by using the fluorescence emission
spectrum and the SFS, (ii) assess the molecular changes going
on in the leaves in response to the onset of disease incidence.
Significance of the current work include assisting the plant
breeders in saving time and efficiently selecting the resistant
genotypes at an early stage when the symptoms are not visible
and to deploy control measures to stop more damage to the
crop and this will also curtail financial losses to the farmers.

Materials and Methods

The current study was designed to assess the leaves from
wheat plants that are healthy, with no visible disease symp-
toms and with visible symptoms of disease for the detection of
stripe rust by employing the fluorescence spectroscopy.

Collection of Leaf Samples

The healthy and stripe rust leaves were collected from the
disease screening nursery of Crop Diseases Research
Institute (CDRI) at National Agricultural Research Centre
(NARC), Islamabad. The samples were acquired on 29th
and 43rd day after spraying (DAS) the inoculum on 5th and
19th March 2019, respectively. The leaves were harvested
from the random plants of susceptible wheat variety
‘Morocco’ sown during mid-November, 2018. The healthy,
asymptomatic and symptomatic (with stripe rust symptoms)
leaf samples were collected for this investigation. These
leaves cover the range of stripe rust disease incidence. The
leaves that were infected, leaves next to the infected ones that
looked visually healthy (asymptomatic) and the fresh healthy
leaves were used for the collection of leaf samples from the
field. To retain the freshness, leaves were kept in sealable
plastic bags and transported in the ice box esky.

Acquisition of Fluorescence Spectral Data

Fluorescence spectrum of healthy and stripe rust dis-
eased leaf samples were recorded using; Front face fluo-
rescence spectroscopy and Synchronous fluorescence
spectroscopy (SFS). In Front face fluorescence spectros-
copy the excitation source was fixed at 410 nm and
emission at 420–800 nm [9], whereas in SFS both the
monochromators (excitation and emission) are scanned
synchronously by maintaining a fixed wavelength offset
‘Δλ’ between them [25, 26]. SFS was performed at the
same point of the leaf samples with excitation set at
200–800 nm and scanned the offsets Δλ 10, 20,
30…….100 nm, where 40 offsets displayed better re-
sults in the healthy leaf samples. All the subsequent leaf
samples were analyzed by keeping the excitation wave-
length of 410 nm (420–800 nm emission) and SFS ex-
citation wavelength of 200–800 nm with 40 offsets
(240–840 nm emission). For each sample five spectra
were recorded by keeping 30 s time delay between
spec t ra . Automat ic Spect rof luorometer sys tem
(Fluoromax-4, Horiba Instruments INC., NJ, USA) [9,
25] was used to record the spectral data of the leaf
samples in front face format. The spectral data was nor-
malized and displayed in the figures. The fluorescence
spectral data of wheat leaf samples were processed and
analyzed with the software OriginPro (version 2018).
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Principal Component Analysis (PCA)

PCA is probably the best technique of multivariate analysis
with the core idea to reduce dimensionality in the large vari-
ables data set while keeping maximum variation by transpos-
ing into new set of unrelated variables known as principal
components (PCs), among which initial few hold maximum
variability [27]. PCA reduces the complexities from the data
while retaining the trends and patterns [28] and display the
similarity pattern among observations and variables as points
in the graphs [29]. PCA was performed on fluorescence spec-
tral data to visualize the grouping of leaf samples based on the
similarities and differences.

Results and Discussion

The stripe rust susceptible wheat variety ‘Morocco’ [30, 31]
was used in the present investigation. The fluorescence emis-
sion and the synchronous spectrum analysis have been de-
scribed here.

Fluorescence Spectroscopy of Stripe Rust

The fluorescence emission spectra of healthy and stripe rust
wheat leaves collected on 29th and 43rd day after spray (DAS)
at 440 to 800 nm range are presented (Figs. 1 and 2). Green
leaves of plants produce two classes of fluorescence i.e. blue-
green fluorescence (400–600 nm) and chlorophyll fluores-
cence (650–800 nm) [9, 13]. On both the dates, the major
fluorescence peaks are displayed at 450, 465, 480, 520–560,
680 and 730 nm (Figs. 1 and 2). These bands have been
reported earlier in bacterial leaf blight of rice and citrus canker
in citrus species (grape fruit and Mexican lime) along with

their molecular assignments by Atta et al. [9, 32]. The bands
at 400–600 nm represent numerous leaf fluorophores includ-
ing hydroxycinnamic acids, flavonols, isoflavones, flava-
nones, phenolic acids [33] and some secondary metabolites
i.e. ferulic acid, flavonoids, coumarin, quercetin involved in
plant protection system [8] and hydrocarbon carotenes
(violaxanthin and antheraxanthin) [10]. At 680 and 730 nm
wavelength are the characteristic emission peaks of ‘chloro-
phyll a’ [8–10, 14, 32–37]. The red and far-red fluorescence is
emitted from Chlorophyll a of the antenna system of photo-
system II in the thylakoids of chloroplasts of green mesophyll
cells [38].

The leaf samples in the current study cover the range of
stripe rust disease incidence starting from a very early disease
when the symptoms are not visible to the naked eye ranged to
the 100% disease incidence. The blue-green spectral region
and the red-far-red chlorophyll fluorescence regions depicted
in Figs. 1 and 2 clearly indicated the reduced chlorophyll in
the asymptomatic and symptomatic leaf samples compared to
the healthy leaf samples, predominantly the 730 nm band was
either narrow or absent in the leaf samples with low to high
disease. The 730 nm declining band distinguished the healthy
and the infected samples in accordance to the chlorophyll
emission spectrum. In addition, an increase has been
witnessed in the blue-green fluorescence (450–570 nm) region
on the onset of infection and the appearance of the disease,
although healthy samples showed narrow spectra in that re-
gion. In the green (healthy) leaves the chlorophyll and carot-
enoids absorb the light in blue-green spectral region and hence
the blue-green band is narrow. However, in the diseased leaf
the chlorophyll is less and hence less absorption of light re-
sults in higher blue-green region band. The spectra of E1 leaf
collected as asymptomatic sample (Fig. 1) indicated that the
leaf is quite healthy and there are no signs of the start of the

Fig. 1 Normalized emission
spectra of healthy and stripe rust
wheat leaves collected on 29th
day after spray (DAS) with exci-
tation wavelength of 410 nm and
emission at 440–800 nm. The in-
tensity of peaks is along y-axis
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disease. Whereas, the other asymptomatic samples; E3, E4 &
E5 (Fig. 1) and E1, E2 & E3 (Fig. 2) showed a decline in the
intensity of 630 and 730 nm chlorophyll bands along with a
rise in the blue-green region.

Chlorophyll is an essential component of plant leaf, in case
of biotic or abiotic stress its content changes and could be
observed by changes in fluorescence at the initial phase when
symptoms are undetectable. In the present investigation, de-
crease in chlorophyll fluorescence and an increase in blue-
green spectral region provides a tool for predicting stripe rust
at an early stage. In response to stress the decrease of chloro-
phyll bands at 680 and 730 nm coupled with the increase of
450–560 nm bands is in conformity to the earlier reports [8,
14, 22, 39]. The spectral analysis of leaf samples shows that
higher chlorophyll reduction from lower to higher direction
has been witnessed in samples; D1 to D4 (Fig. 1) and D1 to
D5 (Fig. 2), proportionate to the hike in disease infection.
Moreover, same leaf samples displayed the highest increase
in the blue-green region thus expressing the infection intensi-
ty. An important finding of this study is that the asymptomatic
leaf samples; E5 (Fig. 1) and E2 (Fig. 2) with no visible dis-
ease signs and the leaf samples D1 (Figs. 1 and 2) with the
noticeable disease signs displayed nearly the similar trend of
chlorophyll and blue-green region spectral variations. Thus, it
has been concluded that the prediction of disease infection at
an early can be achieved by using the fluorescence signatures
of chlorophyll and blue-green spectral regions.

The fluorescence ratios have been used by the researchers
for fluorescence spectral analysis of leaves & plant disease
detection [20, 21, 40–43] and also recommended for remote
sensing [15]. Figure 3 shows the fluorescence ratios; BF/GF
(F450/F530), BF/RF (F450/F685), GF/RF (F530/F685) and
GF/FRF (F530/F730) of healthy and infected wheat leaves
in dependence of the degree of stripe rust infection. The

fluorescence ratio F450/F530 decreases with the increase in
fungal infection whereas for the ratios F450/F685, F530/F685
and F530/F730 an increase with increase in fungal infection
(Fig. 3) was observed due to the pronounced blue and green
fluorescence of the fungus [15]. As found in the current study
and reported earlier the healthy and infected wheat genotypes
can be discriminated by using these fluorescence ratios [20].

The PCA scatter plot of healthy and stripe rust wheat leaves
collected on 29th DAS is presented in Fig. 4. The first two
principal components (PCs) accounted for 97.7% variation in
the data. PCA superbly separated the healthy, asymptomatic
and symptomatic leaf samples. It has been witnessed through
emission spectra and also noticed here that the E1 sample has
been grouped with the healthy samples, representing the
healthy nature of leaf with no disease initiation. The asymp-
tomatic leaf samples (E3, E4 and E5) have been clustered
together in a separate quadrant revealing the initiation of dis-
ease infection and the start of biochemical changes; the pre-
diction which cannot be made through visual inspection. The
diseased samples have been arranged on the basis of their
disease intensity. The target group is the asymptomatic leaf
samples that should be well-considered for detection of dis-
ease infection at the early stage.

The PCA scatter plot of healthy and stripe rust wheat leaves
collected on 43rd DAS is presented in Fig. 5. The PC1 and
PC2 accounted for 98% variation in the spectral data. Like
earlier, PCA nicely separated three classes of leaf samples. It
is worthy noticeable that the asymptomatic (E1, E2 and E3)
and the symptomatic (D1) samples have been grouped togeth-
er (Fig. 5) enlightening the fact that disease infection has been
started. The other symptomatic samples are arranged with
respect to their disease intensity.

The combined PCA scatter plot of healthy and stripe rust
wheat leaves collected on 29th and 43rd DAS has been

Fig. 2 Normalized emission
spectra of healthy and stripe rust
wheat leaves collected on 43rd
day after spray (DAS) with exci-
tation wavelength of 410 nm and
emission at 440–800 nm. The in-
tensity of peaks is along y-axis
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presented in Fig. 6. The PC1 and PC2 contributed 97% of
variation in data. PCA beautifully grouped different leaf clas-
ses based on the health and the disease infection. It is evident
that the fluorescence emission spectroscopy combined with
the chemometrics successfully detected the stripe rust disease
initiation at the early stage in wheat crop.

Synchronous Fluorescence Spectroscopy (SFS) of
Stripe Rust

SFS is an efficient tool for the simultaneous measurements of
multi-compound samples and also deliver some significant
advantages i.e. spectral simplification, narrowing of band-
width, scattering interference reduction, improvement in ana-
lytical selectivity and enhanced resolution [26]. The SFS tech-
nique is flexible in probing various fluorophores by a suitable
choice of Δλ values [44]. The untreated healthy control was
studied in parallel to associate the enhanced production of

polyphenols to the fungal infection [23]. In plants the phenolic
compounds and the chlorophyll content changes over time, in
order to tackle this issue, all the leaf samples were collected at
same time on that particular date. Each SFS emission band
identified in the leaf samples collected on 29th and 43rd DAS
have been discussed simultaneously in the following
paragraphs.

The synchronous fluorescence emission spectrum of wheat
leaf samples were acquired at excitation wavelength of 200–
800 nm with Δλ = 40 nm. The relative band intensities at
wavelength range 240–840 has been displayed (Figs. 7 and
8). The prominent emission band with maximal peak intensity
at 325 nm represent the α-tocopherol. The presence of α-
tocopherol has been reported in wheat leaves [45, 46] and
grains [47, 48]. Basically tocopherols are lipid-soluble antiox-
idants, generally known as Vitamin E [49]. Interestingly in our
daily diet, theα-tocopherol is a much active and required form
of vitamin E [50]. In the present study the α-tocopherol has

Fig. 3 Fluorescence ratios of
healthy and stripe rust wheat
leaves collected on 29th DAS

Fig. 4 PCA scatter plot of healthy and stripe rust wheat leaves collected
on 29th DAS using the emission data at 440–800 nm

Fig. 5 PCA scatter plot of healthy and stripe rust wheat leaves collected
on 43rd DAS using the emission data at 440–800 nm
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been found to be at the same level in all the healthy, whereas
higher intensity has been observed in the asymptomatic (E3 &
E4) and maximum in the symptomatic (D1, D3, & D4) leaf
samples (Fig. 7). Almost the same trend has been observed in
the leaf samples collected on the second date (Fig. 8) except
the minimum α-tocopherol intensity observed in the leaf sam-
ple (D5) with 100% disease severity.

The major fluorescence emission band in 370–420 nm
range with maximum intensity at 405 nm indicates the p-
coumaric acid. Large intensity variation has been observed
in this band with maximum intensity in healthy and minimum
in diseased samples (Figs. 7 and 8). The reduction in the peak
along with the shifting of spectra has been noticed in the
asymptomatic and symptomatic leaf samples.

In case of wheat, the blue-green fluorescence region has
been reported to be associated with several leaf fluorophores,
which are identified in the current study as: sinapic acid (436
nm) [51–54]; chlorogenic acid (448 nm) [42, 47, 53]; ferulic
acid (prominent peak at 465 nm) [23, 47, 48, 51–53, 55, 56];
tannins (506 nm) [57]; flavonoid (isoorientine and tricine) /
flavin (522 nm) [42, 47, 53, 58, 59]; carotenoids (532 nm) [40,
45, 47, 48, 60–66]; and anthocyanins (hump at 560 nm) [67]
(Figs. 7 and 8). The major peaks at 685 nm and 720 nm indi-
cate chlorophyll bands in wheat [40, 56, 60, 61, 63, 66, 68,
69]. The fluorophores in the blue-green spectral range of 436–
560 nm showed decreasing trend of the healthy leaf samples,
whereas in general an increase has been noticed for asymp-
tomatic and symptomatic samples.

The highest spectral intensity for sinapic acid, chlorogenic
acid, ferulic acid, tannins, flavonoid, carotenoids and antho-
cyanins have been observed in the asymptomatic (E3) and
highly symptomatic sample (D4), whereas the healthy sam-
ples (H3) has the lowest intensity for all the above mentioned
polyphenols (Figs. 7 and 8). On the basis of these results it is
inferred that p-coumaric acid has the highest intensity in
healthy samples followed by the asymptomatic leaf samples,
whereas the peak intensity of α-tocopherol, sinapic acid,
chlorogenic acid, ferulic acid, tannins, flavonoid, carotenoids
and anthocyanins increases in the diseased and the asymptom-
atic samples as a result of stress which in present case is stripe
rust. The blue-green region (430–580 nm) have narrow spec-
tra for the healthy than the diseased samples. Only healthy
samples displayed the prominent chlorophyll 680 and
720 nm bands. The narrowing of chlorophyll bands in the
asymptomatic samples (E3, E5 Fig. 7; E4 Fig. 8) reveal the
start of the disease. The elevated blue-green region coupled
with the declined chlorophyll bands have been observed in the
samples with highest disease. The variations in the blue-green

Fig. 7 Normalized synchronous emission spectra of healthy and stripe
rust wheat leaves collected on 29th DAS at excitationwavelength of 200–
800 nm and Δλ = 40 nm (emission 240–840 nm)

Fig. 6 PCA scatter plot of healthy and stripe rust wheat leaves collected
on 29th and 43rd DAS using the emission data at 440–800 nm

Fig. 8 Normalized synchronous emission spectra of healthy and stripe
rust wheat leaves collected on 43rd DAS at excitationwavelength of 200–
800 nm and Δλ = 40 nm (emission 240–840 nm)
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region and chlorophyll fluorescence intensity in wheat leaves
provides the basis for the investigation of stripe rust infection
stages.

Tischler et al. [23] identified from day eight the higher
values of polyphenol contents in inoculated wheat plants com-
pared to the controls. Highest intensity of phenolic com-
pounds at 436–560 nm range coupled with the least chloro-
phyll has been witnessed in the severely diseased leaf samples
D3, D4 (Fig. 7) and D4, D5 (Fig. 8). The key finding of this
study using SFS technique being the rise in blue-green region
of the infected samples and the corresponding decline in chlo-
rophyll bands particularly in the asymptomatic leaf samples
demonstrating the possibility of early detection of the disease
infestation, usually hard to forecast with the visual
assessments.

In winter wheat cultivars the fluorescence region between
500 and 620 nm range has been reported to be significantly
increased in leaves inoculated with powdery mildew com-
pared to the control [42]. The detected fluorescence from a
leaf is largely emitted by the compounds present in the walls
of epidermal cells and vascular bundles [37]. Earlier studies
have revealed an association between the fungal infection and
higher production of polyphenols in the host plant and this has
been confirmed throughHPLC analysis in wheat infected with
brown rust [23]. In a plant defense mechanism, the polyphe-
nols are synthesized because they act antibiotically in re-
sponse to the fungal infection. Lichtenthaler and Schweiger
[53] demonstrated that the monocotyledonous plants (wheat,
oat and maize) possess many folds higher intensities of cova-
lently bound cinnamic acids (ferulic & p-coumaric) in their
cell walls of the leaves than dicotyledonous plants (spinach,
sunflower and pumpkin). Higher relative amounts of ferulic
acid and p-coumaric acid have been reported in wheat where
ferulic acid bound in cell wall is main component of blue-
green fluorescence emission [53]. Southerton and Deverall
[55] identified the phenolic acids including ferulic acid, p-
coumaric acid and syringic acid in the primary leaves of wheat
in bound and unbound forms. The sinapic acid and
chlorogenic acid exhibit fluorescence emission between
440 and 455 nm wavelength [53]. Tannins, the major
polyphenol in plants, primarily function as defense com-
pounds against biotic and abiotic stresses [70]. The tan-
nins have been reported to fluoresce nearly at emission
wavelength of 500 nm and are widely distributed and
present in all plant organs [57]. The major favonoids in
wheat leaves are isoorientine and tricine [59]. While
working on the fluorescence emission in plants detected
and quantified four flavonoids in greenhouse and ten in
outdoor wheat plants [53]. The carotenes usually increase
in response to fungal/disease attack or in stress, hence the
increased band of carotenes can be seen in SFS spectra
according to the disease intensity. Gitelson et al. [67] has
reported the anthocyanins to occur at the spectral range of

540–560 nm. This colored pigment protects the plant
leaves from excessive light [71, 72].

The PCA scatter plot of samples collected on 29th DAS
(Fig. 9) showed 75 percent variation in the spectral data. PCA
grouped the samples in the four quadrants based on their
health. The healthy samples are grouped together, whereas
diseased samples are arranged with respect to their disease
intensity. The asymptomatic samples are grouped either sep-
arately or with the symptomatic samples and are of primary
importance revealing early disease detection with SFS tech-
nique. PCA of the samples collected on 43rd DAS (Fig. 10)
showed 78 percent variation in data. Similar as earlier, PCA
grouped the asymptomatic samples away from the healthy
samples but with the diseased sample (D1). The combined
PCA for both the dates (Fig. 11) displayed the clear separation

Fig. 9 PCA scatter plot of healthy and stripe rust wheat leaves collected
on 29th DAS using the synchronous emission data at 240–840 nm

Fig. 10 PCA scatter plot of healthy and stripe rust wheat leaves collected
on 43rd DAS using the synchronous emission data at 240–840 nm
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of healthy, asymptomatic and diseased samples. The synchro-
nous fluorescence technique coupled with chemometrics suc-
cessfully differentiated the early diseased samples at an initial
stage.

Leufen et al. [73] probed the promise of fluorescence based
optical devices to examine plant-pathogen relations in spring
barley genotypes by assessing healthy leaves and leaves inoc-
ulated with powdery mildew and leaf rust. The authors were
able to detect pathogen infection & disease development, dis-
tinguished between the two diseases, revealed genotype spe-
cific responses to pathogen infections and observed differ-
ences between susceptible and resistant barley cultivars.
Chlorophyll fluorescence imaging sometimes offer ways to
diagnose infection in divergent plant-pathogen interrelations
before the detectable signs emerge by providing measureable
know how regarding degree & nature of pathogen effect on
the metabolism of host [18]. As a part of our ongoing research
work on the early detection of different diseases in crop plants,
the development of chlorophyll fluorescence imaging system
is in progress to investigate disease incidence and extent on
plants canopy based on the decline of chlorophyll
fluorescence.

Conclusions

Conventional methods of pigment analysis for disease detec-
tion by wet chemistry are time consuming, laborious and ex-
pensive, whereas the use of fluorescence emission spectrosco-
py and the SFS combined with chemometrics in the current
study recognized these as a valuable and rapid approaches for
detecting stripe rust in wheat. The spectral analysis revealed
the differences among the wheat leaf samples. The variations

in the blue-green region and chlorophyll fluorescence intensi-
ty in leaves provides the basis for the investigation of stripe
rust infection stages. It has been demonstrated that this event
happens as the stripe rust develops. The use of SFS was quite
advantageous as it furnished added evidence regarding the
occurrence of leaf fluorophore bands, thus indicating the bio-
chemical variations going on at different infection stages in
the leaves. On the basis of the results of the current study, it is
inferred that p-coumaric acid has the highest intensity in
healthy samples followed by the asymptomatic leaf samples,
whereas the peak intensity of α-tocopherol, sinapic acid,
chlorogenic acid, ferulic acid, tannins, flavonoid, carotenoids
and anthocyanins increases in the diseased and the asymptom-
atic samples based on the disease infection. PCA nicely dif-
ferentiated the healthy and the infected leaf samples. The PC1
and the PC2 accounted for 70–98 percent variation in the
spectral data. It is evident that the asymptomatic samples are
grouped with the diseased samples or independently;
highlighting the start of disease infection and thus aiding stripe
rust detection at the initial stage.
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