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Abstract
A highly selective chemosensor BHC ((E)-N-benzhydryl-2-((2-hydroxynaphthalen-1-yl)methylene)hydrazine-1-
carbothioamide) for detecting indium(III) was synthesized. Sensor BHC can detect In(III) by a fluorescence turn-on method.
The detection limit was analyzed to be 0.89 μM. Importantly, this value is the lowest among those previously known for
fluorescent turn-on In(III) chemosensors. Based on the analytical methods like ESI-mass, Job plot, and theoretical calculations,
the detection mechanism for In(III) was illustrated to be chelation-enhanced fluorescence (CHEF) effect. Additionally, sensor
BHC was successfully applied to test strips.
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Introduction

Indium is one of the elements of group 13 and its consumption
has been gradually increased [1]. Most usage of indium is in
semiconductor-related applications [2]. Apart from these ap-
plications, the pollution from it can affect severe health prob-
lems [3]. Although it has no biological role in human body, its
effects have been reported to be toxic to humans, causing
kidney disease and interference towards iron metabolism [4].
Therefore, it is needed to develop efficient detecting strategies
for indium [5–7].

There are several analytical tools for the detection of a
broad range of metal ions like AAS, ICP-AES (inductively
coupled plasma atomic emission spectrometry), and other
electrochemical methods (Absence of Gradients and
Nernstian Equilibrium Stripping) [8–11]. However, they need
complex procedures and sample pre-treatment and the costs

are relatively high [12]. In contrast, chemosensors have been
noted for its easy usage, fast response and cost-effective ad-
vantages [13–17].

Owing to similar properties of the 13 group elements, Al3+

and Ga3+, it is a challenge to distinguish In3+ from them. Until
now, many chemosensors for Al3+ and Ga3+ were developed,
but a few for In3+ [18–22]. Moreover, some of the In3+

chemosensors have difficulty in detecting In3+ because they
are inhibited by Al3+ and Ga3+ or detected via quenching
response which is a less preferred method [2, 4, 5, 7]. Thus,
the chemosensor capable of sensing In3+ without interferences
especially from Al3+ and Ga3+ with a turn-on response is
highly demanded.

The benzhydryl isothiocyanate with hydrazine moiety
could offer binding site to metal ions as well as act as a linker.
A naphthol moiety is widely used as a fluorophore because of
its unique photophysical property [23]. Therefore, we expect-
ed that the linkage of the two functional moieties can induce a
unique optical change towards a specific metal ion.

Herein, we present a highly selective and sensitive fluores-
cence probe BHC, which can detect In3+ via a fluorescence
turn-on. Importantly, it can distinguish In3+ from the same
group metals, Al3+ and Ga3+, without interferences. In addi-
tion, the binding mode and sensing mechanism for In3+ were
explained, based on the spectroscopic studies and theoretical
calculations.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10895-018-2299-z) contains supplementary
material, which is available to authorized users.

* Cheal Kim
chealkim@seoultech.ac.kr

1 Department of Fine Chem, Seoul National University of Science and
Technology (SNUT), Seoul 138-743, South Korea

Journal of Fluorescence (2018) 28:1363–1370
https://doi.org/10.1007/s10895-018-2299-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s10895-018-2299-z&domain=pdf
https://doi.org/10.1007/s10895-018-2299-z
mailto:chealkim@seoultech.ac.kr


Experimental Section

General Information

Chemicals were provided commercially. Stock solutions of
the cations (Cd2+, Al3+, K+, Ga3+, Ca2+, In3+, Zn2+, Na+,
Cu2+, Ni2+, Fe3+, Co2+, Hg2+, Mg2+, Cr3+, Pb2+, Mn2+ and
Ag+) were prepared using nitrate salts in dimethylsulfoxide
(20mM). Perchlorate salt was used for the Fe2+ stock solution.
NMR data were measured using a Varian spectrometer
(400 MHz). A Perkin Elmer spectrometer (Lambda 2S UV/
Vis) was used for absorption spectra. ESI-mass data were
gained on a Thermo Finnigan LCQTM instrument. A
Perkin-Elmer spectrometer (LS45) was used for fluorescence
data, and the slit width for excitation and emission was 10 nm.

Synthesis and Characterization of BHT
(1-benzhydrylthiourea)

Benzhydryl isothiocyanate (1.12 g, 5.0 mmol) and hydrazine
monohydrate (334 μL, 5.5 mmol) were dissolved in 10 mL of
absolute ethanol and stirred for 6 h until white precipitate
formed. It was filtered and washed with chilly ethanol and
diethylether. Yield: 0.87 g (60%). 1H NMR (DMSO-d6,
400 MHz, ppm): δ 8.96 (s, 1H), 8.37 (s, 1H), 7.28 (m, 10H),
6.76 (s, 1H), 4.64 (s, 2H).

Synthesis and Characterization of BHC ((E)
-N-benzhydryl-2-((2-hydroxynaphthalen-1-yl)
methylene)hydrazine-1-carbothioamide)

BHT (480 mg, 2.0 mmol) and 2-hydroxy-1-naphthaldehyde
(360 mg, 2.1 mmol) were dissolved in 5 mL of absolute eth-
anol and stirred for 1 day until pale yellow powder formed. It
was filtered and washed with chilly ethanol and diethylether.
Yield: 0.46 g (56%). 1H NMR (CDCl3, 400 MHz, ppm): δ
10.62 (s, 1H), 10.23 (s, 1H), 9.00 (s, 1H), 7.92 (d, J = 8.4, 1H),
7.83 (d, J = 9.2 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.54 (t, J =
7.8 Hz, 1H), 7.4 (t, J = 7.6 Hz, 1H), 7.32 (m, 11H), 7.17 (d,
J = 8.8 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 13C NMR (DMSO-
d6, 100 MHz, ppm): δ = 176.73 (1C), 156.70 (1C), 142.51
(1C), 141.90 (2C), 132.50 (1C), 131.40 (1C), 128.82 (1C),

128.55 (4C), 128.14 (1C), 127.61 (1C), 127.37 (4C), 127.23
(2C), 123.47 (1C), 122.84 (1C), 118.42 (1C), 110,11 (1C),
60.70 (1C). Positive-ion ESI-MS: m/z calcd, for [2·BHC +
Na+]+, C50H42N6O2S2 + Na+, 845.27; found, 845.18.

Fluorescence and UV-vis Titrations of BHC with In3+

A stock solution of BHC was prepared in dimethylsulfoxide
(DMSO, 1 × 10−2 M). 3 μL of it was diluted to 3 mL of
DMSO for 10 μM concentration. A stock solution (2 × 10−2

M) of In(NO3)3 was prepared in DMSO. For the fluorescence
titration, 1.5–37.5 μL of the In3+ solution was taken and
mixed with BHC. 1.5–19.5 μL of the In3+ solution was added
to the solution ofBHC for UV-vis titration. Both fluorescence
and UV-vis spectra were measured.

Quantum Yield of BHC and BHC-In3+

Quantum yield (Ф) was calculated by using fluorescein (ФF =
0.92 in basic ethanol) as a standard fluorophore [24]. The
equation of quantum yield is as follows [25]:

ΦF Xð Þ ¼ ΦF Sð Þ AS FX =AX FSð Þ nX =nSð Þ2

Scheme 1 Synthesis of compound BHC

Fig. 1 Fluorescence spectra ofBHC (10 μM)with various metal ions (23
equiv). Excitation wavelength: 416 nm
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Where the meaning of each abbreviation is

ФF fluorescence quantum yield
A Absorbance
F The area of fluorescence emission curve
n Refractive index of the solvent
s standard
x unknown

Job Plot Measurement of BHC with In3+

160 μL of a BHC stock solution (DMSO, 1 × 10−2 M) was
diluted to 39.84 mL DMSO for 40 μM concentration. 80 μL
of an In3+ stock solution (DMSO, 2 × 10−2 M) was diluted to
39.92 mL DMSO for 40 μM concentration. Both solutions
were mixed from the molar fractions of 0.1 to 0.9 while main-
taining a constant overall concentration (40 μM). The emis-
sion spectrum of each solution was measured.

Fig. 2 Changes in fluorescence
emission spectra when In3+ was
added into sensor BHC (10 μM).
Inset: fluorescence intensity at
490 nm (0–25 equiv). Excitation
wavelength: 416 nm. Error bars
represent standard deviations
from three repeated experiments

Fig. 3 Changes in UV-vis spectra
when In3+ was added into sensor
BHC solution (10 μM)
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Competition Experiment

34.5 μL of various metal-ion stock solutions dissolved in
DMSO (Cd2+, Al3+, K+, Ga3+, Ca2+, In3+, Zn2+, Na+, Cu2+,
Ni2+, Fe3+, Co2+, Hg2+, Mg2+, Cr3+, Pb2+, Mn2+ and Ag+,
20 mM) were diluted to 3 mL of DMSO (23 equiv). The same
amount of an In3+ stock solution was added to each solution.
A stock solution of BHC (10 mM, 3 μL) was added to them
and mixed. The emission spectrum of each solution was
measured.

Fluorescence Test Kit

Filter papers were immersed to 700 mM of BHC solution
(1 mL, DMSO). After they were dried in the oven, various
amounts (10, 20, 50, 100, and 200 μM) of an In3+ stock
solution were applied to them for determining the lowest

visible detection limit. The test kit prepared above was also
applied to 20 μM of various metal solutions (Cd2+, Al3+, K+,
Ga3+, Ca2+, In3+, Zn2+, Na+, Cu2+, Ni2+, Fe3+, Co2+, Hg2+,
Mg2+, Cr3+, Pb2+, Mn2+ and Ag+).

Theoretical Studies

Energy-optimized structures of BHC and BHC-In3+ complex
were calculated by density functional theory (DFT) using
Gaussian 09 W program [26]. The hybrid functional was
Becke, 3-parameter, Lee-Yang-Parr (B3LYP) and the basis
set was 6-31G(d,p) [27–30]. All atoms except In3+ were ap-
plied to 6-31G(d,p) while LANL2DZ basis set was used as
effective core potential (ECP) for In3+ [31–33]. Since imagi-
nary frequency was not found in optimized structures of BHC
and BHC-In3+, their geometries represented local minima.
CPCM was used for considering solvent effect of DMSO

Fig. 4 Positive-ion ESI-MS
spectrum of BHC-In3+ (100 μM,
1 equiv. of In3+)

Scheme 2 Fluorescence turn-on mechanism and proposed binding structure of BHC-In3+
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[34, 35]. According to energy-optimized structures of sensor
BHC and BHC-In3+ complex, the UV-vis transition studies
were confirmed using TD-DFT (time-dependent DFT) meth-
od with thirty lowest singlet states.

Results and Discussion

By the nucleophilic addition reaction of benzhydryl isothio-
cyanate and hydrazine, compound BHT was synthesized.

Compound BHC was obtained from the condensation reac-
tion of BHT and 2-hydroxy-1-naphthalaldehyde (Scheme 1).
It was fully characterized through 1H and 13C NMR and ESI-
MS analyses (Figs. S1-S3).

In order to study the sensing ability of compound BHC
towards various metals, fluorescence spectra were measured
with the excitation wavelength of 416 nm (Fig. 1). Most
metals did not show critical fluorescence change. In contrast,
only In3+ displayed a remarkable increase of the fluorescence
emission at 490 nm. This obvious change indicated that sensor
BHC could detect In3+ by fluorescence turn-on. For investi-
gating the counter-anion effect, we also used In2(SO4)3 instead
of indium nitrate. Indium sulfate also showed nearly identical
fluorescence enhancement as done with indium nitrate.

To investigate binding properties, fluorescence titration
was achieved (Fig. 2). As the amount of In3+ increased, fluo-
rescence emission at 490 nm was constantly increased.
Quantum yields (Ф) of BHC and BHC-In3+ were calculated
to be 0.0563 and 0.147. The binding interaction between
BHC and In3+ was further studied with UV-vis titration
(Fig. 3). The increase of In3+ induced absorption spectral
changes with two defined isosbestic points at 300 nm and
392 nm, and it implies that only one species is present at the
isosbestic point.

For the determination of binding stoichiometry of sensor
BHC and In3+, Job plot experiment was achieved (Fig. S4).
The highest fluorescence intensity appeared at the point where
the mole fraction was 0.5. It indicated that sensor BHC and

Fig. 5 Detection limit of BHC toward In3+ based on 3σ/slope. Error bars
represent standard deviations from three repeated experiments

Fig. 6 Photographs of the test strips coated with sensor BHC. a Sensor BHC-test strips immersed in various concentrations of In3+ (0–200 μM). b
Sensor BHC-test strips immersed in 20 μM of various metal ion solutions
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In3+ were combined in a 1 to 1 ratio. To support the binding
interaction between BHC and In3+, positive-ion ESI-MS ex-
periment was executed (Fig. 4). The peak ofm/z = 679.99 was
suggestive of BHC-2H++In3+ (calcd, m/z = 680.05). Its iso-
tope pattern was well matched with the calculated value,
supporting the 1: 1 binding stoichiometry of BHC and In3+.
Job plot and ESI-MS analyses drove us to propose the plau-
sible binding mode of BHC-In3+ in Scheme 2.

With the result of fluorescence titration, detection limit
using 3σ/slope was analyzed to be 0.89 μM (R2 = 0.9996)
(Fig. 5) [36]. Significantly, the detection limit is the lowest
value among those previously known for fluorescent turn-on
In3+ chemosensors, to date. (Table S1). Also, the association
constant (K) based on Benesi-Hildebrand equation was turned
out to be 4.3 × 103 M−1 (Fig. S5) [37].

For the practical application, the selectivity of compound
BHC for In3+ was tested in the existence of other cations (Fig.
S6). Hg2+ and Cu2+ inhibited the fluorescence of sensorBHC,
and Fe3+ and Fe2+ displayed about half reduction of the fluo-
rescence. Nevertheless, group 13 metals, Al3+ and Ga3+,
didn’t show any fluorescence interferences.

Moreover, sensor BHC was applied to test strips. As
shown in Fig. 6a, the obvious fluorescent emission appeared
above 20 μM of In3+. On the contrary, the same concentration
of other cations did not show fluorescence emission (Fig. 6b).
Therefore, it demonstrated that sensor BHC could be also
used for detecting In3+ in the test strip.

To comprehend the detection mechanism of BHC towards
In3+, theoretical calculations were achieved. Based on the 1 to
1 binding stoichiometry between BHC and In3+, energy-
optimized structures and molecular orbital contributions of
BHC and BHC-In3+ complex were calculated. As shown in
Fig. 7a, sensor BHC displayed a bent form with the dihedral
angle 33.384° for 1 N, 2 N, 3C, and 4O. Upon chelating to
In3+, its structure was flattened to 0.125° (Fig. 7b).

Based on these structures, molecular orbitals and transition
energies were obtained by using TD-DFT calculation with the
singlet excited states of BHC and BHC-In3+. Thirty singlet
states having non-zero oscillator strength were considered as
allowed-transition. For BHC, the main absorption band was
originated from the HOMO→ LUMO transition (382.26 nm,
Fig. S7), indicating ICT (intramolecular charge transfer)

Fig. 7 Energy-optimized structure of (a) sensor BHC and (b) BHC-In3+ complex
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transition from the naphthol group to the thiocyanate. In case
of BHC-In3+, the main absorption band was originated from
the HOMO-1→ LUMO+1 and HOMO → LUMO+1 transi-
tions (414.62 nm, Fig. S8). The electrons of both HOMO and
HOMO-1 were mainly localized in the dibenzene ring, where-
as those of LUMO+1 were localized in the naphthol moiety
(Fig. S9). Their transitions indicated ICT and LMCT (ligand-
to-metal charge-transfer). The decrease of the energy gap be-
tween HOMO and LUMO corresponded to red shift of the
experimental UV-vis spectra.

From these results, the sensing mechanism of BHC to-
wards In3+ maybe due to chelation-enhanced fluorescence
(CHEF) effect. As In3+ bound to BHC, the rotation of imine
(-C=N) was inhibited [38]. Therefore, the rigid structure and
inhibited non-radiative transition could induce fluorescence
enhancement.

Conclusion

In conclusion, we synthesized a fluorescence chemosensor
BHC for detecting In3+ by a fluorescence turn-on method. It
can obviously discriminate In3+ from the same group metals,
Al3+ and Ga3+, with no interferences. The detection limit for
In3+ was 0.89 μM, which is the lowest among those previous-
ly known for fluorescent turn-on In3+ chemosensors, to date.
Sensor BHC was also successfully applied to test strips.
Moreover, fluorescence turn-on mechanism was proposed as
chelation-enhanced fluorescence (CHEF) effect using DFT/
TD-DFT calculation.
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