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Abstract
Synthesis of three novel phenyl(1H-benzoimidazol-5-yl)methanone based fluorescent monoazo disperse dyes and their charac-
terization by spectroscopic methods (1H NMR, 13C NMR, IR and MS) are presented. Insertion of phenyl(1H-benzoimidazol-5-
yl)methanone moiety bring about induced fluorescence properties and enhanced photostability as compared to the previously
reported analogues (CI Solvent Yellow 14, 4-diethylamino-2-hydroxy-1-diazobenzene and 7-(diethylamino)-4-hydroxy-
3-(phenyldiazenyl)-2H-chromen-2-one). Synthesized phenyl(1H-benzoimidazol-5-yl)methanone based dyes exhibited red-
shifted absorption maxima (497–516 nm), high molar extinction coefficients and are emitting in the far-red region (565–
627 nm). Moreover, naphthalene-comprising dyes showed negative solvatochromism while N,N-diethylamine comprising dyes
showed positive solvatochromism and are in good agreement with solvent polarity graphs and the computed energy levels of
highest occupied and lowest unoccupied molecular orbitals. Synthesised dyes have better photostability (light fastness) and
sublimation fastness on dyed polyester and nylon compared to reported analogues. DFT calculated energies, electrophilicity
index and Frontier Molecular Orbitals (FMO’s) enabled to evaluate the stabilities of azo and hydrazone forms of the dyes.

Keywords Phenyl(1H-benzoimidazol-5-yl)methanone .Fluorescentmonoazodyes .Solvatochromism .Aza-hydrazoneandDFT
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Introduction

Azo dyes cover the single largest group of dyes with respect to
number and production scales with many industrial applica-
tions to introduce new and efficient colours to the substrates
[1]. They are most versatile and robust having high tinctorial
strengths with a full-color range from yellow to blue-green
shades [2]. The high molar extinction coefficient, structural
diversity, good fastness properties and ease of synthesis have

made these dyes very successful [3–5]. Economy and ease of
preparation of azo dyes have made them highly applicable to
many colour industries [6, 7]. But fastness improvements are
vital in the textile industry since dyed fabrics have found wide
applications and are exposed to direct sunlight [8].

Benzophenone based dyes have found applications in
photoinitiators and photosensitizers [9], thermal stabilizers
[10], UV absorbers [11], oxidants in photo-induced electron
transfer (PET) [12], fluorescent chemosensors [13], biological
probes [14] and Excites State Intramolecular Proton Transfer
(ESIPT) based fluorescent chemosensors [15, 16]. In general,
benzophenone unit is photostabilizing and UV blocking entity
[17]. Stability is influenced by appropriate substitutions in the
aromatic ring at various positions of benzophenone [18].
Substitution at meta-position to the carbonyl group of benzo-
phenone derivatives show good intramolecular redox process
[19]. Similarly, substitution at para-position remarkably mod-
ifies photochemistry of the molecule [20]. Such appropriately
modified few promising benzophenone based mordant and
acid azo dyes are available in the literature [21, 22]. Some of
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the reported benzophenone derivatives are emissive [23–26].
In the same line Barsotti et al. recently did extensive studies on
fluorescence properties of 4-hydroxy benzophenone [23, 27].

Similarly, dyes containing imidazole unit have found wide
applications in dye sensitizer solar cells (DSSC) [28], hole
transporting materials [29], ESIPT based dyes [30] fluorescent
sensor [31] and solid-state emissive dyes [32]. Dyes with imid-
azole unit are also used in singlet oxygen generation [33] and
radical photopolymerization reactions [34]. Due to strong
accepting capacity [35] and high molar extinction coefficients
[36] of imidazole-based dyes, photostability gets enhanced [37].

An important use of fluorescent dyestuffs is in the coloration
of synthetic fibres like polyesters, acrylics and polyamides.
Fluorescent textiles not only increases visibility but also pro-
vides high design options [38]. Many dyes for acrylic fibres,
particularly methines such as CI Basic Violet 7, CI Basic Red
13 and CI Basic Red 74 are fluorescent and very bright resulting
into important fluorescent textile fibres [38]. The dominating
structural classes for fluorescent textiles dyes include coumarins,
perylene and methines [38, 39]. But the available dyes do not
meet the simultaneous requirement of both good fluorescent
properties and light fastness properties. So, in order to develop
synthetic dyes for textile applications, it is advisable that modern
colourants should have both photostabilities as well as improved
spectroscopic characteristics [40].

Considering combined advantages of both benzophenone
core and imidazole unit we developed in-built stabilising
phenyl(1H-benzo[d]imidazol-5-yl)methanone group.
Presence of donors (–N(Et)2, -OH groups), acceptors (imidaz-
ole, >C=O) and long π-conjugation [41] in the present
phenyl(1H-benzo[d]imidazol-5-yl)methanone based azo dyes
enable them to act as good candidates for attractive fluorescent
compounds. However, very few reports are available on fluo-
rescent monoazo disperse dyes and the strategies to make
them emissive [42–46]. Recently reported fluorescent dyes
contained phenyl(1H-benzo[d]imidazol-5-yl)methanone as a
core moiety [47]. So, we are interested to study the effect of
incorporat ion of phenyl(1H-benzo[d]imidazol-5-
yl)methanone moiety into few selected azo dyes available
commercially. Moreover, as benzophenone core is well
photostabilizing unit [17], it is expected that the designed dyes
not only become red emission in nature but can also show
good fastness properties.

In the present work, we are reporting three red emitting dis-
perse dyes (5a, 5b and 5c) containing in-built photostabilising
and emission enhancing unit i.e. phenyl(1H-benzo[d]imidazol-
5-yl)methanone. 5a, 5b and 5c disperse dyes exhibited red-
shifted absorption and emission compared to corresponding par-
ent analogues CI Solvent Yellow 14 (5a’) (CI 12055), 4-
diethylamino-2-hydroxy-1-diazobenzene (5b’) and
7-(diethylamino)-4-hydroxy-3-(phenyldiazenyl)-2H-chro-
men-2-one) (5c’) dyes, respectively. Dye 5a and its parent an-
alogue dye 5a’ showed negative solvatochromism.

Solvatochromic properties are in good agreement with solvent
polarity graphs. Dyes 5a, 5b and 5c on dyed polyester and nylon
showed excellent light and sublimation fastness compared to
parent dyes 5a’, 5b’ and 5c’ respectively.

Experimental Section

Materials and Methods

3,4-Diaminobenzophenone and p-nitrobenzaldehyde were pro-
cured by Spectrochem Pvt. Ltd. Mumbai.Naphthalen-2-oland
were obtained from Sigma-Aldrich.3-(diethylamino)phenol, so-
dium nitrate, sodium carbonate, sodium hydroxide, conc. HCl,
urea, metamol (dispersing agent), sodium chloride and all or-
ganic solvents were purchased from S. D. Fine Chemicals Ltd.,
Mumbai, India. All reagents and solvents were characterised by
melting or boiling point and used without further purification.
Readymade dyeing polyester (100%) substrate (weight70 gm/
m2) was purchased from Piyush Syndicate, Mumbai, India.
Melting points were recorded on the instrument from Sunder
Industrial Product, Mumbai. 1H NMR and 13C NMR spectra
were recordedat 25 °C on Agilent NMR vnmrs 500 MHz and
125 MHz respectively. Chemical shifts were expressed in ppm
using TMS as an internal standard. IR spectra were recorded on
Perkin Elmer spectrum-100 FTIR spectrometer. Mass spectra
were recorded on FINNIGAN LCQ ADVANTAGE MAX in-
strument from Thermo Electron Corporation (USA). All dying
were performed on Flexi dyer machine (RossariLabtech,
Mumbai, India).

Spectroscopic Instruments

Absorption and emission spectra of the compounds were re-
corded on Perkin Elmer Lambda 25 UV-Visible spectropho-
tometer and Varian Inc. Cary Eclipse spectrofluorometer re-
spectively. 5 μM solutions of the dyes were prepared by using
7 different polarity solvents, viz. toluene, 1,4-dioxane, CHCl3
(chloroform), EtOAc (ethyl acetate), MeOH (Methanol), ace-
tonitrile and N,N-dimethylformamide (DMF).

Fastness and Color Assessment Instruments

Light fastness of dyed samples was tested on Q-Sun Xenon
Test Chamber (Q-Lab Corporation, Ohio, USA) by the
AATCC 16–2004 method. Sublimation fastness of the dyed
samples were tested on Sublimation fastness tester (RBE
Electronics Engg. Pvt. Ltd., Mumbai, India) by the standard
method ISO 105-F04. Shade change and staining of adjacent
fabrics were rated according to appropriate Society of Dyers
& Colourists (SDC) grey scales. Colour properties of the dyed
samples were measured using Spectra Scan 5100+ under the
illuminant D65 using 10° standard observers.
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Computational Study

All the DFT computations were performed using Gaussian 09
package [48] on an HP workstation XW 8600 with Xeon
processor, 4 GB RAM and Windows Vista as the operating
system. DFT and TD-DFT methods were employed for the
ground state and excited state optimisations respectively.
The hybrid functional B3LYP (Becke3-Lee-YangPar) as and
6-31G(d) basis set were used for all the atom [49]. Solvents
used for Polarizable Continuum Model (PCM) [50] were tol-
uene, 1,4-dioxane, chloroform (CHCl3), ethyl acetate
(EtOAc), methanol (MeOH), acetonitrile and N,N-
dimethylformamide (DMF).

Synthesis and Characterization

Methanone (2-(4-nitrophenyl)-1H-benzo[d]imidazol-5-yl)
phenyl (2)

Mixture of 3, 4 diaminobenzophenone 1 (1.09 g, 5.2 mmol),
4-nitrobenzaldehyde (0.71 g, 4.7 mmol) and water (25 mL)
was taken in a round bottom flask. Potassium ferro-cyanide
(0.17 g, 10 mol%) was added to the mixture and stirred at
30 °C for 2 h. Reaction was monitored by using TLC (thin
layer chromatographic technique). After completion of the
reaction, solid obtained was filtered, washed with water, dried
and recrystallized from ethanol to obtain the desired product
(Yield: 89%). Above said procedure and characterizations of
compound 2 is reported in the literature [51].

Methanone(2-(4-aminophenyl)-1H-benzo[d]imidazol-5-yl)
phenyl (3)

Compound 2 (2 g, 5.8 mmol) and Fe powder (0.81 g,
14.5 mmol) were added in the reaction-flask containing meth-
anol (50 mL). To this mixture AcOH (0.83 mL, 14.5 mmol)
was added slowly to keep temperature below 30 °C. The re-
action mixture was then further refluxed at 64 °C for 30 min.
Reaction was monitored by using thin layer chromatographic
technique. After completion of the reaction, reaction mass was
cooled and neutralized by using NaHCO3. Precipitate formed
was filtered, washed with water and dried. Recrystallization in
EtOH afforded the desired product 3 (Yield: 70%). Above said
procedure is reported in the literature [13]. Compound 3 is
characterized and provided in supporting information.

Yield: 70%, Melting point: 196–199 °C.
1H-NMR δH (500MHz, DMSO, TMS)(ppm): 7.76 (2H, d,

J = 8.0 Hz, Ar-H), 7.35 (2H, d, J = 8.0 Hz, Ar-H), 7.23 (2H, d,
J = 7.5 Hz, Ar-H), 7.15 (2H, d, J = 7.5 Hz, Ar-H), 7.13 (1H, s,
Ar-H), 7.05 (2H, t, J = 7.5 Hz, Ar-H), 6.99 (1H, d, J = 8.0 Hz,
Ar-H), 5.52 (1H, s, N-H), 4.50 (2H, s, -NH2).

13C NMR δC (125 MHz, DMSO, TMS)(ppm): 196.51
(>C=O), 160.47 (-C=N), 153.63 (Ar-C-NH2), 151.73 (Ar-C-

NH), 139.09 (Ar-C-N=), 136.50 (Ar-C-CO), 134.00 (Ar-C),
133.05 (Ar-C-CO), 131.79 (Ar-C), 130.42 (Ar-C), 129.39
(Ar-C), 128.86 (Ar-C), 121.61 (Ar-C), 112.41 (Ar-C),
107.97 (Ar-C), 97.92 (Ar-C).

FT-IR: 3458 (N-H stretching), 1687 (C=O stretching),
1635 (Imine C=N stretch), 1281 (C-N stretching).

Mass (m/z): Calculated 314.12, [M +H] + for C20H16N3O
+

found 314.1, [M +H] +.
Elemental analysis (%) - Found: C, 76.6; H, 4.8; N,

13.4%; molecular formula C20H15N3O calculated: C, 76.66;
H, 4.82; N, 13.41%.

General Procedure for Diazotization-Coupling Reactions

Mixture of amine 3 (3.3 mmol), conc. HCl (3 ml, 35.0 mmol),
and water (15 mL) was boiled in reaction flask to get clear
solution. Solution was then cooled to 0 °C followed by gradual
addition of sodium nitrite (0.25 g, 3.6 mmol) with constant
stirring. Solution was allowed to stir below 5 °C for 30 min
and starch iodide paper was used as a process control test.
Reaction was monitored by spot test. After completion of reac-
tion urea was added to quench excess nitrous acid. Meanwhile,
the couplers (3.3 mmol) were dissolved in 10% sodium hydrox-
ide solution to get clear solution. Diazonium salt solution was
gradually added to the respective coupler solutions with contin-
uous stirring and maintaining the temperature below 5 °C.
During addition of diazonium salt pH was maintained in be-
tween 7.5–8 using NaCO3 (10% w/v) solution.

After completion of reaction precipitated was formed
which was then filtered using a nutsche and washed thorough-
ly with water further. Recrystallized in ethanol afforded de-
sired final dyes 5a, 5b and 5c in good yields. Above said
procedure is reported in literature [1].

Couplers used for coupling reactions were Naphthalen-2-
ol, 3-(diethylamino)phenol and 7-(diethylamino)-4-hydroxy-
2H-chromen-2-one. Synthetic scheme for the preparations of
monoazo disperse dyes (5a-5c) is shown in Scheme 1.
Structural analogues of 5a is available in the literature [52].
7-(diethylamino)-4-hydroxy-2H-chromen-2-one was pre-
pared by reported procedure [45]. Dyes 5a’ (CI Solvent
Yellow 14), 5b’ (4-diethylamino-2-hydroxy-1-diazobenzene)
and 5c’ (7-(Diethylamino)-4-hydroxy-3-(phenyldiazenyl)-
2H-chromen-2-one)) are available in the literature [45,
53–55]. Structural variations of present synthesised
phenyl(1H-benzo[d]imidazol-5-yl)methanone based dyes are
compared with previously reported parent dyes (Scheme 2).

Characterizations (Supporting Information)
5a:Phenyl(2-phenyl 4-(2-hydroxynaphthalene-1-

diazene)1H-benzo[d]imidazol-5-yl)methanone.
Yield: 85%, Melting point: 129–131 °C.
1H-NMR δH (500 MHz, DMSO, TMS) (ppm): δ13.40

(1H, s, Hydrogen bonding), 8.57 (1H, d, J = 8.5 Hz, Ar-H),
8.34 (2H, d, J = 8.5 Hz, Ar-H), 8.06–8.01 (2H, m, Ar-H), 7.97
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(1H, d, J = 9.5 Hz, Ar-H), 7.90 (1H, d, J = 4.0 Hz, Ar-H), 7.81
(1H, d, J = 8.5 Hz, Ar-H), 7.79–7.75 (2H, m, Ar-H), 7.70 (2H,
dd, J = 12.0, 7.5 Hz, Ar-H), 7.64 (2H, dd, J = 15.5, 7.5 Hz, Ar-
H), 7.58 (2H, t, J = 7.5 Hz, Ar-H), 7.48 (1H, t, J = 7.5 Hz, Ar-
H), 6.88 (1H, dd, J = 9.5, 4.0 Hz, Ar-H), 5.48 (1H, s, N-H).

13C NMR δC (125 MHz, DMSO, TMS)(ppm): 195.88
(>C=O), 156.02 (Ar-C-OH), 154.23 (-C=N), 153.34 (Ar-C-

N=N), 147.75 (Ar-C-N=N), 146.02 (Ar-C-NH), 143.73 (Ar-
C), 138.57 (Ar-C-NH), 135.14 (Ar-C), 134.77 (Ar-C), 133.50
(Ar-C), 133.15 (Ar-C), 132.53 (Ar-C), 131.65 (Ar-C), 131.50
(Ar-C), 130.39 (Ar-C), 129.88 (Ar-C), 128.88 (Ar-C), 128.78
(Ar-C), 128.66 (Ar-C), 128.45 (Ar-C), 126.91 (Ar-C), 125.16
(Ar-C), 122.16 (Ar-C), 119.34 (Ar-C), 114.60 (Ar-C), 111.96
(Ar-C), 109.98 (Ar-C), 106.98 (Ar-C), 100.13 (Ar-C).

Reagents and Conditions: a) 4-nitrobenzaldehyde, K4[Fe(CN)6], H2O, 30 oC; b) Fe-powder, AcOH, 
MeOH, 64oC; c) NaNO2, HCl, 0-5oC; d)Na2CO3, pH=7-8.
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FT-IR: 3058 (O-H stretching phenolic), 1685 (C=O
stretching), 1643 (C=C stretching), 1528 (N=N stretching),
1274 (C-N stretching) cm−1.

Mass (m/z) : Calculated 469.17, [M + H] + for
C30H21N4O2

+ found 469.1, [M +H] +.
Elemental analysis (%) - Found: C, 76.9; H, 4.3; N,

11.9%; molecular formula C30H20N4O2 calculated: C, 76.91;
H, 4.30; N, 11.96%.

5b: Phenyl(2-phenyl 4-(3-(diethylamino)phenol)1H-
benzo[d]imidazol-5-yl)methanone.

Yield: 71%, Melting point: 120–122 °C.
1H-NMR δH (500 MHz, DMSO, TMS) (ppm): 13.33 (1H,

s, Hydrogen bonding), 8.29 (2H, d, J = 8.5 Hz, Ar-H), 7.87
(3H, d, J = 8.5 Hz, Ar-H), 7.76 (2H, d, J = 7.5 Hz, Ar-H), 7.68
(2H, d, J = 7.5 Hz, Ar-H), 7.65 (1H, s, Ar-H), 7.58 (2H, d, J =
7.5 Hz, Ar-H), 7.56 (1H, s, Ar-H), 7.51 (1H, d, J = 9.0 Hz, Ar-
H), 6.53 (1H, d, J = 9.0 Hz, Ar-H), 6.05 (1H, s, N-H), 3.46
(4H, q, J = 7.0 Hz, N-(CH2)2), 1.15 (6H, t, J = 7.0 Hz, N-(C-
CH3)2).

13C NMR δC (125 MHz, DMSO, TMS)(ppm): 195.98
(>C=O), 159.94 (Ar-C-N(Et)2), 153.10 (Ar-C-OH), 151.20
23 (-C=N), 148.12 (Ar-C-N=N), 143.76 (Ar-C-N=N),
138.57 (Ar-C-NH), 135.97 (Ar-C), 133.47 (Ar-C-NH),
132.52 (Ar-C), 131.50 (Ar-C), 131.27 (Ar-C), 130.72 (Ar-
C), 129.89 (Ar-C), 128.86 (Ar-C), 128.33 (Ar-C), 126.84
(Ar-C), 125.12 (Ar-C), 124.27 (Ar-C), 121.97 (Ar-C),
121.08 (Ar-C), 119.05 (Ar-C), 114.55 (Ar-C), 111.44 (Ar-
C), 107.44 (Ar-C), 97.39 (Ar-C), 44.87 (N,N diethyl-CH2),
13.18 (N,N diethyl-CH3).

FT-IR: 3286 (N-H stretch imidazole), 2973 (O-H
stretching phenolic).

1688 (C=O stretching), 1640 (C=C stretching), 1521 (N=N
stretching), 1269 (C-N stretch) cm−1.

Mass (m/z) : Calculated 490.22, [M + H] + for
C30H28N5O2

+ found 490.2, [M +H] +.
Elemental analysis (%) - Found: C, 73.6; H, 5.5; N,

14.3%; molecular formula C30H27N5O2 calculated:C, 73.60;
H, 5.56; N, 14.31%.

5c:Phenyl(2-phenyl4-(7-(diethylamino)-4-hydroxy-2H-
chromen-2-one)1H-enzo[d]imidazol-5-yl)methanone.

Yield: 69%, Melting point: 139–142 °C.
1H-NMR δH (500MHz, DMSO, TMS) (ppm): 13.02 (1H, s,

Hydrogen bonding), 7.98 (2H, d, J = 8.5Hz, Ar-H), 7.56 (3H, d,
J = 8.5 Hz, Ar-H), 7.45 (2H, d, J = 7.5 Hz, Ar-H), 7.36 (2H, d,
J = 7.5 Hz, Ar-H), 7.34 (1H, s, Ar-H), 7.27 (2H, d, J = 7.5 Hz,
Ar-H), 7.24 (1H, s, Ar-H), 7.20 (1H, d, J = 9.0 Hz, Ar-H), 6.22
(1H, d, J = 9.0 Hz, Ar-H), 5.74 (1H, s, N-H), 3.15 (4H, q, J =
7.0 Hz, N-(CH2)2), 0.84 (6H, t, J = 7.0 Hz, N-(C-CH3)2).

13C NMR δC (125 MHz, DMSO, TMS)(ppm): 196.30
(>C=O), 160.26 (Ar-C-N(Et)2), 157.37 (-CO-O), 153.42 (Ar-
C-OH), 151.52 (-C=N), 148.44 (Ar-C-N=N), 144.08 (Ar-C-
N=N), 138.89 (Ar-C-NH), 136.29 (Ar-C), 133.79 (Ar-C-NH),
132.84 (Ar-C), 131.81(Ar-C), 131.59 (Ar-C), 131.03 (Ar-C),

130.21 (Ar-C), 129.18 (Ar-C), 128.65 (Ar-C), 127.15 (Ar-C),
125.44 (Ar-C), 124.59 (Ar-C), 122.29 (Ar-C), 121.40 (Ar-C),
119.37 (Ar-C), 114.87 (Ar-C), 112.15 (Ar-C), 107.76 (Ar-C),
102.83 (Ar-C), 97.71 (Ar-C), 92.78 (Ar-C), 45.19 (N,N diethyl-
CH2), 13.49 (N,N diethyl-CH3).

FT-IR: 3549 (N-H stretch imidazole), 3064 (O-H
stretching phenolic), 1694 (C=O stretching), 1642 (C=C
stretching), 1526 (N=N stretching), 1274 (C-N stretch) cm−1.

Mass (m/z) : Calculated 558.21, [M + H] + for
C33H28N5O4

+ found 558.2, [M +H] +.
Elemental analysis (%) - Found: C, 71.1; H, 4.8; N,

12.5%; molecular formula C33H27N5O4 calculated: C, 71.08;
H, 4.88; N, 12.56%.

General Procedure of Dyeing

Nylon and polyester fabrics dyeing were carried out using 2%
shade depth and material to liquor ratio of 1:30. Total dye
solution calculated on the weight of fabric. As azo disperse
dyes were insoluble in water, hence dissolved in 5 ml of N,N-
dimethylformamide followed by dilution with 15 ml of buff-
ered solution of pH 4 to 5 by using acetic acid in water.
Ultrasonication for 30 min resulted in thefine dispersion of
the dye in water. Saragen 50 was used as a dispersing agent.
Nylon and polyester fabrics were dyed using the above dye
solution. Dyeing was started at room temperature and raises to
130 °C (PET), 95 °C (Nylon) respectively temperatures for
50 min, and cooled to 60 °C. The dyed fabrics were rinsed
with warm & cold water. Reduction clearing treatment was
given only Polyester fabric using 2 g/l soda ash (Na2CO3), 2 g/
l Sodium hydrosulphite and 1 g/l soap solution at 70 °C for
30 min (1:50) then treated fabrics were rinsed with cold water
and allowed to dry in the open air.

Results and Discussion

Spectroscopic Characteristics

Absorption spectra of synthesised azo dyes were recorded in
different polarity solvents (Fig. 1). Tabulated results in Table 1
suggested that dye 5a (λmax = 504 nm to 516 nm) and its
parent analogue 5a’ (CI Solvent Yellow 14) (λmax =
472 nm to 476 nm) exhibited negative solvatochromism in
absorption properties. On the other hand, dyes 5b (λmax =
498 nm to 513 nm) and 5c (λmax = 497 nm to 511 nm) and
their respective parent analogues dyes 5b’ (λmax = 364 nm to
376 nm) and 5c’ (λmax = 456 nm to 460 nm) showed positive
solvatochromism in absorption properties. Similarly, 5a, 5b
and 5c on excitation from 497 nm to 516 nm exhibited signif-
icant solvatochromism in emission properties (Fig. 2). Dye 5a
and is emitting with negative solvatochromism from 569 nm
to 602 nm, while dyes 5b and 5c is emitting with positive
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solvatochromism from 565 nm to 627 nm in varying polarity
solvents. 5a, 5b and 5c showed very high molar extinction
coefficients (ε) as compared to parent dye 5a’, 5b’ and 5c’,
respectively suggested increased in conjugation and the chro-
mophore area.

Dyes 5a, 5b and 5c exhibited a small peak at around
340 nm which corresponds to the benzophenone unit. Stokes
shift (Δϑ) of 5a decreases from 2769 cm−1 (toluene) to
2267 cm−1 (DMF). On the other hand, Stokes shift (Δϑ) of
5b and 5c increases from 2444 cm−1 (toluene) to 2937 cm−1

(DMF) and from 2422 cm−1 (toluene) to 3621 cm−1 (DMF),
respectively (Table 1). All the synthesised dyes have a
significant effect of solvent polarity on Stokes shifts (Δϑ).
5a exhibited minimum Δϑ in DMF (2267 cm−1) while
maximum in toluene (2769 cm−1). On contrary, 5b and 5c
exhibited minimum Δϑ in toluene (2444 cm−1) and
(2422 cm−1) while maximum Δϑ in DMF (2927 cm−1) and
(3621 cm−1) respectively.

Among all the parent dyes, only 5c’ is weakly emissive in
nature and show positive solvatochromism. The dye 5c’ ex-
hibited significantly larger Stokes shifts having minimumΔϑ
in toluene (3377 cm−1) while maximum in acetonitrile
(5662 cm−1) (Table 1). Hence, it can be concluded that
significant effect of substituents on spectroscopic
characteristics of the dyes have been observed.

It is reported that tautomer forms of monoazo dyes in equi-
librium can be shifted towards hydrazone form by treating

these dyes with acid titrations [56]. Further it is also described
that azo bridge get protonated in acidic medium resulted into
formation of azonium cation [57]. So in order to get into the
details of possible forms of the dyes, trifluoroacetic acid (acid)
was added to dyes solutions (in methanol) resulting into a new
strong red shifted absorption band in absorption spectra at
around 582 nm to 592 nm region (Supporting Information
Fig. S1 (a)). In the acidic medium highly expected protonated
azonium cation is formed [57].

Stability study was performed under Ultraviolet irradiation
(at 254 nm) for better understanding of stabilities of azo and
protonated forms of the dyes. Stabilities studies of protonated
forms carried out at pH = 3 (in methanol) suggested that pro-
tonated forms of 5b and 5c are stable under irradiations. Azo
forms of 5a, 5b and 5c dyes are also found to be stable under
ultraviolet irradiation (Supporting Information Fig. S1 (b)).

Estimations of Photo-Physical Properties

The role of solvent polarity and different substituents for al-
tering spectroscopic processes have been estimated in terms of
the radiative rate constant (kr), then on-radiative rate constant
(knr) and life time τ (ns) evaluations. Relative fluorescence
quantum yields (Фf) of 5a, 5b and 5c were obtained by using
Rhodamine 6G (Фf = 0.94 in Ethanol) as standard. knr> > kr
for all dyes indicate so much loss of energy during non-
radiative processes. kr are found to be in good agreement with

Fig. 1 Normalized Absorption spectra of 5a’, 5a, 5b and 5c dyes in different solvent
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low fluorescence quantum yield (Фf). Life time (τ) has not
shown significant variations with the varying polarity of the
solvents (Table 2).

Solvent Polarity Graphs

Statistical evalution for solvatochromic properties of 5a, 5b
and 5c is provided by solvent polarity functions like Lippert-
Mataga, Weller and Bhakshiev. Lippert-Mataga plot [58] has
shown very good linearity of Stokes shift vs. ƒLM(ε,η) func-
tions with excellent regression coefficients (R2 ≥ 0.9834) sug-
gested a significant effect of solvent polarity on Stokes shift.
Stokes shift decreases for 5a, while increases for 5b and 5c
with increasing solvent polarity (Fig. 3a). Weller’s equation
allows estimation of the excited state dipole moments [59] and
gave the plot of emission frequency (cm−1) versus Weller’s
function [60]. Weller plot showed distinct positive slope with
excellent regression coefficients (R2 = 0.9853) for 5a indicat-
ed negative solvatochromism. On the other hand, anegative
slope with excellent regression coefficients of R2 = 0.9868
and R2 ≥ 0.9960 for 5b and 5c indicated positive
solvatochromism (Fig. 3b). Not only Stokes shift and
emission properties were affected by solvent polarity, but

also absorption is also sensitive to the solvent polarity. So
we utilised Bakhshiev plot which depends on additive
frequencies of absorption and emission with solvent polarity
functions [60]. Bakhshiev plot showed significant positive
slope for dyes 5a (R2 = 0.9939), and significant negative
slope for dyes 5b (R2 = 0.9940) and 5c (R2 = 0.9958) (Fig.
3c). Hence we can reveal that significant effect of
naphthalene and N,N-diethylamine substituents were
observed, resulting into negative solvatochromism for dye
5a in both absorption and emission while opposite trend of
positive solvatochromism was observed for 5b and 5c in both
absorption and emission.

Colour Properties of the Dyes

Dyes 5a, 5b, 5c, 5a’, 5b’and 5c’were applied at 2% shade
with MLR 1:30 on nylon and polyester respectively. Dyeing
was evaluated using the CIELAB system in terms of L*, a*
and b*.

K/S values were determined by using below eq. 1 [61].

K

S
¼ 1−Rð Þ2

2R
ð1Þ

Table 1 Spectroscopic characteristics of 5a, 5b, 5c, 5a’, 5b’ and 5c’ dyes in different solvents

Dye Entry Toluene Dioxane CHCl3 EtOAc MeOH Acetonitrile DMF

5a’ λmax (nm) 476 476 475 474 473 473 472

ε (mM−1 cm−1) 7.4 9.2 9.8 9.6 10.4 10.2 7.6

5a λmax (nm) 516 515 513 510 507 506 504

ε (mM−1 cm−1) 8.8 15.0 12.1 12.0 14.2 12.8 8.4

λemm (nm) 602 599 593 587 579 576 569

Δϑ (nm) 86 84 80 77 72 70 65

Δϑ (cm−1) 2769 2723 2630 2572 2453 2402 2267

5b’ λmax (nm) 364 366 367 370 372 373 376

ε (mM−1 cm−1) 9.4 9.1 9.0 9.5 8.9 9.3 9.6

5b λmax (nm) 498 500 503 506 509 510 513

ε (mM−1 cm−1) 24.0 29.0 27.0 27.0 32.0 29.0 22.0

λemm (nm) 567 571 577 585 594 597 604

Δϑ (nm) 69 71 74 79 85 87 91

Δϑ (cm−1) 2444 2487 2550 2669 2811 2857 2937

5c’ λmax (nm) 456 457 453 457 463 460 460

ε (mM−1 cm−1) 9.9 10.9 9.8 9.5 10.2 10.1 10.4

λemm (nm) 539 581 588 582 613 622 621

Δϑ (nm) 83 124 135 125 150 162 161

Δϑ (cm−1) 3377 4670 5068 4700 5285 5662 5636

5c λmax (nm) 497 499 502 505 508 509 511

ε (mM−1 cm−1) 22.0 30.0 23.0 24.0 12.0 15.0 19.0

λemm (nm) 565 570 586 594 605 616 627

Δϑ (nm) 68 71 84 89 97 107 116

Δϑ (cm−1) 2422 2496 2855 2967 3156 3413 3621
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where, R is the reflectance of coloured samples and K and S
are the absorption and scattering coefficients respectively.

Comparative K/S values of Dyes all the dyes dyed on nylon
are tabulated in Table 3. 5c showed highest K/S compared to

other dyes due to presence of presence of extended conjugated
fluorescent coumarin core. Phenyl(1H-benzo[d]imidazol-5-
yl)methanone based 5a, 5b and 5c dyes have good colour
strengths compared to respective parent analogues 5a’, 5b’

Fig. 2 Normalised Emission spectra of dyes 5a (excited at 504–516 nm), 5b (excited at 498–513 nm) and 5c (excited at 497–511 nm) in different
solvents

Table 2 Estimated spectroscopic (emission) characteristics of 5a, 5b, 5c and 5c’ in different solvent

Dye Entry Toluene Dioxane CHCl3 EtOAc MeOH Acetonitrile DMF

5a Фf 0.0127 0.0211 0.0101 0.0184 0.0173 0.0176 0.0149

τ (ns) 0.12 0.13 0.12 0.13 0.14 0.13 0.15

Kr (s-1) 1.0 × 108 1.6 × 108 0.8 × 108 1.4 × 108 1.2 × 108 1.3 × 108 1.0 × 108

Knr(s
−1) 8.1 × 109 7.8 × 109 8.3 × 109 7.6 × 109 7.2 × 109 7.4 × 109 6.6 × 109

5b Фf 0.0183 0.0367 0.0219 0.0288 0.0321 0.0214 0.0177

τ (ns) 0.09 0.13 0.09 0.12 0.12 0.09 0.09

Kr (s
−1) 2.0 × 108 2.9 × 108 2.3 × 108 2.5 × 108 2.8 × 108 2.3 × 108 2.0 × 108

Knr(s
−1) 1.1 × 1010 0.7 × 1010 1.0 × 1010 0.8 × 1010 0.8 × 1010 1.0 × 1010 1.2 × 1010

5c’ Фf 0.0094 0.0108 0.0131 0.0157 0.0011 0.0028 0.0024

τ (ns) 0.11 0.14 0.10 0.09 0.12 0.14 0.14

Kr (s
−1) 1.8 × 108 2.1 × 108 1.6 × 108 1.4 × 108 1.7 × 108 1.2 × 108 2.5 × 108

Knr(s
−1) 8.1 × 109 7.6 × 109 8.6 × 109 7.8 × 109 8.4 × 109 8.1 × 109 7.1 × 109

5c Фf 0.0367 0.0501 0.0346 0.0411 0.0239 0.0278 0.0339

τ (ns) 0.13 0.11 0.13 0.12 0.13 0.13 0.14

Kr (s
−1) 2.7 × 108 4.7 × 108 2.6 × 108 3.4 × 108 1.9 × 108 2.1 × 108 2.5 × 108

Knr(s
−1) 7.2 × 109 8.9 × 109 7.3 × 109 8.0 × 109 7.6 × 109 7.3 × 109 7.1 × 109
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and 5c’. Good K/S strength of a dyeing and higher values of
present dyes represent darker and more saturated colours.

Comparative K/S values of all the dyes dyed on
polyester are tabulated in Table 4. 5a showed highest
K/S compared to other dyes due to presence of presence
of extended conjugated fluorescent coumarin core. Dyes
5a, 5b and 5c are having higher K/S values compared
to their respective analogues 5a’, 5b’ and 5c’. Good
K/S strength of a dyeing and higher values of present
dyes represent darker and more saturated colours.

Light Fastness Properties

Evaluations of light fastness properties of dyes were per-
formed by comparative light fastness measurements of before
and after exposure of dyed polyester and nylon samples to the
xenon lamp. Same dyed sample was used for measurement in
order to have more precision and better comparison of light
fastness values. Half part of the sample was exposed to a
xenon lamp for 48 h while the other half was covered during
the light fastness determination. The samples were then

Fig. 3 Solvent polarity plots: a Lippert-Mataga, b Weller plot and c Bakhshiev plot of 5a, 5b and 5c dyes for different polarity solvents

Table 3 Color coordinates (CIELAB) of 5a, 5b, 5c, 5a’, 5b’ and 5c’
dyes for Nylon dyeing

Dye L* a* b* c* h0 K/S

5a’ 41.1 38.9 39.5 55.4 45.4 19.06

5a 31.2 26.3 18.4 32.1 34.9 27.61

5b’ 39.2 33.9 37.8 52.5 42.3 13.87

5b 41.1 16.9 45.6 48.7 69.6 22.56

5c’ 43.1 41.5 44.4 56.7 49.3 24.06

5c 57.9 35.1 65.7 74.5 61.8 36.60

Table 4 Color coordinates (CIELAB) of 5a, 5b, 5c, 5a’, 5b’ and 5c’
dyes for Polyester dyeing

Dye L* a* b* c* h0 K/S

5a’ 57.9 46.0 76.6 89.4 58.9 32.65

5a 41.2 54.5 43.7 69.9 38.6 52.59

5b’ 53.8 47.2 73.7 89.6 57.9 29.95

5b 41.3 46.8 41.5 62.6 41.6 44.69

5c’ 49.9 43.3 70.8 85.7 55.8 26.82

5c 43.1 44.7 49.7 66.9 48.0 39.09
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compared with the Blue wool standard scale and fastness rat-
ings were given. On comparing light fastness values of dyed
polyester and dyed nylon for any dye, it can be concluded that
dyed polyester sample have slightly better light fastness com-
pared to dyed nylon sample. Moreover, light fastness of all the
synthesized dyes (5a, 5b and 5c) varies from good to very
good for dyed polyester and dyed nylon samples (Table 5).
It can be further concluded that synthesized dyes showed bet-
ter light fastness as compared to commercially available re-
spective analogues 5a’, 5b’ and 5c’ dyes.

Sublimation Fastness

In order to get the sublimation fastness, dyed samples were
sandwiched between two undyed cloth pieces (cotton and poly-
ester/nylon) andwere subjected to 150 °C, 180 °C and 210 °C for
30 s in a sublimation fastness tester. Two parameters, i.e. colour
change (cc) and colour staining (on undyed cloth) [cs] were rated.
Synthesized dyes 5a, 5b and 5c showed better sublimation fast-
ness as compared to previously available 5a’, 5b’ and 5c’ deriv-
ative at all the temperatures (Table 5) on polyester and nylon.
Dyes 5a, 5b and 5c exhibited excellent sublimation fastness for
(150 °C, 180 °C, 210 °C) on both polyester and nylon.

DFT Study

Geometry Optimisation and Calculated Energies of Tautomer
Forms

There is a possibility of the existence of tautomer forms that is
evident from shoulder peaks in the absorption spectra of these
dyes (Fig. 1). Optimised structures of Azo andHydrazone forms
of dyes 5a at B3LYP/6-31G(d) in chloroform have shown in
supporting information Fig. S2. It is clearly observed that both
the forms have a significant difference at the 47H atom. An azo
form of CI Solvent Yellow 14 (5a’) and 5a are stable than the

corresponding hydrazone forms. On the other hand hydrazone
forms of 5b and 5c are stable than azo forms (Table 6).

Frontier Molecular Orbital Energies

Energy levels of frontier molecular orbitals i.e. HOMO, LUMO
and their spatial distributions can give insight into excitation
properties and the idea of the ability of hole or electron injection,
which in turn allowed to understand photostability and spectro-
scopic characteristics of the dyes. In order to get into the stability
details of azo and hydrazone forms of the dyes, comparative
energy levels and electronic densities need to study. Pictorial
diagram of FMO’s suggested that the electron densities at
HOMOs of CI Solvent Yellow 14 (5a’) and 5a dyes were
located on the N=N motif, while electron densities on the
LUMOs were found to be localised on N=N motif periphery
of the azo forms of the dyes (Fig. 4a). On the other hand, elec-
tron densities at HOMOs of 5b and 5c dyes were located on
N,N-diethylamino, -N=N- and imidazole motif. Electron densi-
ties at the LUMOs were found to be localised mostly on the
>C=O motif of the azo forms of the dyes. This suggested that
there is good charge transfer was observed in 5b and 5c dyes
resulting into significant positive solvatochromism. HOMO-
LUMO energy gap is significantly reduced in 5a compared to
CI Solvent Yellow 14. Moreover, there is lowering of HOMO
and LUMO energy levels of 5a compared toCI Solvent Yellow
14 clearly suggested red-shifted absorption maxima in 5a.Dyes
5b and 5c are also having similar energy levels as compared to
5a. So, improved spectroscopic characteristics were observed
for dyes 5a, 5b and 5c compared to 5a’ dye.

HOMO-LUMO electronic densities of hydrazone forms of
5a’ and 5a showed truncated delocalization of electronic den-
sities compared to corresponding azo forms of dyes (Fig. 4b).
Moreover, HOMO energy levels of azo forms of 5a’ and 5a
are more stabilized than hydrazone forms. On the other hand,
HOMO and LUMO electronic densities of hydrazone forms

Table 5 Light and sublimation fastness ratings of 5a, 5b, 5c, 5a’, 5b’ and 5c’ dyes for dyed nylon and polyester

Dye Polyester Nylon

Light fastness rating Sublimation fastness rating Light fastness rating Sublimation fastness rating

(1–8)* (1–5)* (1–8)* (1–5)*

150 °C 180 °C 210 °C 150 °C 180 °C 210 °C

5a’(Solvent Yellow 14) 5/6 3 2/3 2 5 2/3 2 1/2

5a 7 4/5 4 3/4 6/7 4 3/4 3

5b’ 6 2/3 2 1/2 5/6 3 2/3 2

5b 7 4/5 4 3/4 6/7 4 3/4 3

5c’ 6 2/3 2/3 2 5 3 2/3 2

5c 7 4/5 4 3/4 6/7 4 3/4 3/4
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of 5b and 5c dyes are comparatively same as that of their azo
forms, but HOMO energy levels of hydrazone forms are more
stabilized than their corresponding azo (Fig. 4b).

Calculated HOMO and LUMO energy levels for the azo
forms of dyes in solvents of varying polarity suggested that there
were an increase in the energy gap for dyes 5a (2.850 to
2.880 eV) and CI Solvent Yellow 14 (5a’) (3.723 to
3.752 eV) with increasing solvent polarity, correlated with neg-
ative solvatochromism. On the other hand, 5b (2.729 to
2.704 eV) and 5c (2.766 to 2.745 eV) showed decrease in the
energy gap with increase in the solvent polarities correlated with
the positive solvatochromism (Supporting Information Fig.
S3a). Similar trends were observed for hydrazone forms of the
dyes. 5a’ and 5a dyes showed slight elevation of HOMO energy
levels while 5b and 5c showed lowering of HOMO levels

Table 6 Comparative energies of azo and hydrazone forms of 5a’, 5a,
5b and 5c dyes in Chloroform at B3LYP/6-31G(d)

Compound name E/Hartree ΔE/kJ mol-1 ΔG/Hartree

5a’Azo −801.388745 0 −801.440571
5a’Hydrazone −801.384091 12.221404 −801.445106
5a Azo −1524.261226 0 −1524.345413
5a Hydrazone −1524.256309 12.912042 −1524.35064
5b Azo −1583.128132 0.845572 −1583.22673
5b Hydrazone −1583.128454 0 −1583.227169
5c Azo −1847.882662 28.221622 −1847.988914
5c Hydrazone −1847.893409 0 −1848.000234

Fig. 4 (a) Comparative molecular orbitals and energy gaps of azo forms of 5a’, 5a, 5b and 5c dyes optimized at B3LYP/6-31G(d) in chloroform (b)
Comparative molecular orbitals and energy gaps of hydrazone forms of 5a’, 5a, 5b and 5c dyes optimised at B3LYP/6-31G(d) in chloroform

J Fluoresc (2018) 28:639–653 649



compared to their corresponding azo forms. LUMO energy
levels and HOMO-LUMO band gap is lowered in all the
hydrazone forms of the dyes compared to their corresponding
azo forms (Supporting Information Fig. S3b).

TD-DFT

Ground state optimised geometry of dyes at ground state in sol-
vents of various polarities was subjected to TD using B3LYP/6-
31G(d) function. At least 10 excited states were calculated for
each molecule. Comparative absorption maxima, computed ver-
tical excitations, oscillator strength and their orbital contributions
in chloroform are listed in Table 7. The results of DFT and TD-
DFT suggest that there was the observable influence of (1H-
benzo[d]imidazol-5-yl)(phenyl)methanone group on the absorp-
tion spectra of the dyes. Computed values for these dyes are in
good agreement with the experimental observations.

Electrophilicity Index

We have calculated the stability of the dyes mathematically
using computationally deduced energies at B3LYP/6-31G(d).
For this reason, the electrophilicity index (ω) was utilised. As
defined by Parr et al. [62, 63], this electrophilicity index mea-
sures the propensity of the moiety to absorb electrons and is
mathematically formulated as:

ω ¼ μ2

2η
ð2Þ

where,

ω electrophilicity index
μ chemical potential
η chemical hardness

μ ¼ −
IP þ EAð Þ

2
ð3Þ

η ¼ IP−EAð Þ
2

ð4Þ

where, IP = Ionization Potential, i.e., the change in the energy
when an electron is removed from the system.

EA = Electron Affinity, i.e., the change in the energy when
an electron is added to the system

μ ¼ ELUMO þ EHOMOð Þ
2

ð5Þ

η ¼ ELUMO−EHOMOð Þ
2

ð6Þ
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where,ELUMO is the energy of the lowest unoccupied molec-
ular orbital and EHOMO is the energy of the highest occupied
molecular orbital.

ω� ¼ ωþ þω− ð7Þ
where,

ωþ ¼ ELUMOð Þ2
2 ELUMO−EHOMOð Þ ð8Þ

and

ω− ¼ EHOMOð Þ2
2 ELUMO−EHOMOð Þ ð9Þ

Among azo and hydrazone forms of the dyes the stable con-
formation of dyes were justified by calculating net electrophi-
licity index (ω±) [1]. The net electrophilicity index (ω±) allowed
us to predict comparative stabilities of azo and hydrazone tau-
tomer forms of the dyes. Net electrophilicity index (ω±) sug-
gested that azo form of 5a’ and 5a dye are slightly more stable
than hydrazone forms. On the other hand, the exactly reverse
trend was observed for 5b and 5c dyes with hydrazone forms
were slightly more stable than azo forms (Table 8).

Conclusion

Three novel phenyl(1H-benzoimidazol-5-yl)methanone based
fluorescent monoazo disperse dyes were successfully synthe-
sised. The dyes 5a, 5b and 5c exhibited red-shifted absorption
maxima from 497 nm to 516 nm and much higher molar ex-
tinction coefficient as compared to compared to parent dyes 5a’,
5b’ and 5c’ respectively. The dyes 5a, 5b and 5c are emitting in
the far-red region (565–627 nm) while only 5c’ is weakly emit-
ting (539 to 621 nm). Dye 5a and 5a’ showed negative
solvatochromism, while dyes 5b, 5c, 5b’ and 5c’ showed posi-
tive solvatochromism. Solvent polarity graphs are in good
agreement with solvatochromic data. Dyes 5a, 5b and 5c on
dyed polyester and nylon showed very good light and sublima-
tion fastness. DFTcalculated energies, electrophilicity index and
Frontier Molecular Orbitals calculations of 5a, 5b and 5c are in
good agreements with the experimental observations. 5a, 5b
and 5c are emission in nature and has good fastness properties
on fabrics, so can find the potential applications in high-
visibility colour dyeing of textile products [64].
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