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Abstract A new ratiometric fluorescent sensor (DQO) based
on N,N′-Di(quinolin-8-yl) oxalamide has been designed and
synthesized for selective detection of Zn2+. The fluorescence
ratio (I536 nm/I450 nm) of DQO was enhanced 10-fold when
Zn2+ was present in a buffer aqueous solution at pH 8.66.
The sensor showed linear response toward Zn2+ in the con-
centration range 0–15 μM, and the detection limit was calcu-
lated to be 2.4 μM. A Job’s plot implied the formation of a
DQO/Zn2+ complex with 1:1 stoichiometry, and the apparent
association constant of DQO/Zn2+ complex was computed to
be 1.5 × 104 M−1.
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Introduction

Zinc is an essential trace element for all organisms [1–3].
Thus, a variety of methods to detect Zn2+ have been devel-
oped, such as photometric determination [4], atomic

absorption spectrometry [5] and laser ablation-inductively
coupled plasma-mass spectrometry [6]. However, to some ex-
tent, these methods are hampered by the sophisticated pre-
treatment procedures and/or expensive instrumentation, and
they are inappropriate for in-situ non-destructive monitoring
[7]. Considering the high selectivity, sensitivity, and relatively
simple handling, fluorescence detection has been widely im-
plemented in biology and clinical medicine, especially for the
detection of zinc ion [8–10].

Although fluorescent chemical sensor has many advan-
tages, some limitations still exist in these single emission
intensity-based sensors, such as influences of sensor concen-
tration and excitation intensity, and errors from detection en-
vironment [11]. Fortunately, ratiometric fluorescent sensors
can overcome the limitation of intensity-based fluorescent
sensors because they usually obtain two emission peaks on
the same excitation wavelength and the ratio of the two
fluorescence intensities can eliminate the interference from
sensor concentration, excitation light source, and background
fluorescence [12].

Zinc and cadmium are in the same group of the periodic
table and have similar properties. Therefore, similar fluores-
cence changes including the change of intensity and the shift
of wavelengths are usually observed when they are coordinat-
ed with fluorescent sensors [13, 14]. Accordingly, it is critical
to develop the new fluorescent sensors to detect Zn2+ without
interference of Cd2+ [9].

In general, most fluorescence sensors have two compo-
nents, a fluorophore and a binding site. The reported
fluorophores include quinoline [15], rhodamine [16],
naphthalimide [17], BODIPY [18] and so on. Among these
sensors, amidoquinoline-based sensors [19–22] have obtained
widely attention because of good water solubility, easy mod-
ification and well-biocompatibility. Thus, many researchers
have made great effort to study 8-carboxamidoquinoline-
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based sensors [23–29]. But it is worth mentioning that the
above-mentioned sensors based on quinoline were
acetamidoquinoline derivatives. Recently, we found an asym-
metrical oxalamidoquinoline derivative could serve as a fluores-
cence turn-on sensor for Zn2+ in solution and living cells [30].

Herein, a new fluorescent sensor that was a symmetrical
oxalamidoquinoline derivative, namely N,N′-Di(quinolin-8-
yl)oxalamide (DQO), was synthesized by one-step reaction
of 8-aminoquinoline and diethyl oxalate. The results showed
DQO was a fluorescence ratiometric sensor for Zn2+ and
could prevent the interference of Cd2+.

Experimental

Reagents and Apparatus

All solvents were obtained from commercial suppliers (ana-
lytical grade) and used as received without further purifica-
tion. Water was purified by Milli-Q purification system. The
metal ion solutions (0.050 M) were obtained from NaCl, KCl,
Mg(ClO4)2, Ca(NO3)2, Cr(NO3)2, FeSO4, CoSO4, NiSO4,
Cu(NO3)2, Zn(NO3)2, AgNO3, CdSO4, HgCl2, Pb(NO3)2,
and AlCl3. All of the detections of metal ions were operated
at pH 8.66 maintained with tris-HClO4 buffer (10 mM) in
methanol/water (9:1, v/v) mixed solvent. All fluorescence data
were recorded with the excitation of 330 nm, and the slit
widths of excitation and emission were 2.5 nm.

NMR spectra were recorded on a Bruker Avance-600 spec-
trometer and referenced to internal TMS. ESI-MS spectrum
was measured with Agilent 6310 ESI-Ion Trop Mass spec-
trometer. FT-IR spectrum was measured with Nicolet
Avatar-370. Melting point was got on X-6 μ melting point
apparatus. Fluorescence spectra and UV-vis absorption spec-
tra were recorded on a Hitachi F-7000 and Puxi TU-1901
spectrophotometers, respectively. All pH measurements were
made using a Sartorius basic pH-meter PB-10.

Synthesis of DQO

8-Aminoquinoline 501 mg (3.46 mmol) and diethyl oxa-
late 257 mg (1.76 mmol) were mixed in a 5 mL round-
bottomed flask. Then the mixture was stirred for 1.7 h at
260 °C to obtain a black solid which was washed with
diethyl ether, and filtered. The filter-cake was further puri-
fied by column chromatography on silica gel with chloro-
form as eluent to obtain N,N′-di(quinolin-8-yl)oxalamide
(DQO), white needle-like crystals. Yield: 207 mg
(37.8%), Mp: 311.7–313.6 °C. 1H NMR (600 MHz,
DMSO-d6): δ ppm 11.60 (s, 1H), 9.04 (d, J = 3.0 Hz,
1H), 8.76 (d, J = 7.8 Hz, 1H), 8.49 (d, J = 7.8 Hz, 1H),
7.83 (d, J = 7.8 Hz, 1H), 7.72 (t, J = 6.3 Hz, 1H). 13C NMR
(150 MHz, CDCl3): δ ppm 158.0, 149.0, 139.1, 136.1,
133.2, 128.0, 127.1, 123.1, 122.0, 117.1. FT-IR (KBr) v
cm−1: 3311, 1613, 1518 and 496–862. ESI-MS m/z [M +
H+] Calcd. 343.1117, Found 343.1192. The synthesis of
DQO was shown in the Scheme 1.
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Scheme 1 Synthesis of DQO
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Fig. 1 Fluorescence spectra (a) and fluorescence intensities (b) at 536 nm of DQO (10 μM) with different metal ions (50 μM). Inset: Visible emission
observed from DQO and DQO/Zn2+. (methanol/water =9:1, v/v, 10 mM Tris-HClO4, pH = 8.66, λex = 330 nm)
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Results and Discussion

Cation-Sensing Properties of DQO

Fluorescence and absorbance spectra of DQO were got upon
treatment with different common metal ions (5.0 equiv.) in
methanol-water Tris-HClO4 buffer solutions. As shown in
Fig. 1, DQO shows weak emission centered at 450 nm with
a low quantum yield, 0.0015. In presence of different common
cations, namely Na+, K+, Mg2+, Ca2+, Cr3+, Fe2+, Ni2+, Co2+,
Cu2+, Ag+, Cd2+, Hg2+, Pb2+, and Al3+, no obvious changes in
emission properties were observed. However, a significant
fluorescence change was found that a new fluorescence peak
at 536 nm appeared dramatically, when Zn2+ was added.

As illustrated in the inset of Fig. 1a, a fluorescent color
change from blue to yellow-green could be seen by the naked
eye as Zn2+ was added and the solution was irradiated with a
365 nm UV lamp. The absorbance spectra of DQO were

shown in the Fig. S1 in present of different common cations.
After adding different metal ions in the system, the absorption
spectra of the compound will be changed. When Co2+, Ni2+,
Cu2+, Zn2+ added, respectively, a new absorption peak was
emergence at 329 nm, 372 nm, 387 nm, 360 nm. After added
Fe2+, the absorption at 330 nm was significantly enhanced.

The fluorescence intensity of DQO at 536 nm was al-
most enhanced 22-fold in present of Zn2+ in Fig. 1b, while
its fluorescence intensities at 536 nm were scarcely
changed by other metal ions. More importantly DQO has
no response to Cd2+, which is akin to Zn2+ and has closed-
shell d10 configuration [31, 32].

Effect of pH on the Sensor Performance

The effect of pH on the fluorescence of DQO in the absence
and presence of Zn2+ was studied to eliminate the disturbance
by the variation of pH values during detection. As shown in
Fig. 2, when pH value ranged from 2 to 6.8, the values of
I536nm/I450 nm were almost overlapping, which means that
DQO cannot response to Zn2+ in this pH value range. Then
it increased rapidly with the increasing of pH value when Zn2+

is present and the maximum appears at about pH 9. This is due
to the deprotonated of nitrogen atom in amide group and the
formation of the complex DQO/Zn2+. So that, 8.66 was cho-
sen as test pH value.

Zn2+-Titration and Spectral Responses

The titration experiments were carried out by adding the
increasing amounts of Zn2+ to a solution of DQO. The
emission spectrum of free DQO displays a broad band with
a maximum at 450 nm in an aqueous Tris-HClO4 buffer
solution (Fig. 3a). When Zn2+ was added to the solution of
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Fig. 2 The pH titration profiles of DQO and DQO/Zn2+ complex in
solution (methanol/water =9:1, v/v)
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Fig. 3 Fluorescence (a) and absorbance (b) responses of DQO (10 μM)
upon addition of Zn2+ in Tris-HClO4 buffered aqueous solution
(methanol/water =9:1, v/v; pH = 8.66; λex = 330 nm.). Inserts: the

fluorescence rate (I536 nm/I450 nm) (a) and absorbance intensity (b) of
DQO as a function of Zn2+ concentration
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DQO, an 86 nm red-shifted band was observed (from
450 nm to 536 nm). The inset in Fig. 3a exhibited the
dependence of the intensity ratios of emission at 536 nm
and 450 nm (I536 nm/I450 nm) on Zn2+, and it got stabilized
after the amount of Zn2+ ions reached 3 equiv. with a de-
fined emission point. A satisfactory linear relationship be-
tween I536 nm/I450 nm and Zn2+ concentration was observed
and the linear equation was found to be y = 0.29276 +
0.059× (linearly dependent coefficient: R2 = 0.9800), as
shown in Fig. 4. The quantitative detection concentration
range is 0–15 μM. The limit of detection (LOD) was eval-
uated to be 2.4 × 10−6 M with 3σ/slope [33, 34]. As shown
in Fig. 3B, UV–vis spectra of DQO exhibited an absorp-
tion band at 235 nm as well as 330 nm. Upon addition of
Zn2+, the absorbance both at 235 nm and 330 nm decreased
obviously, whereas new absorption peaks appeared at
250 nm and 360 nm with three isosbestic points at
245 nm, 303 nm and 345 nm, respectively. This phenom-
enon can be construed as the complex and monomer both
in the presence of the ground state [35].

Binding Model and Bonding Strength

To determine the stoichiometry of DQO and Zn2+ in the com-
plex, Job’s method was employed by using the emission
changes at 536 nm as a function of molar fraction of Zn2+.
From Fig. 5, the maximum emission was observed when the
molar fraction of Zn2+ reached 0.5. This result indicated that a
1:1 complex formed between DQO and Zn2+. The association
constant was calculated to be 1.5 × 104 M−1 by a Benesi–
Hildebrand plot (Fig. 6) [36, 37].

Metal Ion Competition

To utilize DQO as a selective sensor for Zn2+, the effect of
competing metal ions has been examined by recording the
fluorescence spectra of DQO (10 μM) with Zn2+ (5 equiv.)
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Fig. 4 Curve of fluorescence rate (I536 nm/I450 nm) of DQO (10μM) versus
the concentrations of Zn2+ (10 mM Tris-HClO4, methanol/water =9:1, v/v,
pH = 8.66, λex = 330 nm)
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in the presence of a competing metal ion (5 equiv.). As shown
in Fig. 7, the presence of Na+, K+, Mg2+, Ca2+, Cr3+, Ag+,
Cd2+, Hg2+, Pb2+, and Al3+ has little influence on the fluores-
cence response of DQO to Zn2+. However, some paramagnet-
ic metal ions, such as Co2+, Ni2+, and Cu2+, quenched the
fluorescence, which is probably due to the displacement of
Zn2+ by Co2+, Ni2+, and Cu2+ [38].

Practical Applications

In order to verify the practical applicability of the ratiometric
sensors, the determination of Zn2+ in tap water and lake water
were evaluated using the standard addition method. Lake wa-
ter was taken from the Labor Lake, and the further processing
was use of acticarbon. The recovery of Zn2+ in lake water
from 114 to 94% and the tap water from 102 to 91% were
obtained, indicating the appreciable practicality of the present-
ed sensors in the micromolar range (Table 1).

Conclusions

In summary, a new ratiometric fluorescent sensor for Zn2+

based on symmetrical derivative of oxalamide has been de-
signed and synthesized in one-step. The sensor exhibits turn-
on responses toward Zn2+ and an 86 nm red-shift of fluores-
cence emission upon binding Zn2+ in buffer solution are ob-
served. Additionally, DQO can quantitatively detect for Zn2+

with a linear range 0–15 μM, and the detection limit was
calculated to be 2.4 μM. Moreover, we hope that this
oxalamidoquinoline derivative would provide ideas to the de-
velopment of fluorescent sensor towards Zn2+.
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