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Abstract A green and simple microwave-assisted method
was used to synthesis water-soluble boron and nitrogen-co-
doped carbon dots (B-N-CDs). These B-N-CDs were success-
fully used for the fluorescent determination of Sn4+ and Mo6+

ions. This probe had a fast response time at pH = 4 with high
sensitivity and selectivity. Linear correlation between F0/F and
the concentration was seen in the range of 0.2–18 μM and
0.2–25 μM for Sn4+ and Mo6+, respectively. Under optimum
condition, the limit of detection (LOD) for Sn4+ and Mo6+

were 150 nM and 132 nM, respectively. The performance of
the sensor was evaluated by different real samples such as tap,
river and mineral water, canned fish sample and tomato
samples.
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Introduction

Determination of tin in environmental, food and biological
samples is important, since it can be toxic at high levels but
is essential for humans at trace levels. There are mainly two
chemical species of inorganic tin (Sn2+ and Sn4+) in samples.
Different forms of an element have different toxicities and
therefore, development of new analytical methods for moni-
toring of inorganic tin species is extremely important.

Various instrumental techniques have been employed for
the determination of tin species in different real samples, in-
cluding electrochemical methods [1–4], atomic absorption
spectrometry [4–8], inductively coupled plasma mass spec-
trometry [9], laser induced–breakdown spectroscopy [10],
atomic fluorescence spectrometry [11], X-ray fluorescence
spectrometry [12], phosphorimetry [13] and fluorimetric
methods [14–17].

Molybdenum is a valuable alloying agent and use in alloys,
electrodes, catalysts, circuit boards and in microwave devices
and heat sinks for solid-state devices. It is an essential element
in low concentrations especially in plants because of its im-
portant role in enzymatic redox reactions, but can be highly
toxic at large concentrations [18]. Several techniques were
used for determination of molybdenum such as X-ray fluores-
cence spectrometry [18], flame atomic absorption spectrome-
try [19], inductively coupled plasma [20], inductively coupled
plasma mass spectrometry [21], spectrofluorimetry [22–26]
and adsorptive stripping voltammetry [27, 28]. These methods
require complicated sample preparation and sophisticated in-
struments which limit their applications. Thus, it is still of
great challenge to develop sensitive, selective and environ-
mentally friendly methods for ion sensing.

Semiconductor quantum dots (QDs) have attracted much
attention in recent years. However, most traditional QDs con-
tain heavy metal elements, which are toxic and environmen-
tally hazard. Fluorescent carbon dots are the best candidates
due to their low toxicity, excellent photostability, high selec-
tivity and good water solubility.

Carbon dots (CD) can be generally synthesized by different
methods. Electrochemical, laser ablation and arc discharges
are top-downmethods in which carbon dots are prepared from
larger molecules. In bottom-up methods such as combustion/
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thermal, supported synthetic and microwave, carbon dots are
prepared from molecular precursors [29]. Microwave-assisted
techniques have advantages such as faster preparation, good
reproducibility and stability of nanoparticles. Doping of car-
bon dots with heteroatoms N, S, P and B) can improve the
fluorescence efficiency and selectivity. Co-doping of carbon
dots with more heteroatoms lead to better sensing [30].

In this study, water-soluble boron and nitrogen-co-doped
carbon dots (B-N-CDs) was prepared by microwave-assisted
method using citric acid, boric acid and urea as carbon, boron
and nitrogen sources. The B-N-CDs was successfully applied
to the fluorescent determination of Sn4+ and Mo6+ ions in real
samples with high sensitivity and selectivity.

Material and Methods

Chemicals

All chemicals were analytical grade and purchased from
Merck. Stock solutions of Sn4+, Mo6+, interference ions and
molecules (10 mM) were prepared with ultrapure water from
the respective salts. Desired pH value was adjusted by using
0.01 M of universal buffer (a mixture of 0.04 M boric acid,
0.04 M phosphoric acid and 0.04 M acetic acid).

Preparation of Boron-Nitrogen-Co-Doped Carbon Dots

The boron-nitrogen-co-doped carbon dots were prepared by a
simple and green microwave-assisted method [31]. Citric acid,
boric acid and urea (each one 1 g) were dissolved in 20 mL of
deionized water. Filtered solution was heated in a microwave
oven at 700 W for 4 min. Resulting solid was dissolved in
20 mL water, filtered and evaporated until dry at room temper-
ature. After washing of solid, it was re-dissolved in water and
final concentration was 3 mg/mL. The fluorescence intensity of
this CDs solution at λemission = 455 nm and λexcitation = 350 nm
was out of range; therefore it was diluted 10 fold. CDs dosage,
excitation and emission slit widths must be optimized. 100 μL
of this diluted solution was added to 3 mL of universal buffer.
At excitation slit width = 5 nm and emission slit width = 10 nm,
fluorescence intensity was also out of range. Different volumes
of CDs solution and slit widths were checked until fluorescence
intensity of CDs solution reached to 900 a.u (maximum of
instrumental scale). This fluorescence intensity was obtained
when 150 μL of diluted CDs was added to 3 mL of universal
buffer in sample cell and excitation and emission slit widths
were 2.5 nm and 5 nm, respectively.
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Fig. 1 a UV–vis absorption, excitation and emission spectra of CDs in
aqueous solutions (3.0 mgmL−1), λex = 350 nm and λem = 455 nm (B) FL
spectra at different excitation wavelength

Fig. 2 a The typical HRTEM image of the B-N-CDs. b FT-IR spectrum
of B-N-CDs
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Instrumentation and Characterization

Varian Cary 300 Bio UV-Vis, Vertex 70 Fourier transformed
infrared and Varian Cary spectrofluoremeter were used for
UV-Vis, FT-IR and fluorescence spectral analysis. The size
and morphology of the B-N-CDs were determined by MC30
high resolution transmission electron microscope (HRTEM;
Philips) operated at 80 kV.

Spectrofluorometric Measurements

In a typical assay, 150 μL of B-N-CDs, 3 mL of universal
buffer (pH = 4, 0.01 M) and appropriate volume of Sn4+ or
Mo6+ solution were mixed and the fluorescence was measured
immediately (1-cm quartz cuvette, λemission = 455 nm,
λexcitation = 350 nm, excitation slit width = 2.5 nm and emis-
sion slit width = 5 nm). All experiments were performed at
room temperature. Selectivity experiments were done in a
similar way by adding other ions instead of Sn4+ or Mo6+.

Real Sample Analysis

Real water samples (river, mineral and tap water) were filtered
through a 0.45 μm filtered membrane and then centrifuged at
4000 rpm for 15 min. Spiked water samples then analyzed
with the proposed method.

Canned fish sample (1.0 g) was transferred into a 100-mL
Erlenmeyer flask and 15 mL concentrated sulfuric acid and
3 mL HClO4 were added. The solution was gently heated for
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Fig. 3 Fluorescence responses
of B-N-QDs system to
different ions and molecules
(concentration was 20 μM)
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Fig. 4 Influence of pH a and time b on the relative florescence intensity
in the presence of 20 μM Sn4+ or Mo6+
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sample digestion until no gas was evaporated. Then, 2 mL
sulfuric acid and HNO3 were added and again heated.
Afterwards, it was cooled; its pH was adjusted with NaOH
and filtered. The filtrate was collected in a 100-mL volumetric
flask and diluted to the volume with water.

Tomato sample was first crushed and then heated for 3 h at
300 °C. After cooling, 1.0 g of the residual was carefully
moistened with 4 mL of nitric acid and the mixture was heated
on a hotplate to near dryness. The residue was diluted in a
25 mL volumetric flask. The solution was filtered through a
0.45μmmembrane filter and then centrifuged at 4000 rpm for
20 min [27].

Result and Discussion

Characterization of Boron-Nitrogen-Doped Carbon Dots
(B-N-CDs)

UV–Vis and fluorescence spectra of the water-soluble
B-N-CDs were shown in Fig. 1a. As shown, there were

two absorption peaks located at 250 and 350 nm and
absorption peak at 350 nm is related to the electron
transitions from π → π* of aromatic system. Sections
of molecules which can undergo detectable electron
transitions can be referred to chromophores. Auxochromes
with free electron pairs have n → π* transitions. In this
work, both transitions occur because of presence of N
atoms and aromatic system in B-N-CD structure. The
presence of C = C and nitrogen atom in CD structure
were verified by X-ray photoelectron spectroscopy in ref. 31.
B-N-CDs had an excitation peak around 350 nm and when
excited at this wavelength, exhibited strong fluorescence
emission centered at 455 nm (Fig. 1a). The fluorescence in-
tensity of the B-N-CDs also changes with the change of exci-
tation wavelength from 330 to 390 nm (Fig. 1b) without ob-
vious shift.

As shown in Fig. 2a, B-N-CDs were well dispersed with a
diameter of about 20 nm based on high resolution transmis-
sion electron microscopy image of B-N-CDs. Next, FT-IR
was also used to identify functional groups of the B-
N-CDs surface (Fig. 2b). The absorption bands for O–
H, N–H and carbonyl groups vibrations appeared at
3205 and 1710 cm−1, respectively. These groups improve
the hydrophilicity. B–O stretching vibration had absorption
band at 1450 cm−1. Absorption band at 1030 cm−1 is also
assigned to B–O–C bonding. B–N with sp3 bonding appears
at 1099 cm−1 [31].

Table 1 Comparison of the proposed fluorescence sensor with the
some previously reported methods

Method Detection
limit (μg/L)

Linear
range(μg/L)

Reference

Sn4+

Differential pulse
polarography

1510 10,000–40,000 [1]

Bismuth film electrode 16.6 20.2–929 [3]
Cloud point- AAS 12.6 46–750 [5]
Graphite furnace AAs 0.013 0.05–4 [6]
HG-MF-AAS 7.1 50–1000 [8]
SIA 380 1000–10,000 [14]
Spectrofluorimetric 2 10–800 [16]
B-N carbon dots 17.8 23.7–2137 This study

Mo6+

Cloud point AAS 2.2 7.5–1800 [19]
Quadrupole ICP-MS - 1–20 [21]
Spectrofluorimetric 10 100–900 [24]
Catalytic spectrofluorimetric 0.04 0–3 [25]
Derivative synchronous
spectrofluorimetric

3.2
49

50–250
500–4000

[26]

Catalytic adsorptive
stripping voltammetry

0.006 0.01–21 [27]

SIA 21 80–1920 [32]
B-N carbon dots 12.5 19–2400 This study
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Fig. 5 Fluorescence emission spectra of the B-N-CDs in aqueous
solution upon addition of various concentrations of a Sn4+ (from
top to bottom: 0, 0.2, 0.8, 1, 2, 4, 6, 8, 12, 14, 16 and 18 μM), b Mo6+

(from top to bottom: 0, 0.2, 0.5, 1, 3, 5, 8,10,12,15,18, 20,
25 μM),excitation at 350 nm
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Selectivity of B-N-CDs

Effect of different cations, anions and molecules on the fluores-
cence quenching of B-N-CDs were investigated (Fig. 3).
Different ions were added into the B-N-CDs solution with a
final concentration of 20 μM and then F/F0 ratio was recorded.
As shown, ratio decreased remarkably after addition of Sn4+ and
Mo6+ ions, whereas other ions and molecules had negligible
effects except Fe(II) and Al(III). B-N-CDs have only a small
negative surface charge, probably due to the presence of charged
borate ester bridges [31]. Thus, anions had no significant effect
on the fluorescence of B-N-CDs because of repulsive forces.

Effect of pH and Time

Effect of pH on the fluorescence quenching of B-N-CDs were
studied in the presence of 20 μM Sn4+ or Mo6+ ions. Relative
fluorescence intensity increased by increasing pH and reached
to maximum at pH = 4.0 and then decreased (Fig. 4a). The
effect of time on the relative fluorescence intensity was stud-
ied at room temperature. As shown in Fig. 4b, fluorescence
quenching was fast after addition of Sn4+ or Mo6+ ions. The
results showed that this probe had a fast response time that is
one of the important characteristic of good chemical sensors.

Performance Evaluation

Effects of different concentrations of Sn4+ and Mo6+ on the
fluorescence spectrum of B-N-CDs were studied under the

optimized conditions (Figs. 5a, b). Relative fluorescence in-
tensity (F0/F) of B-N-CDs linearly decreased by increasing
Sn4+ and Mo6+ concentration in the range of 0.2–18 μM and
0.2–25 μM, respectively. This behavior could be described by
the Stern-Volmer eq. (F0/F = Ksv [C] + 1), where F0 and F are
the fluorescence intensities recorded in absence and presence
of Sn4+, respectively, [C] is the concentration of Sn4+ and Ksv

is the Stern-Volmer quenching constant.

F0=F ¼ 0:0189 CSn4þ μMð Þ þ 1:19 R2 ¼ 0:98
� � ð1Þ

F0=F ¼ 0:057 CMo6þ μMð Þ þ 1:09 R2 ¼ 0:99
� � ð2Þ

Limit of detection (LOD) for Sn4+ andMo6+were evaluated
to be 150 and 132 nM, respectively (LOD = 3σ/s, whereσ and
s are standard deviation of blank (n = 5) and slope of the
calibration plot). These detection limits suggests that B-N-
CDs will have very promising application in the detection of
Sn4+ and Mo6+. Table 1 summarizes the detection limit and
linear range of different methods for determination of Sn4+

and Mo6+. Advantages of this method are simple and green
preparation method, easy performance, available and low cost
reagents and no need to expensive instruments. Linear dynam-
ic ranges were better than the most of other methods. Methods
with better sensivities had limited dynamic ranges.

Real Sample Analysis

Performance of the B-N-CDs-based sensor was tested by tap,
river and mineral water samples, canned fish sample and

Table 2 Determination of Sn4+ in different real samples

Samples added (μM) founda (μM) Recovery (%) RSD

Tap water 0 N.D.b -

8 8.18 ± 0.02 102 0.94

18 19.09 ± 0.03 105 1.85

20 20.00 ± 0.04 100 3.23

River water 0 N.D. -

8 8.13 ± 0.02 101 1.37

18 17.47 ± 0.02 97 2.10

20 21.21 ± 0.02 105 1.62

Mineral water 0 N.D. -

8 8.00 ± 0.05 100 4.58

18 8.00 ± 0.03 100 2.75

20 17.15 ± 0.02 95 1.65

Canned fish 0 85.17

8 8.49 ± 0.07 105 3.51

10 9.40 ± 0.05 95 2.50

18 17.92 ± 0.10 99 4.70

20 20.75 ± 0.02 103 0.94

a Average of three replicate measurement ± standard deviation
bN. D: not detected

Table 3 Determination of Mo6+ in different real samples

Samples added (μM) Founda (μM) Recovery (%) RSD

Tap water 0 N.D.b -

10 9.67 ± 0.51 97 5.20

20 20.07 ± 0.39 100 1.90

40 42.2 ± 0.71 106 1.60

Mineral water 0 N.D.b -

10 9.4 ± 0.36 94 3.60

20 19.20 ± 0.21 96 1.10

40 42.28 ± 0.33 105 0.70

River water 0 N.D.b -

10 9.1 ± 0.14 91 1.50

20 20.14 ± 0.19 101 0.90

40 41.2 ± 0.44 103 1.06

Tomato 0 3.15

10 13.95 ± 0.18 105 1.66

20 24.12 ± 0.21 104 1.00

40 44.21 ± 0.32 102 0.75

a Average of three replicate measurements ± standard deviation
bN. D. not detected
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tomato. The samples were spiked with Sn4+ or Mo6+ at differ-
ent concentration levels and then analyzed with the proposed
method (Tables 2 and 3). The recoveries were satisfactory.
These results demonstrated that this sensor has the great po-
tential in practical applications.

Conclusions

Water-soluble boron-nitrogen-doped carbon dots (B-N-CDs)
was used for the trace detection of Sn4+ and Mo6+. The linear
ranges of B-N-CDs for Sn4+ and Mo6+ were 0.2–18 and 0.2–
25 μM, respectively; while the limits of detection were 150 and
132 nM, respectively. Therefore, B-N-CDs can be used as fluo-
rescence turn-off probes for the detection of Sn4+ and Mo6+

ions in real samples with a high sensitivity and selectivity.
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