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Abstract A simple Boff-on fluorescence type^ chemosensor
1 3-((2-(dimethylamino)ethyl)amino)-N-(quinolin-8-
yl)propanamide has been synthesized for Zn2+. The receptor
1 comprises the quinoline moiety as fluorophore and the N,N′-
dimethylethane-1,2-diamine as a binding site. 1 showed a re-
markable fluorescence enhancement in the presence of Zn2+ in
aqueous solution. Importantly, the chemosensor 1 could be
used to detect and quantify Zn2+ in water samples. In partic-
ular, this chemosensor could clearly distinguish Zn2+ from
Cd2+. The binding properties of 1 with Zn2+ ions were inves-
tigated by UV-vis, fluorescence, electrospray ionization mass
spectroscopy and 1H NMR titration.

Keywords Fluorescence enhancement . Determination of Zn
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Introduction

Zinc is the second most abundant transition metal ion in hu-
man body [1–7]. Zinc has attracted a great deal of attention
[8–13], because it plays very important role in variety of

physiological and pathological processes such as apoptosis,
catalytic function of protein, enzyme regulation and so on
[14–20]. Especially, labile Zn2+ has been implicated in signal-
ing processes in the brain, immunological function and gene
transcription [21–24]. Its deficiency generates unbalancedme-
tabolism, which in turn can induce retarded growth in chil-
dren, brain disorders and high blood cholesterol, and also be
implicated in various neurodegenerative disorders such as
Alzheimer’s disease, epilepsy, ischemic stroke, and infantile
diarrhea. Excess zinc may also cause serious neurological dis-
orders such as Alzheimer’s and Parkinson’s diseases [25–28].
Thus, a technique to detect and visualize free zinc ions would
be highly demanded [29–34].

To date, many chemosensors have been reported to detect
trace amount of Zn2+. Many of them, however, have disad-
vantages such as insufficient sensitivity or selectivity, and in-
hibition problems from other transition metal ions, especially
Cd2+, which is in the same group of the periodic table and
shows similar properties to Zn2+ [35–38]. Thus, low cost and
easily prepared Zn2+ selective fluorescence chemosensors are
needed for convenience [39–45].

In view of this necessity and as part of our effort devoted to
zinc ion recognition, we have considered the combination of a
quinoline moiety known as having desirable photo-physical
properties as a fluorophore group and a N, N′-dimethyl ethyl-
ene amine as a binding site (Scheme 1) [46–48]. Especially,
we expected that the N, N′-dimethyl ethylene amine group,
being hydrophilic in nature, would increase water-solubility of
the chemosensor.

Herein, we report a new chemosensor 1 for Zn2+, com-
posed of the quinoline and N, N′-dimethyl ethylene amine
moieties. We have observed its prominent fluorescence en-
hancement in the presence of zinc ion, while there was no
enhancement in the presence of other metal ions. In particular,
it was able to distinguish Zn2+ from Cd2+.
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Experiments

Reagents and Instrument

All the solvents and reagents (analytical grade and spectro-
scopic grade) were obtained commercially and used as re-
ceived. 1H and 13C NMR spectra were recorded on a Varian
400 MHz and 100 MHz spectrometer, respectively and chem-
ical shifts were reported in ppm, relative to tetramethylsilane
Si(CH3)4. Absorption spectra were recorded at 25 °C using a
Perkin Elmer model Lambda 25 UV/Vis spectrometer. The
emission spectra were recorded on a Perkin-Elmer LS45 fluo-
rescence spectrometer. Electrospray ionization mass spectra
(ESI-MS) were collected on a Thermo Finnigan (San Jose,
CA, USA) LCQTM Advantage MAX quadrupole ion trap
instrument. Elemental analysis for carbon, nitrogen, and hy-
drogen was carried out by using a Flash EA 1112 elemental
analyzer (thermo) in Organic Chemistry Research Center of
Sogang University, Korea.

Synthesis of Receptor 1

3-Chloro-N-(quinolin-8-yl)propanamide (1.17 g, 5 mmol) and
potassium iodide (8 mmol, 1.33 g) were dissolved in MeCN
(20 mL) and stirred for 1 h. Then, N,N′-dimethylethane-1,2-
diamine (0.44 mL, 5 mmol) and sodium hydroxide (0.24 g,
6 mmol) were added in the resulting solution. It was stirred for
12 h at room temperature. The solvent was removed under
reduced pressure to obtain bright yellow oil, which was dis-
solved in methylene chloride and washed twice with water.
Then, the solution was purified by silica gel column chroma-
tography (10:1 v/v CH2Cl2-CH3OH) (Scheme 1). The solvent
was evaporated under vacuo. Yield: 0.97 g (68 %). 1H NMR
(400 MHz, DMSO-d6, ppm): δ = 10.59 (s, 1 H), 8.85 (d, J =
4Hz, 1 H), 8.51 (d, J = 8Hz, 1 H), 8.27 (d, J = 8Hz, 1 H), 7.52
(d, J = 4 Hz, 1 H), 7.50 (t, J = 4 Hz, 1 H), 7.38 (t, J = 8 Hz,
1 H), 2.97 (t, J = 6.4 Hz, 4 H), 2.79 (t, J = 6.4 Hz, 4 H), 2.41 (s,
6 H); 13C NMR (100 MHz, CD3CN, ppm): 163.09, 162.82,
162.52, 149.15, 137.13, 136.03, 127.05, 122.31, 122.12,
116.65, 55.77, 49.11, 48.73, 43.54, 35.09, 27.59. LRMS
(ESI): m/z calcd for C16H22N4O-H

++Zn2+: 547.23; found
547.20. Elemental analysis calcd (%) for C16H23N4: C,
67.11; H, 7.74; N, 19.56; found: C, 66.87; H, 7.92; N, 19.83.

Fluorescence Titration of 1 Toward Zn2+

The receptor 1 (1.72 mg, 0.006 mmol) was dissolved in
MeCN (2mL) and 20μL of the receptor 1 (3 mM) was diluted
to 2.98 mL MeCN/bis-tris buffer solution (3:7, v/v) to make
the final concentration of 20 μM. Zn(NO3)2 6H2O (11.9 mg,
0.04 mmol) was dissolved in MeCN (2 mL) and 3–36 μL of
the Zn2+ solution (20 mM) was transferred to each receptor

Scheme 1 Synthetic procedure
of 1

Fig. 1 Fluorescence spectral changes of 1 (20 μM) in the presence of
different metal ions (12 equiv) such as Al3+, Zn2+, Cd2+, Cu2+, Fe2+, Fe3+,
Mg2+, Cr3+, Hg2+, Co2+, Ni2+, Na+, K+, Ca2+, Mn2+ and Pb2+ with an
excitation of 523 nm in a mixture of MeCN/bis-tris buffer
solution (3:7, v/v)
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solutions prepared above. After mixing them for a few sec-
onds, fluorescence spectra were taken at room temperature.

UV-vis Titration of 1 Toward Zn2+

The receptor 1 (1.72 mg, 0.006 mmol) was dissolved in MeCN
(2 mL) and 30 μL of the receptor 1 (3 mM) were diluted to
2.97 mL MeCN/bis-tris buffer solution (3:7, v/v) to make the
final concentration of 30 μM. Zn(NO3)2 6H2O (11.9 mg,
0.04 mmol) was dissolved in MeCN (2 mL) and 0.9–9 μL of
the Zn2+ solution (20 mM) were added to the receptor 1 solu-
tion prepared above. After mixing them for a few seconds, UV-
vis spectra were obtained at room temperature.

Job Plot Measurements

The receptor 1 (1.72 mg, 0.006 mmol) was dissolved in
MeCN (2 mL). 500 μL of the receptor solution was taken
and diluted with MeCN/bis-tris buffer solution (3:7, v/v) to
make the final concentration of 50 μM. The total volume of
the receptor solution was 30 mL. Zn(NO3)2 6H2O (11.9 mg,
0.04mmol) was dissolved in MeCN (2 mL). 75 μL of the zinc
solution was taken and diluted with MeCN/bis-tris buffer so-
lution (3:7, v/v). The total volume of zinc solution was 30 mL.
0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4 and 2.7 mL of the 1 solution
were taken and transferred to vials. 2.7, 2.4, 2.1, 1.8, 1.5, 1.2,
0.9, 0.6 and 0.3 mL of the zinc solution were added to each
diluted 1 solution. Each vial had a total volume of 3 mL. After
reacting them for a few seconds, fluorescence spectra were
taken at room temperature.

Competition with Other Metal Ions

The receptor 1 (1.72 mg, 0.006 mmol) was dissolved in
MeCN (2 mL) and 20 μL of this solution (3 mM) was diluted
with 2.98 mL of MeCN/bis-tris buffer solution (3:7, v/v) to
make the final concentration of 20 μM. MNO3 (M = Na, K,
0.04 mmol) or M(NO3)2 (M = Zn, Cd, Cu, Mg, Co, Ni, Ca,
Mn and Pb, 0.04 mmol) or M(NO3)3 (M = Al, Fe and Cr,
0.04 mmol) or M(ClO4)2 (M = Fe, 0.04 mmol) was separately
dissolved in MeCN (2 mL). 36 μL of Zn2+ solution and
each metal solution were taken, respectively, and added
to receptor 1 prepared above to give 12 equiv. After
mixing them for a few seconds, fluorescence spectra
were obtained at room temperature.

Fig. 2 Fluorescence spectral changes of 1 (20 μM) in the presence of
different concentrations of Zn2+ ions in a mixture ofMeCN/bis-tris buffer
solution (3:7, v/v). Inset: Fluorescence intensity at 523 nm versus the
number of equiv. of Zn2+ added

Fig. 3 UV-vis titration of 1
(30 μM) with Zn2+ (0–2 equiv).
Inset: Absorption titration profile
of 1 with Zn2+ at 322 nm
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pH Effect Test of 1 Toward Zn2+

A series of buffers with pH values ranging from 2 to 12
was prepared by mixing sodium hydroxide solution and
hydrochloric acid in bis-tris buffer. After the solution
with a desired pH was achieved, receptor 1 (1.72 mg,
0.006 mmol) was dissolved in MeCN (2 mL), and then
20 μL of the receptor 1 (3 mM) were diluted with
2.98 mL MeCN/bis-tris buffer solution (3:7, v/v) to
make the final concentration of 20 μM. Zn(NO3)2 6H2O
(11.9 mg, 0.04 mmol) was dissolved in MeCN (2 mL).
36 μL of the Zn2+ solution (20 mM) were transferred
to each receptor solution (20 μM) prepared above. After
mixing them for a few seconds, fluorescence spectra
were obtained at room temperature.

NMR Titration of 1 Toward Zn2+

Four NMR tubes of 1 (0.28 mg, 0.01 mmol) dissolved in
CD3CN (0.7 mL) were prepared, and four different equiv.
(0, 0.5, 0.8 and 1 equiv) of zinc nitrate dissolved in CD3CN
(0.3 mL) were added separately to the solutions of 1. After
shaking them for a few seconds, the 1H NMR spectra were
taken.

Determination of Zn2+ in Water Samples

Fluorescence spectral measurements of water samples con-
taining Zn2+ were performed by adding 20 μL of 3 mmol/L
stock solution of 1 and 0.60 mL of 50 mmol/L bis-tris buffer

Fig. 4 Positive-ion electrospray
ionization mass spectrum of 1
(100 μM) upon addition of
Zn(NO3)2 (1 equiv)

Fig. 5 Competitive selectivity of 1 (20 μM) toward Zn2+ (12 equiv) in
the presence of other metal ions (12 equiv) with an excitation of 370 nm
in a mixture of MeCN/bis-tris buffer solution (3:7, v/v)

Fig. 6 Fluorescence intensity (at 523 nm) of 1 (20μM) in the presence of
Zn2+ at different pH values (2–12) in a mixture of MeCN/bis-tris buffer
solution (3:7, v/v)
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solution to 2.38 mL sample solutions. After well mixed, the
solutions were allowed to stand at 25 °C for 2 min before the
test.

Theoretical Calculation Methods

All DFT/TDDFT calculations based on the hybrid
exchange-correlation functional B3LYP [49, 50] were
carried out using Gaussian 03 program [51]. The 6-
31G** basis set [52, 53] was used for the main group
elements, whereas the Lanl2DZ effective core potential
(ECP) [54, 55] was employed for Zn. In vibrational

frequency calculations, there was no imaginary frequen-
cy for the optimized geometries of 1 and 1-Zn2+, sug-
gesting that these geometries represented local minima.
For all calculations, the solvent effect of water was
considered by using the Cossi and Barone’s CPCM
(conductor-like polarizable continuum model) [56, 57].
To investigate the electronic properties of singlet excited
states, time-dependent DFT (TDDFT) was performed in
the ground state geometries of 1 and 1-Zn2+. Thirty
lowest singlet states were calculated and analyzed. The
GaussSum 2.1 [58] was used to calculate the contribu-
tions of molecular orbital in electronic transitions.

Fig. 7 1H NMR titration of 1 with Zn(NO3)2 6H2O

Scheme 2 Fluorescence
enhancement mechanism and
proposed structure of 1-Zn2+

complex
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Results and Discussion

Synthesis of 1

The compound 1 3-((2-(dimethylamino)ethyl)amino)-
N-(quinolin-8-yl)propanamide was synthesized by substitu-
tion reaction of 3-chloro-N-(quinolin-8-yl)propanamide and
N,N′-dimethyl ethylene amine in acetonitrile (Scheme 1),
and characterized by 1H NMR, 13C NMR, elemental analysis
and ESI-mass spectrometry.

Fluorescence and Absorption Spectroscopic Studies of 1
Toward Zn2+

The fluorometric behavior of the receptor 1 toward various
metal ions was studied in a mixture of MeCN/bis-tris buffer
solution (3:7, v/v). When excited at 370 nm, receptor 1 exhib-
ited a weak fluorescence emission (λmax = 523 nm) compared
to that (424 folds) in the presence of Zn2+ (Fig. 1). By contrast,
upon addition of other metal ions such as Al3+, Cd2+, Cu2+,

Fe2+, Fe3+, Mg2+, Cr3+, Hg2+, Co2+, Ni2+, Na+, K+, Ca2+,
Mn2+ and Pb2+, either no or slight increase in intensity was
observed. These results indicated that the receptor 1 could be
used as a fluorescence chemosensor for Zn2+ and discriminate
Zn2+ from Cd2+ [59–63]. Moreover, we examined the fluo-
rometric properties of 1 with Zn2+ in polar and non-polar
solvents such as chloroform, methanol (MeOH), acetonitrile
(MeCN) and N,N-dimethylformamide (DMF) (Fig. S1). 1
displayed strong fluorescence with Zn2+, which featured a
red-shift with increase of the solvent polarity.

To further investigate the chemosensing properties of
1, fluorescence titration of the receptor 1 with Zn2+ ion
was carried out. As shown in Fig. 2, the emission in-
tensity of 1 at 523 nm gradually increased until the
amount of Zn2+ reached 12 equiv. The binding proper-
ties of 1 with Zn2+ were further studied by UV-vis
titration experiments (Fig. 3). UV-vis absorption spec-
trum of 1 showed two absorption bands at 240 nm
and 310 nm. Upon the addition of Zn2+ ion to the
solution of 1, the two bands have red-shifted to 257
and 367 nm, respectively. Meanwhile, three clear
isosbestic points were observed at 246 nm, 283 and
336 nm, implying the undoubted conversion of free 1
to a zinc complex.

The Job plot showed a 1:1 complexation stoichiometry
between 1 and Zn2+ (Fig. S2) [64], which was further con-
firmed by ESI-mass spectrometry analysis (Fig. 4). The
positive-ion mass spectrum of 1 upon addition of 1 equiv. of
Zn2+ showed the formation of the [1-H++Zn2++2IPA+
DMSO]+ [m/z: 547.20; calcd, 547.23]. From the fluorescence
titration data, the association constant for 1 with Zn2+ was
determined as 1.4 x 104 M−1 using Benesi-Hildebrand method
(Fig. S3) [65]. This value is within the range of those (1.0 ~
1.0 x 1012) reported for Zn2+ sensing chemosensors [66–68].
The limit of detection was estimated to check the efficiency of
the probe, which was based on the 3σ/slope (Fig. S4) [69, 70].
The detection limit for Zn2+ was determined as 7.1 μM,which
was much lower than the WHO guideline (76 μM) for Zn2+

ions in drinking water [71, 72].
To explore the ability of 1 as a fluorescence receptor for

Zn2+, interference experiments were performed in the pres-
ence of Zn2+ (12 equiv) mixed with various metal ions (12
equiv) (Fig. 5). There was no interruption for the detection of
Zn2+ in the presence of Mg2+, Hg2+, Ni2+, Na+, K+, Ca2+,
Mn2+ and Pb2+, while relatively low detectable responses
were observed in the presence of Al3+, Cu2+, Fe2+, Fe3+,
Cr3+ and Co2+. On the other hand, Cd2+ ion hardly inhibited
the fluorescence intensity of 1-Zn2+. These results suggest that
1 could be a good sensor for Zn2+ and, indeed, distinguish
Zn2+ from Cd2+ commonly having similar properties in the
same group of the periodic table.

The pH dependence of the 1-Zn2+ complex was ex-
amined. Over the pH range tested, the fluorescence

Fig. 8 Fluorescence intensity (at 523 nm) of 1 as a function of Zn(II)
concentration. [1] = 20 μmol/L, [Zn(II)] = 0–120 μmol/L. Conditions: all
samples were conducted in a mixture of MeCN/bis-tris buffer solution
(3:7, v/v). λex and λem were 370 and 523 nm, respectively

Table 1 Determination of Zn(II) in water samples

Sample Zn(II) added
(μmol/L)

Zn(II) found
(μmol/L)

Recovery
(%)

R.S.D.
(n = 3)
(%)

Tap water 0.00 0.00

4.00 4.12 103.0 0.37

Water sample 0.00 0.00

4.00 [a] 9.82 98.2 1.88

[a] Synthesized by deionized water, 6.00 μmol/L Zn(II), 10 μmol/L
Cd(II), Pb(II), Na(I), K(I), Ca(II), Mg(II). Conditions: [1] = 20 μmol/L
in 10 mMMeCN:bis-tris buffer solution (3:7, pH 7.0)
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intensity of 1-Zn2+ displayed strong pH dependence
(Fig. 6). An intense and stable fluorescence of 1-Zn2+

found in the pH range of 7.0–12.0 warrants its applica-
tion under physiological conditions, without any change
in detection results.

1H NMR Spectroscopic Studies of 1 Toward Zn2+

The 1H NMR titration experiments were studied to further
examine the binding mode between 1 and Zn2+ ion (Fig. 7).
Upon addition of Zn2+ to receptor 1, H10 disappeared at 0.5
equiv. H8, H9, H11, H12 and H13 showed significantly down-
field shift, while H7 shifted upfield and the protons in quino-
line slightly shifted downfield or upfield. There was no shift in
the position of proton signals on further addition of Zn2+ (>1.0
equiv). These results suggest that two nitrogen atoms in di-
methyl ethylene amine might coordinate to Zn2+ ion (Scheme
2). Based on these results, we proposed that the low fluores-
cence of 1 could be due to photoinduced electron transfer
(PET) from lone-pair electrons of receptor (dimethyl ethylene
amine) to fluorophore (quinolone). Thus, ‘off-on’

fluorescence of 1 caused by Zn2+ might be attributed to the
inhibition of PET (Scheme 2).

Determination of Zinc ion in Water Samples

We constructed a calibration curve for the determination of
Zn2+ by 1 (Fig. 8). Receptor 1 showed a good linear relation-
ship between the fluorescence intensity of 1 and Zn2+ concen-
tration (0–120 μM) with a correlation coefficient of R2 =
0.9821 (n = 3). This result indicates that 1 is suitable for
quantitative detection of Zn2+. In order to examine the appli-
cability of the receptor 1 in environmental samples, the
chemosensor was applied for the determination of Zn2+ in
water samples. First, tap water samples were chosen. As
shown in Table 1, one can see a satisfactory recovery and
R.S.D. values of water samples. Also, we prepared artificial
polluted water samples by adding variousmetal ions known as
being involved in industrial processes into deionized water.
The results were also summarized in Table 1, which exhibited
a satisfactory recovery and R.S.D. values for the artificial
water samples.

Fig. 9 Energy minimized structures of (a) 1 and (b) 1-Zn2+
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Theoretical Calculations

To gain an insight into fluorescent sensing mechanism for 1-
Zn2+, time-dependent density functional theory (TD-DFT)
calculations were performed at the optimized geometries
(S0) of 1 and 1-Zn2+ complex (Fig. 9). In case of 1, the main
molecular orbital (MO) contributions of the first lowest excit-
ed states were determined for HOMO→ LUMO and HOMO
- 1 → LUMO transition (332.82 nm, Fig. S5). As shown in
Fig. S6, HOMO - 1 → LUMO of 1 indicates π → π* transi-
tion in quinoline moiety, which means radiative transition.
HOMO→ LUMO of 1 indicates PET from dimethyl ethylene
amine to quionline, which could explain the non-radiative
process of 1. For 1-Zn2+ complex (Fig. S7), the third lowest
excited state was considered as main transition of 1-Zn2+ com-
plex (oscillator strength = 0.1317), while its first lowest excit-
ed state showed minor transition (oscillator strength =
0.0284). The main molecular orbital (MO) contribution of
the third lowest excited state was determined for HOMO - 1
→ LUMO (330.48 nm). As shown in Fig. S5, it shows π →
π* transition in quinoline moiety, which indicates radiative
transition. Thus, these results suggested that the sensingmech-
anism of 1 toward Zn2+ was originated by inhibition of PET
process [73].

Conclusion

We have synthesized a new fluorescent chemosensor 1, which
displays high sensitivity and selectivity toward zinc in aque-
ous media. The complexation of 1 with Zn2+ exhibited a pro-
nounced enhancement in the fluorescence emission. More-
over, the detection limit (7.1 μM) is much lower than the
WHO detection level (76 μM) for Zn2+ ions in drinking water.
Most importantly, recovery studies of the water samples added
with Zn2+ demonstrated its value in the practical application.
Therefore, we believe that receptor 1 will be a prototype for
the practicable system for detecting Zn2+ concentrations in
environmental systems.
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