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Abstract In the work, a fluorescence switch sensor consists
of Mn-doped CdTe quantum dots (QDs) - methyl viologen
(MV2+) nanohybrid is fabricated. In the sensor, MV2+ plays
a role in turning the QDs fluorescence to the BOFF^ state due
to the efficient electron transfer process while glutathione
(GSH) could turn BON^ the native QDs fluorescence by ef-
fectively releasing QDs from the QDs-MV2+ nanohybrids. In
addition, the recovery level of QDs fluorescence is closely
related to the amount of GSH. Based on this phenomenon, a
reliable and convenient GSH quantitative determination meth-
od is established, which not only has a wide determination
range of 1.2–200 μM, a low detection limit of 0.06 μM and
a short detection time but also can realize the selective detec-
tion of GSH upon other competitive biothiols (homocysteine
and cysteine) that are coexistent in biological systems. The
developed sensor will greatly benefit to the study of GSH
amount, helping the understanding of its function in biological
systems.
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Introduction

Glutathione (GSH), a bioactive tripeptide (γ-Glu–Cys–Gly)
containing sulfhydryl, is the most abundant biothiol in biolog-
ical systems. It has diversified physiological functions in
maintaining the normal operation of biological systems, such
as heightening cellular immunity, eliminating free radicals,
protecting proteins and other cellular components from oxida-
tion by reactive oxygen species [1–3]. In addition, GSH has a
crucial role in holding many cellular functions, like intracel-
lular signal transduction, gene expression, and xenobiotic me-
tabolism [4]. The concentration of GSH in different tissues or
organs has a normal level and the abnormal level of GSHmay
induce to some diseases, such as leukocyte decrease, liver
damage, psoriasis, certain cancer, organs aging, cardiopathy,
and other ailments [5]. Therefore, the research of convenient
and reliable method for the quantitative detection of GSH
under physiological conditions is imperative and significant.

To date, various analytical methods have been developed
for the detection of GSH, among which capillary zone elec-
trophoresis [6, 7], high performance liquid chromatography
[8, 9], electroanalysis [10, 11], spectrophotometry [12, 13],
fluorimetry [14, 15] are very typical. Compared with the
above-mentioned methods, in recent years, fluorimetry, has
beenwidely used owing to the advantages of simplicity, high
sensitivity, specificity and real-time determination. For ex-
ample, Park et al. used highly fluorescent gold nanoclusters
as probes to detect GSH, which relies on blocking Hg2+-
induced quenching of the fluorescence of gold nanoclusters
that caused by Hg2+-Au+ interactions [16]. Zhang et al. re-
alized the detection ofGSHbased on the polyethyleneimine-
capped silver nanoclusters, which could selectively link
with GSH and lead to the generation of large non-
fluorescent silver nanoparticles [17]. According to the re-
searches, homocysteine (Hcy) and cysteine (Cys) are also
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plentifully contained in biological systems, however, most
of the reported methods couldn’t realize the selective detec-
tion of GSH upon Hcy and Cys since these biothiols all
incorporate carboxylic, thiol and amino groups, which also
could interact with the fluorescence sensor. Therefore, the
establishment of methods that can realize the selective de-
tection of GSH upon Hcy and Cys are important. In general,
the fluorimetry methods mostly rely on the direct interac-
tions between fluorescent sensors and analytes. However,
this detect model usually possesses some defects, such as
narrow linear range, high detection limit, low selectivity
et al. As an alternative strategy, the fluorescent switch sensor
could not only solve this problem to some extent, but also
offer a new determination model.

Various materials, such as noble metal nanoparticles [18,
19], fluorescent molecule [20, 21], semiconductor quantum
dot (QDs) [22, 23], up-conversion luminescence materials
[24], carbon dots [25, 26] and polymers [27] have been widely
reported to fabricate fluorescent sensor for the determination
of GSH in recent years. Among these reported materials, QDs
have attracted considerable attention due to their excellent
optical properties, especially for the doped QDs. Compared
to the undoped ones, the incorporation of impurities could
provide QDs with novel optical properties, including higher
fluorescence quantum yield, better photochemical stability,
more effective photo-oxidation protection, longer fluores-
cence lifetime [28], etc. Consequently, doped QDs could act
as perfect fluorescence sensor to detect various molecules or
ions. For instance, Mn-doped ZnS QDs were used to detect
glucose [29], Co2+ [30] and sudan dyes [31] and Mn-doped
CdTe QDs were employed to determine human IgG [32] and
ascorbic acid [33] .

According to what have been discussed above, in the pres-
ent work, a fluorescent switch sensor for glutathione detection
based on Mn-doped CdTe QDs - methyl viologen (MV2+)
nanohybrids was fabricated. Water-soluble Mn-doped CdTe
QDs were prepared through one-pot synthesis method, by
using inorganic salts (CdCl2 · 2.5H2O and NaHTe) as precur-
sors and thioglycolic acid (TGA) as the stabilizer. MV2+ with
two quaternary ammonium groups can link with negatively
charged TGA on the surface of QDs through electrostatic
interaction. Due to the electron transfer between Mn-doped
CdTe QDs and MV2+, the fluorescence intensity of Mn-
doped CdTe QDs could be efficiently quenched by MV2+.
Nevertheless, the presence of GSH can lead to the recovery
of the fluorescence intensity due to the stronger interaction of
Cd2+-GSH than that between Cd2+ and other thiols or amino
acids [34], during which GSH can effectively replace TGA
ligands on the surface ofMn-doped CdTe QDs. Therefore, the
Mn-doped CdTe QDs fluorescent switch sensor has a high
sensitivity and outstanding specificity for GSH detection and
can effectively realize the selective detection of GSH upon
Hcy and Cys.

Experimental

Materials and Instruments

Ultrapure water was used throughout the experiments.
Sodium borohydride (NaBH4, 96 %), tellurium powder (Te,
99.999 %, 100 mesh), cadmium chloride (CdCl2 · 2.5H2O,
analytical purity), manganese chloride (MnCl2 · 4H2O, analyt-
ical purity), thioglycolic acid (HSCH2COOH, analytical puri-
ty), methyl viologen (C12H14Cl2N2, analytical purity), gluta-
thione (GSH, 98 %), and other routine chemicals were of
commercial quality, used without further purification. All of
the chemicals were purchased from Shanghai Sinopharm
Chemical Reagent Co., Ltd. (China). Atomolam tablets were
purchased from Guangdong Jianke pharmaceutical Co., Ltd.
(China).

Transmission electron microscopy (TEM) images were got
using a JEOL-200 CX transmission electron microscope
(Japan). OXFORD-INCA energy dispersive spectrometer
(EDS) was applied to obtain EDS pattern (Britain). X-ray
powder diffraction (XRD) spectra were acquired from a
Haoyuan DX-2700 X-ray diffractometer (China). Fourier
transform infrared (FTIR) was recorded by an AVATAR 370
Fourier transform infrared spectrophotometer (America). An
UV-2501PC spectrometer (Shimadzu, Japan) was adopted to
record the ultraviolet visible (UV–vis) absorption spectrum.
Via a RF-5301PC spectrofluorophotometer (Shimadzu,
Japan), the fluorescence emission spectra were recorded.

Synthesis of TGA-capped Mn-doped CdTe QDs

Firstly, NaHTe precursor solution was prepared according to a
previously reported literature [35] with several changes. The
molar ratio of Te and NaBH4 was 1 : 20. 2 mmol NaBH4 was
dissolved in 6 ml ultrapure water and then degassed with
nitrogen flow for 5 min. Subsequently, 0.1 mmol Te was
added into the oxygen-free solution. A small outlet linked to
the small flask was needed to release the H2 producing during
the reaction. NaHTe solution was obtained by the time the
color of solution changed back to colorless and Te was disap-
peared. The obtained NaHTe solution was used as Te precur-
sor in the following reaction.

Next, the TGA-capped Mn-doped CdTe QDs were pre-
pared relied on a reported research with some modifications
[36]. In the current study, the molar ratio of Cd2+ / Te2− / TGA
was fixed to be 2 : 1 : 4.8 and the Mn2+ content was 5 % of
cadmium. Briefly, 0.2 mmol CdCl2 · 2.5H2O was dissolved in
150 ml ultrapure water. Subsequently, 0.01 mmol MnCl2 ·
4H2O and 0.48 mmol TGA was injected into the solution.
After stirred uniformly, 1 M NaOH solution was adopted
and added dropwise into the mixed solution until its pH was
adjusted to 7. After that, the dissolved oxygen was driven off
by nitrogen flow for about 30 min. Then, the prepared NaHTe
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precursor solution was injected quickly into the N2-saturated
solution under vigorous stirring. Immediately, a color change
of the solution varied from colorless to orange could be ob-
served distinctly. The Mn-doped CdTe QDs cores were
formed during the process. The resulting solution was heated
to boil for 10 min under nitrogen protection for the further
growth of cores, then transferred it to water bath and reacted
at 60 °C for 1 h aimed to obtain Mn-doped CdTe QDs with
less surface defects. Finally, the salmon pink TGA-capped
Mn-doped CdTe QDs were obtained, and its final concentra-
tion was 0.67 mM. After the solution cooled down, storing it
in the dark for the further experiments.

XRD, EDS and FTIR Analysis

Same volume of ethanol was added into the prepared TGA-
capped Mn-doped CdTe QDs stock solution for the precipita-
tion of QDs, supporting for the further characterization, in-
cluding EDS, XRD and FTIR analysis.

Measurement of Fluorescence Quantum Yield

The fluorescence emission spectra of the sample solution
(TGA-capped Mn-doped CdTe QDs, diluted to 10.72 μM,
ultrapure water) and the standard solution (rhodamine B, di-
luted to 1.2 μM, ultrapure water) were recorded at an excita-
tion wavelength of 350 nm and the slit widths of excitation
and emission were both 5 nm (fluorescence spectra through-
out the work were all recorded at the measure condition). The
fluorescence quantum yield (QY) of TGA-capped Mn-doped
CdTe QDs was then calculated according to the following
equation:

QYu ¼ QYS FuAsn
2
u

� �.
FsAun

2
s

� � ð1Þ

The subscripts Bu^ and Bs^ denote sample and standard
respectively. BQY^ is fluorescence quantum yield. The QY of
rhodamine B in water is reported to be 31%. BA^ is absorption
values at excitation wavelength. BF^ is integrated fluorescence
intensity. Bn^ is the refractive index of solvent.

Detection of GSH

Fluorescent Response of QDs toMV2+ Four hundred micro-
liter as-prepared TGA-capped Mn-doped CdTe QDs stock
solution and different amounts of 0.03 mM MV2+ standard
solutions were injected into a series of 25 mL volumetric
flasks. Subsequently, diluted the solutions to the marking line
with ultrapure water and mixed completely. After the optimal
incubation time, the fluorescence spectra of the above solu-
tions were recorded. When the fluorescence intensity of QDs-
MV2+ system closed to zero, the optimal amount of MV2+

serve as the fluorescence BOFF^ reagent can be acquired.

Detection of GSH Four hundred microliter TGA-capped Mn-
doped CdTe QDs stock solution, an optimal amount of
0.03 mM MV2+ standard solution, and different amounts of
0.005 M GSH standard solutions were added into a series of
25 mL volumetric flasks, and then diluted the solutions to the
marking line with ultrapure water andmixed thoroughly. After
the optimal incubation time, the fluorescence spectra of the
above solutions were recorded.

Selectivity Evaluation of the Proposed Method

To evaluate the selectivity of the proposed method to the com-
mon amino acids, 400 μL as-prepared QDs stock solution, an
optimal amount of 0.03 mM MV2+ standard solution, and
1000 μL 0.005 M GSH, Hcy, Cys, alanine (Ala), leucine
(Leu), Valine (Val), phenylalanine (Phe), tryptophan (Trp),
serine (Ser), lysine (Lys), argnine (Arg), glutamic acid (Glu)
standard solutions were injected respectively into a series of
25 mL volumetric flasks, and then diluted the solutions to the
marking line with ultrapure water andmixed thoroughly. After
the optimal incubation time, the fluorescence spectra of the
above solutions were recorded.

To evaluate the effects of some common substances such as
NaCl, KI, glucose and glycine on fluorescence response of the
reactive systems, two groups of experiments were done. One
was about the QDs-MV2+ system, 400 μLQDs stock solution,
an optimal amount of 0.03 mM MV2+ standard solution, and
1000 μL 0.005 M standard solutions of common substances

Fig. 1 TEM images of (a) TGA-
capped Mn-doped CdTe QDs and
(b) QDs-MV2+ nanohybrids. The
insets are the dilute solution of
QDs and QDs-MV2+

nanohybrids, respectively. The
QDs-MV2+ solution is incubated
for 5 days after the addition of
MV2+
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were added respectively into a series of 25 mL volumetric
flasks, and then diluted the solutions to the marking line with
ultrapure water and mixed thoroughly. After the optimal incu-
bation time, the fluorescence spectra of the above solutions
were recorded. The other was about the QDs-MV2+-GSH sys-
tem, the protocol was similar with the QDs-MV2+ system, the
difference was that after the MV2+ was added, before the
common substances were added, 1000 μL 0.005 M GSH
standard solutions were added into the series of 25 mL volu-
metric flasks. The rest was the same with QDs-MV2+ system.

Results and Discussion

Characterization of the as-prepared QDs

Figure 1 displays the typical TEM images of TGA-capped
Mn-doped CdTe QDs (Fig. 1a) and QDs-MV2+ nanohybrids
(Fig. 1b). The insets are the dilute solution of QDs and QDs-
MV2+ nanohybrids, respectively. The QDs-MV2+ solution is
incubated for 5 days after the addition ofMV2+. Fromwhich it
can be seen that the as-prepared QDs are spherical in shape,
and present good monodisperse with uniform particle sizes
about 20 nm. Their dilute solution presents faint yellow and
clear. Nevertheless, when the MV2+ is added, QDs exhibit
spherical aggregates. Five days later, we can observe directly
that the aggregation precipitated out from the solution and the
color disappeared, which indicated the successful self-
assembly between QDs and MV2+.

In order to confirm the structure and elemental composition
of the as-prepared QDs, XRD and EDS characterization were
performed. Figure 2a shows the powder XRD patterns of
TGA-capped Mn-doped CdTe QDs and TGA-capped CdTe
QDs. There are three broad and distinct diffractive peaks at
24.35°, 40.62° and 47.12°, which correspond respectively to
the crystal planes [101], [103] and [202], confirming that the
as-prepared QDs are hexagonal crystalline structure.
Compared with the TGA-capped CdTe QDs, the TGA-

capped Mn-doped CdTe QDs show no obvious Mn impurity
phase, which perhaps attributes to the trace doping of Mn2+

that occupied the lattice site and replaced some Cd2+.
Figure 2b shows the EDS image of as-prepared QDs, it can
be observed that the final product has a strong Cd and Te
peaks, and the existence of weak Mn peark also confirmed
its trace doping to the CdTe QDs, which is around 2.51 %.
Besides, additional signals like carbon, oxygen and sulfur
come from the capping agent TGA.

The as-prepared QDs were then analyzed by FT-IR.
Figure 3 shows the FT-IR spectra of pure TGA, TGA-
capped CdTe QDs, and TGA-capped Mn-doped CdTe
QDs. Between the spectra of TGA and QDs, an evident
difference can be observed at 2524 cm−1, which belongs
to the characteristic absorption of S-H stretching vibra-
tion. The disappearance of the S-H band in the two FT-
IR spectra of QDs indicates the formation of Cd-S coor-
dination bond, which means the successful conjugation
between TGA molecules and QDs.

Usually, UV–vis absorption and fluorescence emission
spectrum are applied to describe the optical properties of
QDs. As depicts in Fig. 4, the as-prepared TGA-capped Mn-
doped CdTe QDs possess a wide UV–vis absorption

Fig. 3 FT-IR spectra of (a) TGA, (b) TGA-capped CdTe QDs and (c)
TGA-capped Mn-doped CdTe QDs

Fig. 2 a XRD patterns of TGA-
capped CdTe QDs and TGA-
capped Mn-doped CdTe QDs, b
EDS image of TGA-capped Mn-
doped CdTe QDs
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spectrum, indicating the broad absorption wavelength range.
Furthermore, a narrow and symmetrical fluorescence emis-
sion peak centered at around 575 nm is displayed when the
as-prepared QDs are excited by an ultraviolet wavelength of
350 nm. These excellent optical properties of the as-prepared
QDs are favorable for their application in the field of analysis.
According to the standard expression formula of QY, the cal-
culated QYof TGA-capped Mn-doped CdTe QDs was 36 %.

Optimization of Detection Condition

In order to obtain the optimal detection conditions, the effect
of incubation time and the amount of MV2+ served as fluores-
cence BOFF^ reagent were investigated in the present study.
Figure 5 shows the influence of incubation time on the fluo-
rescence intensity of QDs-MV2+ and QDs-MV2+-GSH sys-
tems. From the figure we can see that within the initial reaction
time for about 8 and 10 min respectively, the fluorescence
intensity of the two reaction systems is not stable while it tends
to be unchanged after that. Therefore, we choose 8 and 10min
as the optimal incubation time for the two reaction systems,
respectively. The effects of different MV2+ amounts on the

fluorescence intensity of TGA-capped Mn-doped CdTe QDs
were also conducted and the results are shown in Fig. 6. It is
obvious that with the increase of MV2+, the fluorescence in-
tensity of QDs-MV2+ system progressively decreased and
approached to zero when the amount of MV2+ reached to
0.402 μM. Therefore, the optimal amount of MV2+ in TGA-
capped Mn-doped CdTe QDs solution served as the fluores-
cence BOFF^ reagent was obtained.

Detection of GSH by Restoring the Fluorescence Intensity
of TGA-capped Mn-doped CdTe QDs

Figure 7 depicts the fluorescence BOFF-ON^ pattern of the
established method succinctly. The native fluorescence of
the QDs is yellow, after the fluorescence BOFF^ reagent
MV2+ was added, the QDs fluorescence was quenched and
the yellow fluorescence disappeared. However, with the

Fig. 7 Fluorescence emission spectra of QDs, QDs-MV2+ system and
QDs-MV2+-GSH system (CQDs = 10.72 μM, CMV

2+ = 0.402 μM,
CGSH = 0.2 mM). The inset is photographs of (a) QDs, (b) QDs-MV2+

and (c) QDs-MV2+-GSH system under 350 nm UV light

Fig. 6 Fluorescence emission spectra of QDs-MV2+ system at different
concentrations of MV2+ (CQDs = 10.72 μM). The MV2+ was added to
yield final concentrations of 0, 14, 25, 30, 40, 62, 83, 115, 140, 210,
336, 402 nM. The inset is the calibration curve of relative fluorescence
intensity F0/F versus the concentration of MV2+

Fig. 5 Effect of incubation time on the fluorescence intensity of a QDs-
MV2+ system and b QDs-MV2+-GSH system (CQDs = 10.72 μM,
CMV

2+ = 0.336 μM, CGSH= 0.144 mM)

Fig. 4 a UV–vis absorption spectrum and b fluorescence emission
spectrum of TGA-capped Mn-doped CdTe QDs (CQDs = 10.72 μM)
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addition of fluorescence BON^ reagent GSH, the native fluo-
rescence of the QDs is recovered to some extent.

Under the optimum condition, the detection of GSH based
on the change of QDs-MV2+ fluorescence intensity was car-
ried out. From Fig. 8 we can see that with the increase of GSH
concentration from 0 to 0.232 mM, the fluorescence intensity
of QDs-MV2+-GSH system progressively improved, which
demonstrates that GSH could act as the fluorescence Bon^
reagent to restore the fluorescence of QDs. Besides, the fluo-
rescence recovery extent has a close connection with the
amount of GSH, based on which a method was developed
for the quantitative determination of GSH. A good linear re-
lationship was found between the recovering efficiency (log
(F’/F)) and GSH concentration (C) ranges from 1.2 to
200 μM, which can be described by the following equation:

log F 0
.
F

� �
¼ 0:0069C þ 0:0214 C : μMð Þ ð2Þ

and the correlation coefficient (R) is 0.9979, as demonstrated
in Fig. 9. F and F’ are the fluorescence intensities of QDs-
MV2+ system and QDs-MV2+-GSH system respectively, and
C is the concentration of GSH. The detection limit was calcu-
lated to be 0.06 μM according to the 3σ / k criterion, where σ

is the standard deviation of blank measurements (n=5) and k
is the slope of the calibration curve.

Selectivity Evaluation of the Proposed Method

To evaluate the selectivity of the proposed method for the
detection of GSH, the fluorescence responses of the QDs-
MV2+ system to some similar amino acids under identical
conditions were investigated. The result is shown in Fig. 10.
It is clealy shown that Lys exhibits a weak turn-on effect on
the fluorescence intensity of the QDs-MV2+ system while the
influence from other amino acids including competitive
biothiols such as Hcy, Cys can be negligible. This may be
attributed to the two or more potential chelating sites of the
GSH (e.g., −SH and –COO) presents to metal ions (e.g., Cd2+

and Zn2+). Such chelation makes the interaction of metal ion-
GSH stronger than that between metal ion and other amino
acids or thiols with single –SH, weak amine or acid chelating
sites [34]. Furthermore, the large steric hindrance effect of
GSH (larger than Hcy and Cys) always enhances the stability
when coordinate with metal ions [37]. Therefore, the
established fluorescence switch sensor can realize the selec-
tive detection of GSH upon Hcy and Cys under physiological

Fig. 11 Effects of saccharides and other common ions on fluorescence
response of QDs-MV2+ and QDs-MV2+-GSH system

Fig. 10 Fluorescence responses of the QDs-MV2+ system to some other
common amino acids under identical conditions (the concentrations of the
amino acids are 0.2 mM)

Fig. 9 Calibration curve of the logarithm of relative fluorescence
intensity log (F’/F) versus the concentration (C) of GSH

Fig. 8 Fluorescence emission spectra of QDs-MV2+-GSH system at
various concentrations of GSH (CQDs = 10.72 μM). The GSH was
added to yield final concentrations of 0, 2, 40, 56, 120, 128, 144, 168,
176, 184, 232 μM
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conditions. In addition, the effects of some common sub-
stances such as NaCl, KI, glucose and glycine on fluorescence
response were also investigated and two groups of interfer-
ence assays were performed. One is the QDs-MV2+ system,
and the other is QDs-MV2+-GSH system. From the results of

interference assays from the two groups, shown in Fig. 11, we
can conclude that Mg2+, Ca2+ and Zn2+ have an unnegligible
effect on the fluorescent detection of GSH, and the Cu2+ can
completely quench the fluorescence of the two reaction sys-
tems. Besides, saccharides and other ions like Na+, K+, Cl−,

Scheme 1 Current sensing mechanism of the QDs-MV2+ BOFF-ON^ fluorescent sensor

Table 1 Comparison of the optical sensors for the determination of GSH

Probe Mode Linear rage LOD Detection time Remark Rf

AuNPs-Hg2+ Colorimetry 0.025–2.28 μM 17 nM 25 min Interference from Hcy, Cys [38]

AuNPs-ppzdtc Colorimetry 8–250 nM 8 nM 30 min Difficult synthesis of ppzdtc,
time consuming

[39]

MnO2 NPs-TMB Colorimetry 0.26–26 μM 0.1 μM 15 min Interference from Cys [40]

Fe3O4-ABTS-H2O2 Colorimetry 3–30 μM Not giving 20 min Time consuming [41]

CQDs-AuNPs Fluorescence 0.05–3.0 μM 50 nM 5 min Interference from Hcy, Cys [42]

Dopamine-CdS:Mn/ZnS QDs Fluorescence 0–10 mM Not giving Not giving Interference from DTT,
complicated operation

[43]

CdSe/ZnS QDs–MV2+ Fluorescence 5–250 μM 0.6 μM Not giving Time-consuming [23]

MnO2-NaYF4:Yb/Tm NPs Fluorescence Not giving 0.9 μM 3 min Designed for cell imaging [24]

AuNCs-Hg2+ Fluorescence 0–250 μM 9.4 nM 3 min Interference from Cys, Hcy [16]

PEI-AgNCs Fluorescence 0.5–6 μM 380 nM 30 min Interference from Cys, Hcy;
time consuming

[17]

CdTe QDs-Hg2+ Fluorescence 0.6–20 μM 0.1 μM 10 min Interference from Cys, Hcy [37]

g-C3N4-Ag
+ Fluorescence 0.02–100 μM 9.6 nM 45 min Interference from Cys, Hcy;

time consuming
[44]

CdTe:Mn QDs-MV2+ Fluorescence 1.2–200 μM 0.06 μM 10 min – Present work
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NO3
− have a weak influence in the detection of GSH.

Consequently, we can conclude that the established fluores-
cence switch sensor has a higher selectivity.

Comparison with Other Optical Sensors

Compared with other optical sensors reported to detect GSH
in recent years, the fabricated Mn-doped CdTe QDs - MV2+

sensor has advantages in the highly selective detection of
GSH in the presence of Hcy and Cys, the short incubation
time, the wider linear range and the real-time detection. The
results are shown in Table 1.

The Possible Sensing Mechanism

Scheme 1 depicts the mechanism of the BOFF-ON^ QDs-
MV2+ fluorescent sensor in the detection of GSH. When
MV2+ with two quaternary ammonium groups was added to
the as-prepared QDs solution, it will link with negatively
charged TGA on the surface of QDs through electrostatic
interaction. Therefore, MV2+ can serve as the linkers between
individual QDs, which combined the independent QDs to-
gether and enabled them to form spherical QDs-MV2+

nanohybrids spontaneously. The attached MV2+, as a strong
electron transfer agent, caused the fluorescence of QDs in the
BOFF^ state through an efficient electron transfer process [45].
Nevertheless, the subsequent addition of GSH could effective-
ly displaced a large proportion of TGA ligands and then make
the QDs release from the QDs-MV2+ nanohybrids.
Consequently, the electron transfer process between QDs
and MV2+ couldn’t occur anymore, which restored the native
fluorescence of the QDs to the BON^ state.

Analytical Application

To verify the practical feasibility of the proposed sensor in
clinical applications, the Mn-doped CdTe QDs-MV2+

nanohybrids were utilized for GSH detection in commercial
Atomolam tablets. The average recovery and relative standard
deviation (RSD) were obtained according to the standard ad-
dition method. As shown in Table 2, an average recovery of
97.21 to 107.60 % was acquired. Moreover, the relative stan-
dard deviation (RSD) was lower than 5 %, which indicated a
precision of this method that can meet the requirements of

microanalysis. Therefore, the developed method is feasible
to the determination of GSH.

Conclusions

In the present work, a facile strategy was adopted to fabricate
the QDs-MV2+ nanohybrids, based on which a novel and
convenient fluorescence switch sensor was successfully
established for the quantitative detection of GSH. Water-
soluble TGA-cappedMn-doped CdTe QDs with excellent op-
tical properties were prepared through one-pot synthesis meth-
od. The fluorescence restoring of QDs is closely related to the
amount of GSH, a good linear relationship between the fluo-
rescence intensity of the QDs-MV2+ system and the concen-
tration of GSH in the range of 1.2 to 200 μM could be
achieved. This sensor not only can effectively detect GSH
with high sensitivity, but also shows high selectivity over oth-
er related thiols (Hcy or Cys) and amino acids. The developed
sensor will greatly benefit to the study of GSH level, helping
to understand its function in biological systems.
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