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Abstract Three new ferrocene based Schiff bases 4-{[(E)-
ferrocenylmethylidene] amino}benzenethiol (1b), 3-{[(E)-
ferrocenylmethylidene]amino} benzenethiol (1c), 2-{[(E)-
ferrocenylmethylidene]amino} benzenethiol (1d) have been
synthesized to study their sensor property to various metal
ions. It has been observed that 1b is highly fluorescent and its
fluorescence changes in presence of metal ions. It was further
observed that compound 1b is highly selective towards Cd2+

ion in solution.
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Introduction

In recent years sensing of metal ion attracted the inter-
est of many research groups due to its various ill effects
on environment [1–3]. Of all the toxic metal ions,
cadmium gets special attention due to its high toxicity
[4–8]. It represents one of the highly toxic metals
whose contamination occurs from variety of geological
and man made sources [9–11]. Bioaccumulation of cad-
mium in living organism can be extremely toxic even at
low concentration [12–14]. Cadmium poisoning can lead
to kidney damage, high blood pressure, hypertension,
bone marrow disorder and cancer [15–19]. Classically
cadmium sensing include sophisticated techniques such

as atomic adsorption spectroscopy [20, 21], ICP (induc-
tively coupled plasma) atomic emission spectroscopy
[22] and graphite furnace atomic absorption spectrome-
try (GFAAS) [23]. Although they are accurate for trace
amount detection of the metal ion, they have disadvan-
tages such as high cost and complexity of operation.
Thus there is need for analytical method for the detection of
cadmium.

Recently, fluorescent chemosensors have received consid-
erable interest due to their distinct advantages such as opera-
tional simplicity and high sensitivity [24–31]. However, till
date, only a few literature are available for fluorocence sensors
for cadmium [32–42]. In the design and development of
cadmium selective sensor, presence of zinc in the sample often
creates problem. Cadmium and zinc being in the same group
of the periodic table have similar properties. Therefore they
very often cause similar spectral changes while coordinated
with fluorescent sensor [43, 44]. Thus it is desirable to prepare
fluorescence sensors which can distinguish cadmium from
zinc with high selectivity and sensitivity.

Ferrocene based chemosensors found wide applicability in
the field of sensor for various ions. When the signaling unit is
ferrocene, redox potential is the method of choice due to its
low analyte detection limit. In this regard cyclic voltammetry
is often applied to measure the change of redox potentials,
which can be correlated to the binding strengths of target
analyte [45–49]. However, the fluorescent activity of ferro-
cene based molecules for the ion sensor have not been studied
explicitly [50–54]. To the best of our knowledge there is not
any reference of ferrocene based fluorescent sensor for cad-
mium till date.

Bearing that in mind we have synthesized a series of
ferrocenyl Schiff bases (1) which show fluorescent property
(Fig. 1). In this paper we report the selective sensing of
cadmium over a wide variety of competing ion including zinc
by compound 1b using fluorocence spectroscopy.
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Experimental

Synthesis

The compound 1b, 1c and 1d were synthesized by usual
procedure of Schiff base synthesis. To a solution of
ferrocenecarboxaldehyde (1 mmol) in dry methanol, 4-
aminothiophenol (1 mmol) was added and the reaction mixture
was stirred for 1 h. The red precipitate was filtered and
recryatalize from DCM/Hexane mixture to afford pure
ferrocenyl imine as dark red solid. Compound 1a was synthe-
s i z ed acco rd ing to l i t e r a t u r e p rocedu r e [55 ] .
Ferrocenecarboxaldehyde (0.22 g, 1.0 mmol) and benzylamine
(0.21 g, 2.0 mmol) in presence of catalytic amount of K2CO3

were dissolved in tolune (10 ml) and reflux under Dean-Stark
for 24 h. Then 4Ǻ molecular sieves were added to the hot
reaction mixture and stirring was continued for another 48 h
at room temperature. Then the reactionmixture was filtered and
the filtrate was evaporated to dryness. The solid residue was
washed with hexane and dried in vacuo.

N-[(E)-ferrocenylmethylidene]aniline (1a):Dark red sol-
id. Yield 77 %. Mp: 105–106 °C. IR (KBr, cm−1): ν 1430,

1691, 3022. 1H NMR (300 MHz, CDCl3, TMS): δ 4.29 (s,
5H), 4.53 (s, 2H), 4.86 (s, 2H), 6.65–6.92 (m, 2H), 7.15–7.35
(m, 3H), 7.37–7.55 (m, 1H) 8.38 (s, 1H). 13C NMR (75 MHz,
CDCl3, TMS): δ 68.9, 69.1, 71.2, 80.1, 120.47, 125.1, 129.0,
152.6, 161.3.

4-{[(E)-ferrocenylmethylidene]amino}benzenethiol
(1b): Red Solid. Yield 80 %. Mp: 160–161 °C. IR
(KBr, cm−1): ν 1442, 1690, 2587, 3071. 1H NMR
(300 MHz, CDCl3, TMS): δ 1.71 (s, 1H), 4.25 (s, 5H),
4.51(s, 2H), 4.80 (s, 2H), 7.10 (d, J=9 Hz, 2H), 7.52
(d, J=9 Hz, 2H), 8.33 (s, 1H). 13C NMR (75 MHz,
CDCl3, TMS): δ 69.1, 69.3, 71.5, 80.1, 131.4, 130.1, 133.4,
152.4, 161.8. LC-MS (m/z %): 321 [M+] (18), 279 (15), 215
(32), 157 (55), 65 (100).

3-{[(E)-ferrocenylmethylidene]amino}benzenethiol
(1c): Red solid. Yield: 78 %. Mp: 130–133 °C. IR
(KBr, cm−1): ν 1452, 1655, 1569, 3078. 1H NMR
(300 MHz, CDCl3, TMS): δ 1.83 (s, 1H), 4.16 (s, 5H), 4.51
(s, 2H), 5.01 (s, 2H), 7.30–7.54 (m, 3H), 7.80–8.05 (m, 2H).
13C NMR (75 MHz, CDCl3, TMS): δ 68.6, 70.4, 70.7, 80.1,
121.3, 122.2, 124.3, 126.0, 134.7, 153.9, 169.7. LC-MS
(m/z %): 322 [M++H] (20), 320 (100), 301 (9), 287 (12).
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Fig. 1 Molecular structures of
1a, 1b, 1c and 1d

Fig. 2 Computer generated
optimized structures of (a) N-[(E)-
ferrocenylmethylidene]aniline
(1a), (b) 4-{[(E)-
ferrocenylmethylidene]
amino}benzenethiol
(1b), (c) 3-{[(E)-
ferrocenylmethylidene]amino}
benzenethiol (1c), (d) 2-{[(E)-
ferrocenylmethylidene]amino}
benzenethiol (1d)
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2-{[(E)-ferrocenylmethylidene]amino}benzenethiol
(1d): Red Solid. Yield: 70 %. Mp: 119–120 °C. IR (KBr,
cm−1): ν 1498, 1677, 2569, 3033. 1H NMR (300 MHz,
CDCl3, TMS): δ 1.76 (s, 1H), 4.22 (s, 5H), 4.50 (s, 2H),
4.78 (s, 2H), 6.40–7.51 (m, 4H), 8.26 (s, 1H). 13C NMR
(75 MHz, CDCl3, TMS): δ 69.29, 69.6, 71.47, 80.0, 117.3,
118.9, 119.9, 123.8, 129.7, 137.7, 162.2. LC-MS (m/z %):
322 [M+H] (38), 321 [M+] (37), 320 (100).

Results and Discussion

The structures of the compounds were determined using
Gaussian03/DFT. To optimize the structure, density functional
calculations were carried out with the Gaussian03/DFT series
of programs [56]. The B3LYP formulation [57, 58] of density
functional theory was used employing the LANL2DZ basis
set. No symmetry constraints were imposed on the molecules.

No solvent modeling was employed. Eclipsed conformation
of the two cyclopentadienyl ring for compound 1a, 1c and 1d
was observed on optimization. However the ferrocene moiety
1b takes a staggered conformation (Fig. 2).

In the first set of experiment we investigated the complex-
ation of compound 1b and Cd2+ in detail. UV–vis spectra of
compound 1b were recorded at different added concentration
of Cd2+. In a solution of MeOH: H2O (1:1) compound 1b
shows two peaks in UV–vis spectrum at 325 nm (prominent)
and 240 nm. In the presence of increasing amount of Cd2+ ion
the absorption at λmax=325 nm constantly decreases whereas
that at λmax=240 nm increases. Moreover, on gradual addition
of Cd2+ a new peak appears at 230 nm. The spectra show only
one isobestic point at 285 nm probably due to the equilibrium
between compound 1b and compound 1b+Cd2+ (Fig. 3).

The fluorescence sensing property of compound 1b to-
wards Cd2+ was carried out in a mixed solution of MeOH
and H2O (1:1). Free compound 1b shows weak fluorescence

Fig. 3 Absorption spectra of compound 1b at different amount of Cd2+

ion (0–9×10−4 M) in MeOH and H2O mixture (1:1)

Fig. 4 Fluoroscence change (ΔF/F0) of compound 1b at 290 nm in the
presence of different metal ions inMeOH-H2O (1:1) mixture ([compound
1b]=0.001 M, [Mn+]=2.0×10−4 M, λex=280 nm)

Fig. 5 Fluorescence spectra of compound 1b in presence of different
amount of Cd2+ ion (0–9.9×10−4 M) in a mixed solution of MeOH and
H2O (1:1). Inset: Fluoroscence intensity as a function of Cd2+

concentration

Fig. 6 Hill plot for the complexion of compound 1b with Cd2+ ion from
fluoroscence. I0, I and Imax are fluorescence intensity of compound 1b at
zero, at an intermediate and at the infinite concentration of Cd2+ ion
respectively
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emission at 290 nm upon excitation at isobestic point of
280 nm. However, when Cd2+ ion was added to the above
solution, we observed a significant increase in the fluores-
cence emission at 290 nm. To inspect the specificity towards
Cd2+, next we examined the fluorescence response of com-
pound 1b in presence of various metal ions. This can be
observed by plotting ΔF/Fo verses various metal ions (where
Fo is the fluorescence of 1b in absence of metal ion and ΔF=
Fm-Fo (Fm=fluorescence of 1b in presence of metal ion). As
seen in the Fig. 4, the ΔF/Fo value of 1b is 1.14 in presence of
Cd2+, while Zn2+ shows a low ΔF/Fo value of 0.29 under the
same condition. In addition, Co, Mn, Pb and Ni show very
little fluorescence increase under our experimental condition.
In contrast, compound 1b displays a fluorescence quenching
effect with Cu, Hg, Fe and Ag.

To scan the signal response towards Cd2+, the fluorescence
emission of compound 1b were tested in different concentra-
tion of the metal ion (Fig. 5). On stepwise addition of Cd2+

ion, the fluorescence intensity of compound 1b at 290 nm
was gradually increased. The fluorescence intensity of com-
pound 1b increased linearly with Cd2+ upto 1:1 mole ratio
and then remains constant with increasing Cd2+ ion, indicat-
ing that compound 1b and Cd2+ undergoes 1:1 complex
formation.

The fact that 1:1 complexation occurs between ligand and
the metal is further supported by Hill plot of the fluorescence
data as shown in the Fig. 6. The plot of log{Imax-I)/(I-I0)} Vs
log [Cd2+] is linear with a slope of 1.1735 and intercept 4.0905
indicating binding of one Cd2+ ion per ligand with log β=4.09.

For a deeper insight into the relationship between selectiv-
ity and structure of 1b, compound 1a, 1c and 1d are prepared.
The fluorescence activities of all these compounds in presence
of different metal ion were investigated. All the compounds
have different response to the metal ions.

Compound 1a and 1c do respond to the presence of different
metal ion in their respective fluoroscence, but its selectivity is
very low (Figs. 7 and 8). The metal sensing property of 1a
(Figs. 7a and 8a) indicates that -SH is not a binding site for the
metal ion, however, its presence and position greatly influence
the selectivity of the ligands.

To examine the binding mode of cadmium with 1d, 1H
NMR spectra was measured in MeOD: D2O (1:1) solution
(Figure S1). Upon interaction with Cd2+ the iminium proton
experienced approximately 0.08 ppm of downfield shift to
8.51 ppm. A similar trend was also observed for the aromatic
protons. This shift of the signal can be attributed to
deshielding effect of the metal ion on the protons of its
proximity. It is possible only when cadmium ions bind to the

Fig. 7 Fluoroscence spectra of
(a) compound 1a and (b)
compound 1c in presence of
different amount of Cd2+ ion

Fig. 8 Fluoroscence change
(ΔF/F0) of (a) compound 1a and
(b) compound 1c in presence of
different metal ion
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nitrogen atom. From this study we have confirmed that nitro-
gen atom of the molecule coordinate with Cd2+ ion to form 1d/
Cd2+ complex.

Interestingly, the performance of compound 1d (Fig. 9),
towards selective sensing of Cd2+ in presence of Zn2+ is better
than that of compound 1b. However, the fluorescence of 1d is
very low makes it unsuitable to use as sensor.

The fluorescence enhancement of compound 1b in pres-
ence of Cd2+ can be explained on the basis of PET process. In
absence of Cd2+ ion there is a flow of electron density from
nitrogen atom to the fluorophore part, which quenches the
fluorescence of compound 1b. The Cd2+ is likely to bind
through N atom of compound 1b. As a result the energy of
the HOMO of the receptor part of compound 1b lowered and
consequently the oxidation potential of receptor unit increases
whish effectively stops the PET process and accordingly
fluorescence intensity increases.

The driving force for the electron transfer from the receptor
unit to the fluorophore unit in the PET process can be
expressed by modified Weller equation as follows.

ΔGet ¼ −Es−Ered:Fluo þ Eox:receptor

Where Es, Ered.fluo and Eox.receptor represent the singlet
energy, reduction potential of the fluorophore and the oxida-
tion potential of the receptor unit respectively. If the binding of

the cation increases the oxidation potential of the receptor unit
than this process will increase the ΔGet, which will decrease
the PET process and consequently it allows the excited chro-
mospheres to relax by fluorescence.

Cyclic voltammogram of compound 1b was recorded in
MeOH in absence and presence of equivalent amount of Cd2+

ions using GC as working electrode and Ag-AgCl as reference
(Fig. 10). Both the oxidation as well as reduction potential
changes in the positive direction. The oxidation potential
changes from 0.6 to 0.7 V while the reduction potential
increases from 0.52 to 0.58 V. Therefore from the Weller
equation it is clear that the binding of Cd2+ ion increases the
ΔGet value and consequently fluorescence intensity increases.

Conclusion

In summery we have developed a structurally simple ferro-
cene derivative as a sensitive fluorescent probe for selective
detection of Cd2+. It is excited at 280 and emit at 290 nm and
displays a significant fluorescent enchantment after complex-
ation with Cd2+. Presence of –SH group in para-position of
the aromatic ring greatly enhances the fluorescence intensity
and selectivity for Cd2+ over other competitive metal ion
including Zn2+.

Fig. 9 Fluoroscence change of
compound 1d (a) In presence of
different amount of Cd2+ ion; (b)
in presence of different metal ion

Fig. 10 Cyclic voltammetry of
(a) 1b at different scan rate (10–
500 mV/sec) (b) shift of CV
peaks of 1b in presence of Cd2+
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