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Abstract Water-soluble Mn**-doped ZnS quantum dots
(QDs) were prepared using mercaptoacetic acid as the
stabilizer. The optical properties and structure features were
characterized by X-Ray, absorption spectrum, IR spectrum
and fluorescence spectrum. In pH 7.8 Tris-HCI buffer,
the QDs emitted strong fluorescence peaked at 590 nm
with excitation wavelength at 300 nm. The presence of
sulfide anion resulted in the quenching of fluorescence
and the intensity decrease was proportional to the S*
concentration. The linear range was from 2.5x10°° to
3.8x10°mol L™ with detection limit as 1.5x10 'mol L™".
Most anions suchas F, Cl', Br , 1, CH;CO, , ClO, , CO327,
NO,, NO5~, S,05%7, SO;> and SO,> did not interfere
with the determination. Thus a highly selective assay was
proposed and applied to the determination of S*  in
discharged water with the recovery of ca. 103%.

Keywords ZnS:Mn>" nanocrystals - Quantum dots - Sulfide
anion - Fluorescence quenching

Introduction

The risk of sulfide anion toxicity is associated with

exposure in a number of occupational settings [1-3].
Continuous and high concentration exposure of sulfide
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can cause various physiological and biochemical problems.
When sulfide anion is protonated, it becomes even more
toxic. Thus the detection of sulfide anion has become very
important from industrial, environmental, and biological
point of view [4]. Many methods have been developed so
far including titration [5], spectrophotometry [6—10],
inductively coupled plasma atomic emission spectroscopy
(ICP-AES) [11], hydride generation atomic fluorescence
spectrometry (HGAFS) [12], electrochemical methods [13—
16], ion chromatography [17, 18], chemiluminescence (CL)
methods [4, 19-21] and fluorimetry [22-26]. Among them,
fluorimetry has received considerable attention because of
high sensitivity and easy detection. Recently semiconductor
nanocrystals or quantum dots (QDs) have been widely used
because they offer many advantages over conventional
organic fluorophores due to their generally high lumines-
cence quantum yield, good photochemical stability, broad
excitation band and narrow emission band, size-dependent
emission wavelength and large effective Stokes shift [27].
They are most frequently used to detect cations [28-35].
Recently, they have been applied to the detection of anions
as well. Lakowicz et al. [36] reported the detection of I by
surface modified CdS. Alfredo et al. [37, 38] reported the
selective determination of CN  in methanol by tert-butyl-N-
(2-mercaptoethyl)-carbamate modified CdSe QDs. Liu et al.
[39] developed a new method to detect NO, by CdSe
QDs. Wu et al. [40] realized the highly selective detection
of HSe by water soluble CdS QDs with slight interference
from Cu”" and S*". Multrooney et al. [41] detected F~ by
CdSe/ZnS QDs. Usually the fluorescence emission of
doping ions has higher photostability than the defect-
related luminescence of semiconductive nanomaterials,
because the defects are greatly affected by synthesis
conditions and environments. Because of its wide band
gap (3.7 eV), zinc sulfide (ZnS) is particularly suitable for
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use as a host material for a large variety of dopants.
Mn?’-doped ZnS had strong orange emission at ca.
600 nm and high quantum yield [42-46].The lumines-
cence lifetime of Mn”*"-doped ZnS nanocrystals was ca.
1 ms. Such a long lifetime made the luminescence from
the nanocrystal readily distinguishable from the back-
ground luminescence [47]. Therefore Mn**-doped ZnS
nanocrystals have been extensively used as fluorescent
sensor in various applications. Tu et al. [48] synthesized
the amine-capped Mn>"-doped ZnS nanocrystals for the
ultra sensitive detection of 2,4,6-trinitrotoluene(TNT) in
liquid and gas explosive substance. Yan et al. [49]
applied the phosphoresence of ZnS:Mn”* to the assay
of enoxacin in biological fluids. Wang et al. [50]
proposed an assay for pentachlorophenol based on SiO,
modified ZnS:Mn*". Swadeshmukul et al. [51] synthe-
sized water soluble mercaptoacetic CdS/ZnS:Mn*" QDs
which were used in biological imaging. However until

Fig. 1 FTIR spectra of mercap- 100

now the detection of sulfide anion by QDs has never
been reported yet. Herein, we synthesized mercaptoacetic
coated ZnS:Mn®>" QDs which showed excellent water
solubility and optical properties. At the same time, the
QDs highly selectively responded to sulfide anion in pH
7.8 Tris-HCI buffer.

Experimental
Apparatus

All fluorescence measurements were carried out on a
F-4600 spectrofluorimeter (Hitachi, Japan) equipped with
a xenon lamp source and a 1.0 cm quartz cell, both slits of
emission and excitation were 5 nm and the scan speed was
1,200 nm min'. Absorption spectra were recorded on a
Shimadzu-2501 UV-Vis spectrophotometer (Shimadzu
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Fig. 2 The XRD patterns of 250
ZnS:Mn”" nanocrystal powders
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Japan) using a 1.0 cm quartz cell. X-ray spectroscopy was
collected on XRD DI SYSTEM (Bede England). Infrared
spectra were obtained as KBr pellets on a Nicolet 5700
FTIR spectrometer. Size distribution of ZnS:Mn®" was
performed on Hydrosol Nano-particle size analyzer and
Zeta Potential Analyzer (PSA NANO2590, Malvern Com-
panies, UK). The multi-elemental analysis of ZnS:Mn*"
QDs was performed on ICP-AES OPTIMA 5300DV
(Perkin-Elmer,U.S.A). All pH measurements were made
with a pHS-3 digital pH-meter (Shanghai REX Instrument
Corp., Shanghai, China) with a combined glass-calomel
electrode.

Reagents

All chemicals were of analytical grade and were used
without further purification. All solutions were pre-
pared using doubly distilled water. Zn(CH;CO,),°2H,0
and Mn(CH3CO,),* 4H,O were the products of the
Shanghai Qingxi Technology Co., Ltd., NaS*9H,0O was
purchased from Shanghai Chemical Technology Devel-
opment Co., Ltd., Tris (Sigma Chemical Co.) buffer had
a pH of 7.8. The sodium salts of the tested anions and the
chloride of the tested cations were Sigma-Aldrich Corp.
products.

Preparation of mn-doped ZnS QDs [52]

To the three-necked flask, 5.0 mL of 0.1 mol L' Zn
(CH5CO,),, 20 mL of 0.1 mol L™ mercaptoacetic acid and
1.5 mL of 0.01 mol L' Mn(CH;CO,), were added and
diluted to 50 mL with doubly deionized water. The pH of the
mixed solution was adjusted to be 10.5 using 2.0 mol L™
NaOH and nitrogen gas was passed for 30 min at room
temperature in order to remove oxygen. Then, 5.0 ml of

30 40 50 60 70 80
20 (deg)

0.1 mol L™ Na,S was quickly injected into the solution under
vigorous stirring under nitrogen atmosphere for 15 min. At
last, the solution was aged at 50 °C in air for 2 h. The aged
solution was precipitated with anhydrous ethanol, the
precipitate was centrifuged and washed with ethanol, then
dried in vacuum. The ZnS:Mn*" nanocrystals were obtained.

Procedure of measurement

A certain amount of ZnS:Mn>" powder was dispersed in
deionized water and the solution of 100 pg mL™' was
obtained. Different concentrations of sulfide anion were
added into 0.6 mL QDs solution and diluted to 2.0 ml with
Tris-HCl aqueous solution of pH 7.8. The fluorescence
spectra were obtained with excitation wavelength at 300 nm.
The scan speed was 1,200 nm min ' and the band-slits of
both excitation and emission were set as 5.0 nm.

Results and discussion

IR spectra of mercaptoacetic acid and ZnS:Mn*" QDs
capped TGA

The IR spectra of mercaptoacetic acid (TGA) and QDs
capped with TGA were shown in Fig. 1. It was clear that
the absorption band at 2,567 cm ' which was ascribed to
sulfthydryl group disappeared in the spectrum of QDs. The
asymmetric and symmetric stretch vibrations of the car-
boxyl group of TGA were at 1,710 cm™ ' and 1,384.4 cm ™'
respectively. After binding to QDs, they shifted to
1,587.1 ecm™' and 1,387.8 cm™' respectively. It could be
concluded that mercaptoacetic acid has bound to the surface
of QDs. As a result, the solubility of QDs in water was
improved.
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Fig. 3 UV absorption spectrum (solid line) and fluorescence spectrum
(dot line) of Mn-doped ZnS QDs in aqueous solution
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Fig. 4 Size distribution by number of ZnS:Mn*" Hydrosol

Content of doped manganese

The amount of Mn doped will affect the fluorescent
intensity of QDs. The experiment results displayed that
the optimal molar ratio between Mn*" and Zn*" was 0.03 in
synthesis of Mn-Doped ZnS QDs. The actual concentration
ratio of Mn”* and Zn®" was 0.028 which was obtained from
inductively coupled plasma analyzer (ICP).

Characterization of the Mn-doped ZnS QDs by XRD

For different drying condition under 60 °C, 120 °C and
210 °C, the XRD spectra of QDs showed no significant
discrepancy. Figure 2 presented the XRD patterns of ZnS:
Mn*" QDs which were obtained under 210 °C for drying.
These diffraction features appealing at 28.5°, 47.5°, and
56.3° corresponded to the (111), (220), and (311) planes of
cubic sphalerite ZnS, which was very consistent with the
values in the standard card (PDF-card 5-566). It implied
that the Mn-doped ZnS possessed the cubic sphalerite ZnS
crystal model. According to Debye-Scherrer formula,

D = k\/Bcos(0) (1)

where D is the averaged crystallite size, A is the wavelength of
X-ray, usually using line K, of Cu with wavelength of
0.15,406 nm, O is a glancing angle between X-rays and a
crystal face, k is a constant as 0.89, andf3is the full width at
half maximum of the diffraction line. From the equation (1),
D of Mn-doped ZnS was estimated as 3.8 nm.

Fig. 5 Fluorescent spectral
changes of QDs in pH 7.8 Tris-
HCI buffer upon addition of S, S00 - 051l
The excitation wavelength was
300 nm. The inset was the fitted
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Fig. 6 a Intensity change of QDs (30 pg mL™') in the presence

and absence of anions. The concentration of sulfide anion was

2.5x10mol L' while the concentrations of other anions were

2.5x10 *mol L™". b The intensity change of QDs and 2.5x 10 mol L™"

sulfide anion mixture upon addition of different anions (2.5x
10 *mol L")

Spectroscopic properties of ZnS:Mn*" QDs in aqueous
solution

The fluorescence spectrum and absorption spectrum of
ZnS:Mn>" QDs in pH 7.8 aqueous solution were presented
in Fig. 3. The absorption peak was 294 nm (4.22 ¢V) which
showed the band gap absorption of ZnS:Mn?" nano-
crystalline particles. Compared with the phase material of
ZnS whose absorption peak was at 340.6 nm (3.64 eV), the
absorption peak blue shifted 46 nm (0.58 eV). The result
indicated that ZnS:Mn”*"possessed quantum confinement
effect. According to Brus effective mass approximation
[53], the average size of ZnS:Mn>" was estimated as 4.1 nm

which was consistent with the result of XRD. Two emission
bands peaked at 400 nm and 590 nm, respectively were
observed when excitation wavelength set at 300 nm. The
weak emission at 400 nm originated from the defect-related
emission of the ZnS [54]. The strong emission peak at
590 nm is attributed to the “T,—°A, transition of Mn**
impurity which indicated Mn®" entered into the ZnS lattice
to form ZnS: Mn®> * QDs. However, the green fluorescence
at 480 nm of ZnS phase wasn’t observed which was
attributed to energy transfer from ZnS QDs to Mn>" [48].

Size distribution of ZnS:Mn** hydrosol

In order to explore the emission mechanism, the size of QDs
in aqueous solution was measured. As described in the section
of procedure of measurement, the nanocrystal hydrosol
was prepared and the size distribution curve was
presented in Fig. 4. It was clear that the size of nanocrytal
concentrated in the range of 33—50 nm. The narrow scope
suggested the nanocrystal hydrosol was relatively uniform
in size distribution. Placed the nanocrystal hydrosol in the
refrigerator at 4 °C for 3 days, no observable precipitation
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Fig. 7 a Effect of pH on the fluorescence intensity of QDs
(30 ug mL ™), b the fluorescent intensity change of system containing
QDs (30 pg mL ") and S** (1.5x10 >mol L") in different pH solution
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was found and the size distribution curve kept constant.
Such a transparent solution implied that Mn-doped ZnS
nanocrystal has good water solubility and stability which
was promising for the application. Obviously, the size of
the hydrated molecule was significantly larger than that of
solid owing to the hydration of nanocrystal hydrosol. But
the emission profile and peak position in solid state and in
hydrosol solution were the same which implied that the
hydration action did not change the luminescent properties
of QDs.

Spectral changes of ZnS: Mn?" QDs in the presence
of anions

Figure 5 showed the fluorescent spectrum changes of QDs
upon addition of $*". In the pH 7.8 Tris-HCI buffer, the
addition of S*~ resulted in the fluorescence quenching. The
fluorescence quenching was best described by the equa-
tion:1—F/Fy=—0.018+0.016[Q], where Fy and F were the
fluorescent intensity of QDs in the absence and presence of
S?7, [Q] was the concentration of the quencher (S*"). The
linear relationship of the intensity ratio vs S*~ concentration
was presented in the insert of Fig. 5. The linear range of the
calibration curve was from 2.5x107° to 3.8x10 >mol L™
with the detection limit as 1.5x10 "mol L™".

In the above quenching experiment, the excitation
wavelength was set at 300 nm. However, the absorbance
of ca. 300 nm increased upon addition of S*7. It was
concluded that the fluorescence quenching of QDs upon
addition of S*~ was ascribed to be the binding action
between QDs and S*~ instead of the change of absorbance.

The effect of various anions on the fluorescence
spectrum of ZnS:Mn?" QDs was also investigated and
presented in Fig. 6. Upon the presence of 2.5 10 *mol L™
for each anion such as Cl, Br , CH;CO, , ClO,4 , CO327,
F, 1, NO,, NO;, S,05>, SO5> and SO4>", no obvious
fluorescent intensity change was observed. However with
the addition of 2.5x10°mol L' S?7, the fluorescence
intensity decreased at ca. 30%.

Analytical application
Optimal experimental condition

The effect of pH on the luminescence of ZnS:Mn>" was
investigated and presented in Fig. 7a. When pH value was

lower than 9.0 and higher than 7.0, the intensity of QDs
was strong and kept constant and the system was stable at
room temperature for at least 3 days. In addition, the effect
of pH value on the intensity of QDs-S*~ was also studied
(shown in Fig. 7b). The intensity stabilized in the pH range
of 6.7 to 10.4. In the strong acid the interaction between
QDs and S*~ was weak because sulfur existed in the form
of HS™ instead of S*". At the same time, the response was
also weak in strong base medium because the existence of
too much OH groups on the surface of QDs hindered the
interaction between S° and QDs. In order to make it
feasible, Tris-HCI buffer of pH 7.8 was selected.

At the same time, the effect of concentration of
ZnS:Mn”*" on the sensitivity was also studied. The
fluorescent intensity increased with the increase of concen-
tration of ZnS:Mn”*. However, the degree of fluorescent
intensity upon addition of S*  was decreased with the
concentration of ZnS:Mn?". Take both into consideration,
the concentration of ZnS:Mn”" was 30 pg mL ™.

Thus, the optimal experiment condition was under room
temperature in Tris-HCl buffer of pH 7.8 and the
concentration of QDs was 30 pg mL ™.

Interference of foreign substances

Under optimal experimental condition, in the mixture
solution of 5.0x10 °mol L' S and 30 pug mL™' QDs,
the presence of following amounts of foreign substances
compared with the concentration of S* resulted in less
than +5% error: 1,000-fold NO;~, Na*, K*, Li" and NH,",
600-fold SO5*>~ 500-fold CO5>", ClO, and F~, 400-fold
NO, ™ and SO,*", 300-fold Br, 100-fold I", CH;CO, ", 20-
fold Mg?*, Ca®", Ba®". The presence of heavy metal ions
such as Cu®*, Hg>" and Ag" also quenched the fluorescence
of QDs, because the insoluble sulfides formation between
metal ions and S* led to ZnS precipitation transfer which
resulted in the change of photophysical properties or the
surface state of thiol-capped QDs [32]. However, those ions
of high concentration couldn’t coexist with S*, their
existence didn’t interfere the determination.

Sample analysis
To investigate the possibility of practical application, the

determination of sulfide anion was performed on a lake water
sample. The recovery was about 103% shown in Table 1.

Table 1 Analytical results of

samples Sample Founcli1 Ad(j((ad » Fognﬁd (11:57)1 Recovery Relative standard
(mol'L™") (10"°molL"™") (10 mol-L™") (%) deviation (RSD) (%)
Lake water No found 5.00 5.22 103.3 5.65
10.0 10.38 103.8 2.77
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Proposed mechanism

ZnS dopped Mn*" quantum dots emit two emission bands
peaked at 400 nm and 590 nm. The emission at 400 nm
originated from the defect-related emission of the ZnS [54]
and the emission of 590 nm is attributed to the *T,;—°A,
transition of Mn®" impurity [48]. When S*~ was adsorbed
on the surface of the QDs, S~ vacancy of the surface of
QDs decreased. As the result, surface fluorescence of ZnS
was quenched effectively. At the same time, the adsorption
of $*” increased dangling bonds originating from the lone
pairs on surface S~ which resulted in more no-radiation
pathways of luminescent center, consequently the fluores-
cence of Mn”>" was quenched as well [55].

Since the surface of QDs was coated with negatively
charged mercaptoacetic ions, it was very difficult for other
anions to interact with the surface of the QDs. However S*~
could fit well the sulfide defect of the surface and S*~ could
bind strongly with Zn**, thus S*~ could easily interact with
the QDs [40]. Therefore, QDs showed highly selective
response to sulfide anion than other anions.

Conclusions

Water-soluble Mn”*-doped ZnS quantum dots (QDs) were
prepared which showed selective response to sulfide anion

over other anions such as F, CI', Br, I, CH;CO, ,
ClO,, CO5*, NO,, NO; ™, $,05°7, SO;*” and SO,*". The
high selectivity was assumed that S*~ could fit well the
sulfide defect of the QDs surface and S*  could bind

strongly with Zn?".
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