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We present applications of polar plots for analyzing fluorescence lifetime data acquired in the fre-
quency domain. This graphical, analytical method is especially useful for rapid FLIM measurements.
The usual method for sorting out and determining the underlying lifetime components from a complex
fluorescence signal is to carry out the measurement at multiple frequencies. When it is not possible
to measure at more than one frequency, such as rapid lifetime imaging, specific features of the polar
plot analysis yield valuable information, and provide a diagnostic visualization of the participating
fluorescent species underlying a complex lifetime distributions. Data are presented where this polar
plot presentation is useful to derive valuable, unique information about the underlying component
distributions. We also discuss artifacts of photolysis and how this method can also be applied to
samples where each fluorescence species shows a continuous distribution of lifetimes. Polar plots of
frequency-domain data are commonly used for analysis of dielectric relaxation experiments (Cole–
Cole plots), which have proved to be exceptionally useful in that field for decades. We compare
this analytical tool that is well developed and extensively used in dielectric relaxation and chemical
kinetics to fluorescence measurements.
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INTRODUCTION

The lifetime of a fluorescence signal provides valu-
able information about the environment of a fluorophore
on the molecular scale, and this is especially valuable
for biological studies. The techniques for fluorescence
lifetime acquisition and analysis are usually subdivided
into time-domain acquisition [1] and frequency-domain
techniques [2–5]. The frequency domain is often pre-
ferred because the acquisition is relatively rapid, and
the electronics are simpler. There are advantages to both
time- and frequency-domain acquisition, but the basic
time-dependent formalism is identical [6,7]. Fluores-
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cence decay processes are often analyzed according to a
minimum model of a single lifetime component; however,
usually the system has multiple lifetime components or
a more complex distribution of lifetimes. In this case,
time-domain acquisition systems usually fit the signal as
multi-exponential decays to determine separate lifetime
components (or lifetime distributions). Frequency-
domain methods typically perform measurements at
multiple frequencies of excitation to determine the phase
and modulation amplitudes at different frequencies.
These data are then fit to models that are Fourier trans-
forms of multi-exponential time-domain models. For
fluorescence lifetime imaging with very rapid acquisition
(approximately video rates [7]), where large amounts
of data are acquired in a short time, frequency-domain
instruments usually use only one frequency. This limits
the ability to detect multiple lifetime components directly.

This paper discusses an analysis procedure that is
applicable to single-frequency measurements of samples
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exhibiting more than one fluorescence lifetime. The analy-
sis is also useful for globally analyzing multiple frequency
components; however, in this paper we limit the discussion
to a single frequency. It is a simple procedure to extend
the polar plot analysis to each frequency component of
a multi-frequency data set. We have been applying this
method in the last few years to our FLIM data, and it has
given us unique insights and has aided us in interpretation
[8,9]. The methodology offers a simple, graphical, rapid
algorithm for interpreting the phase and modulation data
of a single-frequency measurement, which can be of great
assistance in the interpretation of lifetime distributions.
The analysis is particularly important in lifetime imaging
where the low signal-to-noise makes standard analysis
techniques impracticable, where large individual data sets
are collected at every pixel of a CCD camera, and where
signals are analyzed in terms of single frequencies.

The representation of fluorescence data presented in
this paper is formally identical to well-known procedures
used over many decades for the analysis of dielectric re-
laxation experiments (see Appendix C). It is applicable for
analyzing signals derived from the dynamic behavior of
any chemical or physical system relaxing due to repetitive
time-dependent perturbations. In fluorescence, the pertur-
bation is the excitation light, and the relaxation is the
detected fluorescence emission. The analysis procedures
and parameter transformation has been used extensively
for analyzing transient responses to perturbations, such
as dielectric dispersion [10–15] analysis of AC circuits
[14], and chemical relaxation kinetic experiments [16].
Its use for fitting and displaying data from dielectric re-
laxing systems with two lifetimes in a polar plot has been
demonstrated in the field of dielectric relaxation [11,17].
Recently, this graphical method has been applied to
frequency-domain data from fluorescence lifetime images
[18] for fitting signals from continuously variable ratios
of two fluorescent species. The polar plot has been used
as a graphic demonstration that the effective modulation
lifetimes at any single frequency are longer than the phase
lifetimes for frequency-domain fluorescence lifetime
measurements of multi-component fluorescence [19].

In this paper, we discuss some details of the general
theory behind this analysis and show how this method
can be applied to analyze data from our real-time fluores-
cence lifetime imaging instrument. The graphical analysis
is independent of any underlying physical model, and is
associated directly with the experimental data. We also
show how this method can be used for interpreting more
complex data from component distributions rather than
combinations of specific single components. And we dis-
cuss how artifacts, such as photo-bleaching, affect the
analysis and the graphical display of the data.

THE TIME COURSE OF
FLUORESCENCE DECAY

First we define the parameters. Those familiar with
the usual representation of frequency-domain measure-
ments might want to skip the next section.

The fundamental dynamic process of fluorescence
is described in terms of the time-dependent fluorescence
emission in response to very short pulses of excitation
light (delta functions). Following such an excitation event,
each species of excited fluorophore will decay as a single
exponential. In general, multiple fluorescent species are
present, and the time course of the fluorescence decay
consists of a sum of exponential decay processes,

F (t) =
∑

i

aie
−t/τi , (1)

where τi is the ith fluorescence lifetime and ai is the
amplitude of the ith component [3,20–23].

The basic measurement in the time domain involves
a short pulse of light to excite the fluorophores into an
excited state. The time course of the fluorescence signal
is recorded directly as the excited molecules decay to the
ground state. In order to achieve sufficient signal-to-noise,
the signal is usually acquired and averaged over many
pulses. Often the excitation light pulse is not negligibly
short compared to the fluorescence relaxation times, and
the measured fluorescence signal then becomes the con-
volution of the delta function response given in Eq. (1)
with the form of the excitation pulse, E(t ′),

Fmeas(t) =
∫ t

0
E(t ′)F (t − t ′) dt ′. (2)

The exponential time constants and amplitudes are then
determined by de-convolving the fluorescence response
of Eq. (1) from the measured fluorescence signal, know-
ing the time dependence of E(t ′). There are many ways to
acquire data in the time domain, and we refer the reader to
the literature for details [24–28]. Measuring the fluores-
cence decay directly in the time domain requires that the
repetition period of the short light pulses be a good deal
longer than the fluorescence lifetimes, in order to acquire
the whole decay process and avoid pulse pile-up.

THE FREQUENCY-DOMAIN MEASUREMENT

Equation (2) is very general. Every measurement
of fluorescence decay can be described by Eq. (2), even
though the excitation event may not be a series of short
light pulses separated by times long compared to the
fluorescence decay times. A common mode of dynamic
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fluorescence measurement is what is called the frequency
domain [4,5,19,20,29,30]. In a frequency-domain mea-
surement the excitation process is continuously repetitive
at a rate that is comparable to the fluorescence decay rate.
The fluorescence response to this continuous repetitive
excitation wave train is measured, averaged, and analyzed
over a time long compared to the longest relaxation time of
the fluorescence. The signal of the fluorescence response
is analyzed in terms of the frequency components (Fourier
components) of the measured repetitive fluorescence sig-
nal. The modulation and phase of the separate frequency
components of the fluorescence signal are compared to the
frequency components of the excitation light, and the flu-
orescence lifetimes are extracted using frequency-domain
analysis [4,7,19,20,31–37]. Both the frequency- and time-
domain methods are complementary and theoretically
equivalent, being related through Fourier transforms. We
now define the nomenclature for the polar plot description.

Single Lifetime Measurements

The simplest frequency-domain measurement uses
sinusoidally modulated excitation light. The fluorescence
signal is modulated at the same frequency as the excita-
tion. However, depending on the frequency of the excita-
tion, the amplitude of the sinusoidal fluorescence signal
will be demodulated (relative to the fractional demodula-
tion of the excitation) and the phase of the fluorescence
signal will lag that of the excitation light. The phase shift
and demodulation of the fluorescence signal relative to
the excitation signal gives information about the lifetime
distribution of the fluorophores probed. For this simple
case, the excitation light is of the form [7].

E(t) = E0 + Eω cos(ωt + ϕE) (3)

where ω is the frequency of the excitation modulation and
E0 and Eω are the DC (long time average of the fluo-
rescence signal) and AC (the amplitude of the oscillation
component) of the excitation. The phase of the excitation
light is known, and we denote it by ϕE. The depth of the
modulation of the excitation light ME is defined as Eω/E0.
Every frequency component of the excitation wave train
must produce a corresponding frequency component of
the fluorescence. In the case of a pure sinusoidal excita-
tion (Eq. (3)), the fluorescence signal can be expressed
as:

S(t) = S0 + Sω cos(ωt + ϕS), (4)

which has a corresponding phase ϕS and depth of modula-
tion, MS. A usual frequency-domain experiment measures
the relative phase shift ϕ = ϕS − ϕE and the relative depth
of modulation, M = MS/ME. For a single lifetime sys-

tem, where all fluorophores have the same fluorescence
lifetime, the relationship between that lifetime and the
measured parameters is [4,20,30]:

ϕ(τ ) = arctan(ωτ ), (5)

and

M(τ ) = 1√
1 + (ωτ )2

. (6)

The phase and modulation are two separate quantities of
the fluorescence signal that are measured for any single
frequency of the excitation. According to Eqs. (5) and
(6), two separate lifetimes can be determined, one from
the phase and one from the modulation. Only for a single
lifetime system are these two lifetimes equal. For a multi-
ple lifetime system, the apparent lifetimes calculated from
Eqs. (5) and (6) will not be equal. A complete frequency-
domain analysis, in the case of a complex system with
more than one lifetime, requires that measurements of
phase and modulation be carried out at several frequen-
cies. Then it is possible to extract multiple fluorescence
lifetimes and amplitudes from a fluorescence frequency
dispersion curve (if information about one lifetime com-
ponent is known, then the lifetime information of a second
component and their ratio can be determined [31]). How-
ever, even in the case of a distribution of lifetimes, mea-
surements of ϕ and M at a single frequency often suffice
to provide the necessary information about a system.

Measurements of Multiple Lifetime
Systems at a Single Frequency

We now introduce the parameters needed to define
the polar plot representation. Consider a collection of mul-
tiple fluorescent species, which have a distribution of life-
times. For any given ensemble of fluorophores, the total
steady-state intensity from all fluorophores with the life-
time τ would be:

S0(τ ) = β
∑

i

ci(τ )εi(τ )Qi(τ ), (7)

where the sum is over all fluorescent species. ci(τ ) is
the concentration of species i with lifetime τ . Likewise,
εi(τ ) and Qi(τ ) are the absorption coefficient and the
quantum yield of the ith species with a lifetime τ . β is
an instrumentation constant such that the sum over all
lifetime components,

∫
τ
S0(τ ) dτ , is the total intensity of

the signal. S0(τ ) is then the intensity distribution function
for those species with lifetime τ .

For each different value of lifetime, τ , at any par-
ticular frequency there would be a phase and modula-
tion (Eqs. (5) and (6)) corresponding to a fluorescence
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response described in Eq. (4). The total signal is the
intensity-weighted sum of the component signals. We can
write the equivalent of Eq. (4) as:

Stot(t) = S0 tot + Sω tot cos(ωt + ϕtot)

=
∫

τ

(S0(τ ) + Sω(τ ) cos(ωt + ϕ(τ ))) dτ

=
∫

τ

(S0(τ ))(1 + [Sω(τ )/S0(τ )] cos(ωt + ϕ(τ ))) dτ

=
∫

τ

(S0(τ ))(1 + M(τ ) cos(ωt + ϕ(τ ))) dτ (8)

For distinct lifetime components S0(τ ) and Sω(τ ) would
be delta functions multiplied by the appropriate amplitude.
If we divide the second term of Eq. (8) by S0 tot, we get
Eq. (9) for the time varying part in terms of the signal
modulation,

Mtot cos(ωt + ϕtot) =
∫

τ

[S0(τ )/S0 tot]M(τ )

× cos(ωt + ϕ(τ )) dτ. (9)

Using a trigonometric identity, we write:

Mtot(cos ϕtot cos ωt + sin ϕtot sin ωt) =
∫

τ

[S0(τ )/S0 tot]

M(τ )(cos ϕ(τ ) cos ωt + sin ϕ(τ ) sin ωt) dτ. (9A)

We define I (τ ) = [S0(τ )/S0 tot] where I(τ ) is the fraction
(or distribution function) of the steady-state intensity that
is emitted from fluorophores with lifetime τ . The mea-
sured phase shift is not the average of the phase shifts,
nor is the measured modulation the average of the mod-
ulations. The measured ϕtot and Mtot are weighted sums
(integrals) of all the participating components. Equation
(9A) splits into two parts giving Eqs. (10) and (11), where
we drop the cos(ωt) and sin(ωt) terms common on both
sides of the equations:

Mtot cos ϕtot =
∫

τ

I (τ )M(τ ) cos ϕ(τ ) dτ , (10)

and

Mtot sin ϕtot =
∫

τ

I (τ )M(τ ) sin ϕ(τ ) dτ . (11)

We can separate ϕtot and Mtot from Eqs. (10) and (11) to
get separate equations for the total phase shift and total
modulation, which are the only measured parameters:

tan ϕtot =
∫
τ
I (τ )M(τ ) sin ϕ(τ ) dτ∫

τ
I (τ )M(τ ) cos ϕ(τ ) dτ

, (12)

and

M2
tot =

(∫
τ

I (τ )M(τ ) sin ϕ(τ ) dτ

)2

+
(∫

τ

I (τ )M(τ ) cos ϕ(τ ) dτ

)2

. (13)

The equivalent of these equations have been derived in
many previous publications [7], and references therein.
The lifetimes calculated from ϕtot and Mtot will in general
not be equal. They are equal only in the case of a single
lifetime. The extent to which the two lifetimes differ gives
information about the distribution function, I(τ ). Because
M and ϕ are related for any given τ (that is, for any sin-
gle value of τ , if we know ϕ we can calculate M, and
vise versa), and because they are the only two parameters
that are measured separately, we can only expect to mea-
sure two independent parameters defining the distribution
function for each measurement of ϕtot and Mtot.

A CHANGE OF COORDINATES
TO DERIVE THE POLAR PLOT

Because of the non-linearity of Eqs. (12) and (13), the
relation between the measured phase and modulation and
the actual lifetime distribution can be difficult to interpret.
But, we can change variables into a coordinate system
where the single lifetime components add directly to give
the total measured signal [10,11,14,18,38].

Referring to Eqs. (10) and (11), we change coordi-
nates to x and y according to the equations:

x = M(τ ) cos ϕ(τ ) (14)

y = M(τ ) sin ϕ(τ ). (15)

This is the decomposition of a vector of magnitude M(τ )
onto the x- and y-axes in terms of the polar angular coor-
dinate ϕ(τ ). ϕ(τ ) and M(τ ) are the phase and modulation
of each separate fluorescence component with lifetime τ .
On this x–y plot, M is the distance from the origin and ϕ is
the angle from the x-axis (see Fig. 1). This decomposition
is equivalent to the description of the fluorescence dynam-
ics in the complex plane where the y-axis is the imaginary
axis and x is the real axis ([6], and the Appendix C). Re-
ferring to Eqs. (10) and (11), and Eqs. (14) and (15), we
can write:

Mtot cos ϕtot = xtot =
∫

τ

I (τ )x(τ ) dτ (16)

and

Mtot sin ϕtot = ytot =
∫

τ

I (τ )y(τ ) dτ . (17)
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Fig. 1. A simulated plot of lifetime locations measured at 100 MHz. The
semicircle is the single lifetime curve. The location {1,0} represents
0 lifetime. The location {0,0} represents infinite lifetime. Lifetimes
increase counter-clockwise to the left. In this coordinate system the
measured value is the intensity-weighted average of the two component
lifetimes. All different ratios of the two lifetime components would
fall on the line between them. For example, as shown, components
with lifetimes of 4 and 0.8 ns (here the short lifetime has two-thirds
the probability/intensity of the long lifetime), the measured lifetime is,
phase: 1.1, and modulation: 1.8 ns.

We can construct a vector

⇀

r tot =
[

xtot

ytot

]
, so that �rtot =

∫
τ

I (τ )�r(τ ) dτ . (18)

�rtot is now the intensity-weighted average of the �r(τ ) in
the polar plot coordinate system (in the complex plane,
the real and imaginary axes, see Appendix C). This is a
convenient visualization of the measured phase and mod-
ulation and allows valuable information about the lifetime
distribution function to be extracted and easily visualized.
This is the decomposition used commonly in Cole–Cole
plots of dielectric relaxation [38]. Clayton et al. [18] have
discussed some properties of this representation for fluo-
rescence data.

Fluorescence Signals with
a Single Lifetime Component

Figure 1 shows a typical reference curve for single
lifetimes plotted in this coordinate system. Different fre-
quencies will give different values on this semicircle, but
single lifetimes will always lie on the semicircle defined
by the points {0, 0}, {1, 0}, and {0.5, 0.5} (see Appen-
dices A and C for proofs of this statement). This is a
universal curve for any single lifetime component. The
points on the semicircle are the measured values of the
vector �r(τ ) only for single lifetimes.

Fluorescence Signals with more than
One Lifetime Component

The location of the measured points for a gen-
eral multi-lifetime measurement will be the intensity-

weighted average of the contributions of the vectors of
the separate components. For example, for two lifetimes
(see Eq. (18)):

⇀

r tot = a
⇀

ra + b
⇀

rb. (19)

The location of �rtot is simply the relative intensity-
weighted average of the location on the chord line between
⇀

ra and
⇀

rb (see Fig. 1 and Appendix C). The average of the
two distinct single lifetime components, each of which
lie separately on the single lifetime semicircle, would no
longer be on the semicircle. Thus, a difference in modula-
tion lifetime and phase lifetime is immediately apparent in
this plot as a deviation from the semicircle, and indicates
multiple lifetimes.

For any particular decaying system, measurements at
a certain frequencies are more sensitive to a given lifetime
range than other frequencies. For instance, on this plot it
would be hard to resolve differences in lifetimes found in
the region near the origin. In Appendix B we discuss how
to find the most sensitive frequency region for particular
underlying frequency components in this representation,
and conditions that are best for identifying component
contributions.

Because the location of any measurement is the
weighted average of the locations of its constituent com-
ponents, the locations of the components define vertices
of a polygon in which the measurement must lie. For ex-
ample, in the simplest case of a two-component system
the location of the measurement will be on the line be-
tween the locations of the two components (Fig. 1 and
Appendix C); a three-component system would define a
triangle, and more components would define the vertices
of a polygon. Because a single measurement can only
determine two parameters, in practice, the case of three
known components (a triangle) is the most complex case
of interest (more than two parameters are needed to de-
termine the ratios for any polygon of higher order than a
triangle). However, if a part of the lifetime distribution is
known, it can be reduced to a single vector, reducing the
overall complexity of the analysis.

LIFETIME DISTRIBUTIONS

Often, an ensemble of a fluorescent species does not
decay with a single lifetime. A frequency-domain lifetime
measurement with such a sample would not lie on the
semicircle. This is true for any fluorescence lifetime dis-
tribution, as described earlier. Therefore, if multiple fluo-
rescent species are present, each emitting with more than
one lifetime or a distribution of lifetimes, the points on the
polar coordinate diagram corresponding to each separate
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fluorescent species will not lie on the semicircle. However,
the same analysis can be performed provided that the point
on the polar coordinate diagram for each separate fluores-
cent species (which could have more than one lifetime, and
does not lie on the semicircle polar plot) remains constant
during the measurement; that is, if the shape of the lifetime
distribution of each species does not change. This point
can then be used in the analysis in the same manner as
discussed earlier for separate, single lifetime components.
The location of the lifetime distribution for a specific flu-
orophore in the polar coordinate system can be used as
a lifetime-spectroscopic marker to identify that dye. This
significantly reduces the importance of knowing the ex-
act lifetime distribution of the fluorophores, emphasizing
the contribution of the species to the signal. This also
greatly reduces the parameters necessary for interpreting
the data and considerably relaxes the requirement on error
bounds in the measurement. The points of measurements
are located on the polar plot without carrying out a fitting
procedure to determine the time decay parameters of the
separate components. The locations of the points on the
polar plot are determined solely from fitting the phase and
modulation of the fluorescence measurement without fur-
ther analysis. The fluorescing species can be categorized
in a FLIM image by their location on the polar plot (see
Fig. 6 for an example). This does not replace the tradi-
tional full analysis of component lifetime analysis; but,
especially for FLIM data, where lifetime distributions are
routinely observed and signal-to-noise is relatively low,
the polar plot analysis is very valuable to locate lifetime
species, or lifetime distributions.

For example, a mixture of two dyes each of which
has two lifetimes is a four lifetime component system, but
can be treated as a two point system in the same manner
as the two lifetime component system discussed earlier.
Each of the dyes would have a set location defined by
their two lifetimes. These locations are constant if the
fractions of the two lifetime components remain the same
when measuring mixtures with different ratios of fluores-
cent species; that is, in the case where only the intensity
ratio between the two dyes is variable. Therefore, as in
a two-component case, the measurement would lie on a
straight line connecting the two points defined by the sep-
arate lifetime distribution of each of the two dyes, just as
in the case for two single lifetime components. The only
unknown parameter is the ratio between the two dyes. This
means, in this case, the number of unknown parameters in
the analysis is related to the number of fluorescent species,
and not the total number of lifetimes in the distribution.
One can therefore measure the phase and modulation of
the constituent fluorescent species separately, and those
locations can be used as constant points in the analysis

of the mixture. We emphasize this because this illustrates
that the description of the measurement is more general
than may seem at first, and does not require single life-
time components. The data representation for the different
chemical species with lifetime distributions can be treated
and identified just as in the case of separate, single lifetime
components.

PROBLEMS CAUSED BY ARTIFACTS:
PHOTO-BLEACHING

True fluorescence measurements can only be located
in the area below the single lifetime semicircle. Measured
points lying above this semicircle curve represent physi-
cally invalid (impossible) lifetime distributions; however,
actual data might fall outside the valid region of the po-
lar plot due to other factors (noise, photo-bleaching, ar-
tifacts interfering with the measurement, etc.). Figure 2
is an example showing how the data can be affected by
photo-bleaching. Photo-destruction of fluorophores can
be a major problem during FLIM data acquisition. If not
recognized, this can lead to false interpretations. How-
ever, once diagnosed, it is possible to take photo-bleaching
into account in the analysis. If possible, data with photo-
bleaching present should not be fit to a sine wave, but to

Fig. 2. Photo-bleaching effect. Shown are several lifetimes (4, 2, 1, and
0.5 ns at 100 MHz) and how the measurement deviates from the single
lifetime curve with increasing dynamic photo-bleaching contribution
to the measured signal. Locations that are outside of the semicircle
are physically impossible through any combination of lifetimes, but
measurements with photo-bleaching or other artifacts may cause the
calculated points to lie outside of the semicircle. The initial direction
taken by the curves with increasing rates of photo-bleaching is dependent
on the instrument setup, especially on the actual order in time of the
phase measurements (whether they are increasing, decreasing, or what
the starting phase is). Large amounts of photo-bleaching will always
result in large modulations from the fitting procedure, meaning that
there will always be a general trend away from the origin. Inset is an
example data showing the photo-bleached signal and the fit to a sine.
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Fig. 3. Gaussian lifetime distributions. Plotted with solid lines are the
locations for the measurement of Gaussian distributions with varying
width and fixed peak lifetimes. In dashed lines are the trends for varying
peaks with fixed width. Because negative lifetimes are cutoff (physi-
cally impossible), increasing the width of the Gaussian moves the trend
towards the location marked with a dot (if negative lifetimes were permit-
ted, the trends would move more towards the center of the semicircle).
The dot represents the location if all lifetimes are equally present. One
can see that the effect of the negative cutoff is more pronounced for short
lifetimes. In practice, only relatively small widths would be observed in
Gaussian distributions, or the distributions would be more like that in
Eq. (20). Note that the trends are non-intersecting, meaning that a single
measurement can find the peak and width of any Gaussian distribution.

a sine wave multiplied by the appropriate decay function
of photo-bleaching to remove the effect of the photo-
bleaching. If a measured point lies above the semicircle
on this plot, this is diagnostic of such an artifact, Fig. 2.

EXAMPLES

Gaussian Lifetime Distributions

Figure 3 shows how the locations of a Gaussian dis-
tribution in the polar plot change with changing peak and
width. Except in the case of extremely wide distributions
the locations are close to, but not on the semicircle.

For a more realistic case, consider a continuous life-
time distribution with an intensity distribution of the form,

I (τ ) = Nτ√
σ

e−(τ−τc)2/σ for 0 < τ ≤ τ0, (20)

where N is a normalization constant. The intensity of a
fluorophore with a single natural radiative lifetime of τ 0

is proportional to τ /τ 0, where τ is the measured lifetime
of the fluorophore (this could be, for instance, the case for
conditions where τ < τ 0 because dynamic quenching or
energy transfer is present—or any process changing the
lifetime). I (τ ) is a partial Gaussian lifetime distribution
with the weighting factor, τ . I(τ ) is zero at τ =0 (τ < 0
is undefined and physically impossible) and τ > τ0 is not
possible. Only two parameters, σ and τc, define the shape

Fig. 4. Broad lifetime distribution: In the insert is shown a lifetime distri-
bution of the form of Eq. (22) with average lifetime of 2.7 ns. Highlighted
in the main chart are those single lifetimes with a considerable contri-
bution to the average. The measured location is the weighted average of
the single lifetime locations (phase: 2.14, modulation: 2.57 ns).

of the distribution (assuming τ 0 is known). The location
of the measured �r(τ ) is the weighted average of all of the
single lifetime locations, Eq. (18). A typical location of
the measured �r(τ ) is close to the single lifetime location
for the peak lifetime τ c (which is on the semicircle) but
shifted towards the center of the semicircle (location {0.5,
0} on the polar plot). The location of the measured point is
shifted clockwise along the standard semicircle curve due
to the unequal spacing of the lifetime points as one pro-
gresses along the semicircle (see Fig. 4). A single lifetime
measurement would be sufficient to determine the two
parameters (the peak and the width) of the distribution
represented by Eq. (20), as discussed earlier. This loca-
tion is now characteristic of the distribution and forms an
equivalent single vector that can be combined with other
vectors (that also belong to distributions) as earlier.

Fluorescein and KI Equilibrium
Mixture: Single Lifetime

Figure 5 shows data taken from a series of measure-
ments of an equilibrium solution of fluorescein mixed
with different concentrations of iodide at a pH of 9. Iodide
quenches the fluorescein resulting in lower fluorescence
intensities and shorter lifetimes. The fluorescence decays
with a single lifetime at every concentration of the iodide,
and the lifetime is dependent on the concentration of the
iodide. Figure 5 shows the results of experiments demon-
strating how the lifetime of the fluorescein follows the
semicircle as the concentration of iodide increases.

Fluorescein and KI with Fast
Mixing: Multiple Lifetimes

Figure 6 shows fluorescein mixed with iodide in a
microsecond fast mixer [9,39,40]. The turbulent mixing
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Fig. 5. Fluorescein (100 µM) and different concentrations of the dy-
namic quencher, iodide (KI), are mixed to shorten the single lifetime.
As the concentration of iodide changes, the values of the lifetimes move
along the single lifetime semicircle, indicating a single lifetime system.

creates regions of unmixed and completely mixed fluo-
rescein that change their relative volumes as the mixing
progresses. The mixer is a continuous flow design where
the solutions, after initial contact in the mixing chamber,
flow in a jet stream (moving at 100 m/s). The mixing
is complete in microseconds, and the distance along the
stream where the mixing progresses is imaged onto a full-
field fluorescence lifetime-resolved imaging instrument.
The data is taken in points along the mixing channel, so
each point represents progressive times as the mixing pro-
ceeds. The lifetimes are determined at every pixel of the
image along the flow pattern. In this case, there is more
than one lifetime, and the data lies below the semicircle.
However, the data points nearly follow a straight line be-
tween the two end points (on the semicircle), which shows

Fig. 6. Fluorescein (10 µM) and iodide (500 mM) are mixed using a
fast turbulent mixer (see text). The lifetime distribution is dominated
by a two lifetime system, with the relative probabilities of the unmixed
and fully mixed lifetimes changing with time. Here time course of the
mixing experiment is increasing from the long lifetime (left side) to the
short lifetime (right side). The total mixing time is ∼15 µs.

that the fluorescence signal is dominated by two lifetime
components. There is a noticeable slight curvature to the
data, deviating from a straight line, which is due to other
lifetimes appearing in the distribution [8,40]. This shows
the great advantage of plotting the data of all points of
the image (the phase and modulation are measured at ev-
ery pixel of the image). The interpretation in terms of the
fluorescing species and their stochiometric ratio, follows
directly from the polar plot, without a detailed analysis to
separate and fit the components in the usual way.

CONCLUSION

In very rapid measurements of lifetimes in images
(with 104–106 pixels) it is often not possible to carry
out the measurement on the full image with more than
one frequency of modulation. Therefore, one misses the
opportunity available in cuvette (single channel) measure-
ments where extensive averaging leads to high signal-to-
noise and multi-frequency data can be acquired. We have
demonstrated that useful, quantitative, diagnostic infor-
mation can be attained quickly and efficiently from single-
frequency measurements using the polar plot analysis.
Reliable information about the fractional contribution to
the fluorescence signal from separate lifetime distribu-
tions (for instance a Gaussian system or even more com-
plex lifetime distributions) can be extracted in a relatively
straightforward and time-efficient manner, similar to what
can also be achieved with multiple single lifetime compo-
nents. If only two single lifetime species are present, the
result must lie on the straight line chord on the polar plot
between the locations of the single lifetime components.
The position of the data point on the straight line tells us
the relative fraction of each lifetime component. The sav-
ings in measurement/analysis time and the visual acuity
of the analysis and plot are especially valuable for image
analysis of frequency-domain FLIM data. Artifacts such
as photolysis can also often easily be identified. The phase
and modulation parameters of the lifetime measurements
can be analyzed using known specific models to give more
information about the lifetime distributions, especially by
tuning the parameters of the fluorophores by changing the
solution conditions (e.g. quenching, FRET, polarity, ion
concentrations, interacting ligands), and by changing the
ratios of the different fluorescing species (Fig. 6). Much
useful diagnostic qualitative and quantitative information
can be extracted by simply observing the distribution of
the measured points in the polar plots of Figs. 1–6, and
this information is available in real time. We have also
noted analogies of the polar plot of frequency-domain
data to commonly used analytical techniques in the field
of dielectric relaxation, as well as chemical relaxation
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kinetics and simple circuit analysis (Appendix C).
Although the basic underlying theory describing all these
relaxation techniques is the same, there has been little
overlap in the methods of analysis. The analysis methods
presented here, and also discussed by [18], have proved
to be exceptionally useful in dielectric relaxation for
decades. We anticipate that this will also to be of value
for the analysis of fluorescence lifetime-resolved imaging
data, in particular for image diagnostics.

APPENDIX A: SEMICIRCLE

To show that single lifetimes form a semicircle, invert
the equations (Eqs. (3) and (4)) relating the phase and
modulation to the lifetime to get:

ωτ = tan ϕ (A.1)

and

ωτ =
√

1/M2 − 1 (A.2)

We set these equal to each other. In our coordinate system
this is

y/x =
√

1/(x2 + y2) − 1. (A.3)

This is simplified to give

x2 + y2 = x, (A.4)

which defines a semicircle with radius 0.5 and centered at
{0.5, 0} in the first quadrant.

APPENDIX B: OPTIMUM FREQUENCY

For any given lifetime there is an optimum frequency
which the system should be run at to give the best resolu-
tion at that lifetime. From Eqs. (12) and (13) we get

∂M

∂τ
= τω2

(1 + τ 2ω2)3/2
(B.1)

and

∂ϕ

∂τ
= ω

1 + τ 2ω2
. (B.2)

For a single lifetime we can construct a radius of
change from these two equations and optimize it for ω.

R2 =
(

τω2

(1 + τ 2ω2)3/2

)2

+
(

ω

1 + τ 2ω2

)2

. (B.3)

∂R2

∂ω
= 0 =

(
4τ 2ω3

(1 + τ 2ω2)3
− 6τ 4ω5

(1 + τ 2ω2)4

)

+
(

2ω

(1 + τ 2ω2)2
− 4τ 2ω3

(1 + τ 2ω2)3

)
(B.4)

∂R2

∂ω
= 0 = 2ω + 4τ 2ω3 − 4τ 4ω5

(1 + τ 2ω2)4
(B.5)

ωbest2 = 1 + √
3

+2τ 2
. (B.6)

For example, measurements near 4 ns should be
made at 47 MHz; measurements near 1 ns should be made
at 186 MHz. A 100 MHz system would be optimal for
measurements at 1.9 ns.

APPENDIX C: POLAR PLOT REPRESENTATION
IN THE COMPLEX PLANE

The derivation of the formalism of this paper in terms
of vectors in the complex plane, and the analogy to dielec-
tric dispersion, is now given.

In many areas in physics the description of
frequency-domain experiments is given in terms of pha-
sors, and usually the essentials are presented in beginning
physics classes. This appendix is a short account of the
formalism in the complex plane, which is the usual for-
malism used in dielectric relaxation and chemical kinetics.
The basic idea as applied to fluorescence is very simple,
and involves writing the fundamental equations in terms of
complex numbers. The fluorescence response to excitation
light is written as convolution integral in Eq. (2), where the
fluorescence response to a very short pulse of light is given
in Eq. (1). The excitation light (driving function) is either
a sinusoidal repetition (Eq. (3)) or a sum of sinusoidal
components (a Fourier expansion). If we assume a single
sinusoidal excitation function, then by writing the sinu-
soidal excitation as E(t) = E0/2[e−jωt + ejωt ], we can
derive the fluorescence response of a single fluorescence
decay component [6] (the response to a delta pulse of light
is F (t) = F0e

−t/τ ) as F (t) = E0F0τ + EωF0τ

1+jωτ
ej [φc+ωt];

j = √−1. The last exponential term represents simply
the complex representation of the time-dependent sinu-
soidal oscillation of the fluorescence signal. Many sepa-
rate fluorescence components with different lifetimes will
simply contribute linearly as separate components of a
summation,

F (t) = E0

[∑
i
F0,iτi

]
+ Eω

[∑
i

F0,iτi

1 + jωτi

]
ej [φc+ωt].

By subtracting the constant (steady-state fluores-
cence) term, dividing by E0F0 = E0
iF0,iτi , and drop-
ping the oscillating sinusoidal dependence (it is the ampli-
tude of this exponential that we detect with synchronous
methods) we then have P (τ ) = Eω

E0F0
[
i

F0,i τi

1+jωτi
] =
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Eω

E0
[
i

F0,i τi

F0

1
1+jωτi

] = Eω

E0
[
iαi

1
1+jωτi

], where 
iαi = 1.
P (τ ) is the frequency-dependent amplitude. This equation
is now in a form that we can easily analyze by inspection.
The term [
iαi

1
1+jωτi

] has the same form as the usual
description of dielectric relaxation experiments of multi-
ple independent relaxing components, and this valuable
formalism has been used since 1928 [38,41]. All sepa-
rate relaxing components can be plotted in the complex
plane with the same complex function, 1/(1 + jωτ ) (all
components fall on the same semicircular plot—see later).

We have given this polar plot description in terms of
vectors in the complex plane in order to show the compati-
bility of the description of frequency-domain fluorescence
with the dielectric relaxation and chemical kinetic relax-
ation literature. Specifically, the general type of analysis
we present in Fig. 1, the semicircle track for a single re-
laxing component and similar diagrams [14], is widely
known in the field of dielectric relaxation as the Cole–
Cole plot [38]. There is a very large literature, including
text books, on the subject [10,11,14,15]. Here we exam-
ine some useful properties that are easily derived from
the polar plot of 1/(1 + jωτ ) in the complex plane for-
malism. The discussion is somewhat different than that in
the original publications, but the formalism is the same.
z = 
iαi

1
1+jωτi

is a complex number that can be written as

∑
i
αi

1 − jωτi

1 + ω2τ 2
i

=
∑

i
αi

[
1

1 + ω2τ 2
i

− jωτi

1 + ω2τ 2
i

]

=
∑

i
αizi =

∑
i
αi [Rezi + j Imzi],

in terms of its real and imaginary parts, and this can be
plotted as a vector in the complex plane. The lengths of
the separate vectors (zi for each separate fluorescence
component) are |zi | = 1√

1+ω2τ 2
i

, which means they each

have a maximum possible length of one (when ω = 0),
and a minimum of zero (when ω = ∞). As the frequency
increases, each vector zi will rotate counterclockwise
with an angle of θi = tan−1(ωτi); in other words, each
vector can be written as zi = 1√

1+ω2τ 2
i

ejθi .

It is especially easy in this formalism to show that
each vector (in the complex plane) separately traverses a
semicircular path, as shown in Fig. 1 and Appendix A.
One forms a new vector, z′

i = zi − 1/2. In other words,
the complex number zi is the sum of the real number 1/2
plus a new complex vector z′

i , so that zi = z′
i + 1/2. The

magnitude of the z′
i vector is easily shown to be

∣∣z′
i

∣∣ =
(z′

i ∗ z′
i)

1/2 = 1/2. Since the magnitude is independent of
ωτi , the path traversed by each Zi vector is on a circle of
radius 1/2.

In an early publication dealing with microwave ab-
sorption in liquids [17] (see also page 296 of Hill et al.
[11]), an analysis was presented demonstrating that two
separate relaxation times will appear on a Cole–Cole
plot along the chord on the semicircle connecting the
two points that correspond to the two separate relax-
ation phenomena (see Fig. 1). This is identical to the
formalism presented in our paper, and in the paper by
Clayton et al. [18]. It is very easy to derive this result
using the formalism of this appendix. Each of the sep-
arate relaxations is represented, as shown earlier, by a
separate vector (in the complex plane) on the normalized
semicircle; �A = 1/(1 + jωτA) and �B = 1/(1 + jωτB).
The contribution of each separate process to the mea-
sured signal �C is represented by �C = α �A + β �B, where
α + β = 1. We define a vector �D, such that �A + �D = �B
( �D is the chord between �A and �B). By simple substitution,
�C = �A + β �D = �B − α �D. Thus, the point represented by
�C lies on �D; that it, �C must lie along the straight line
between the points �A and �B. The position of the mea-
sured point �C on the chord �D is just β �D from �A and
−α �D from �B. This is indicated in Fig. 1; α and β are the
weighting factors defining the distances from each vector
apex. The distance along the cord has the same relation-
ship to the weighting of the components as the lever law
of mechanics. We refer the reader to the vast literature of
dielectric relaxation given earlier for further discussion,
and for numerous applications using similar formalisms
and diagrams.
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