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with a very high sampling frequency sufficient to detect 
MHD instabilities such as sawtooth precursors, tearing 
modes, fishbones, etc. To resolve the MHD mode structure, 
a tomography method needs to be developed for 2D SXR 
reconstruction by an inversion of the line-integrated data.

To date, a variety of tomography techniques have been 
developed including 2D peeling away algorithm [3], Fou-
rier–Bessel analytical method [4], Bayesian based non-sta-
tionary Gaussian processes tomography (NSGPT) method 
[5, 6], etc. However, most traditional tomography methods 
are incapable of real-time application due to a heavy time 
cost incurred by an iterative algorithm. For instance, a few 
seconds’ discharge process generally takes hours to days of 
computation for high fidelity reconstructions. In this con-
text, a common approach is to replace high fidelity recon-
structions codes with deep learning surrogate models in 
real-time scenario. This allows to accomplish the same task 
significantly reducing computation time while preserving a 
reasonable level of accuracy.

In the last decades, deep learning is facilitating a wide 
range of data processing tasks in fusion community, as a 
shortcut for computationally expensive tasks or as a power-
ful tool for solving a variety of problems. For example, JET 
applies the inverse of a convolutional network to bolom-
eter (range from ultraviolet to SXR) tomography [7], and 
Wendelstein 7-X uses neural network regression approaches 

Introduction

Realizing stable operation of the plasma is a key issue for 
the magnetically controlled fusion plasma. In experiments, 
tokamaks are often subject to various magneto hydrody-
namic (MHD) activities, which may destabilize or even 
terminate operation of the plasma. Therefore, it is critical 
to develop an efficient technique for real-time monitor and 
control of the MHD instabilities, which needs an algorithm 
to resolve the dynamics of fast evolving (time scale is ~ ms) 
mode structure. MHD instabilities inside fusion plasmas are 
rather complicated, the evolution of the two-dimensional 
(2D) mode structures might be key to understanding the 
dynamics of the instabilities [1]. Measurement of the soft 
X-ray (SXR) signals can provide important information on 
the MHD instabilities. HL-2 A is equipped with a SXR diag-
nostic system [2], which has a number of detectors for mea-
suring line-integrated emission along the viewing chords 
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Abstract
Tomography is indeed a commonly employed diagnostic technique in fusion campaigns, specifically for determining the 
shape and position of the plasma. To enhance the accuracy of conventional tomography algorithms, a Bayesian-based 
non-stationary Gaussian processes tomography as the emission model has been implemented in the soft X-ray diagnostics 
of the HL-2 A tokamak. However, the Bayesian tomography method is time-consuming and has difficulty achieving quick 
reconstructions for tokamak. In this work, neural networks have been trained and tested on a large set of sample tomo-
grams based on experimental SXR data and Bayesian tomography method. The trained neural networks can predict the 
reconstructions of emission profiles accurately, fast, and robustly to noise. In the future, it is possible to easily implement 
this algorithm on different diagnostics and fusion devices.
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to reconstruct magnetic configuration properties from heat 
load patterns on the plasma-facing components [8, 9]. For 
EAST, a neural network-based soft X-ray proxy model 
has also been constructed [10]. However, current plasma 
tomography surrogate models predominantly focus on 
reconstructing individual discharge time points, emphasiz-
ing the description and analysis of plasma states at isolated 
moments, rather than treating it as a sequential problem. 
Consequently, existing models do not fully exploit the 
dynamic attributes inherent in time series data, thereby fail-
ing to conduct holistic and continuous reconstructions. This 
paper will separately showcase two distinct modeling strate-
gies: the first being the classical single-time point modeling 
technique, and the second being the sequential modeling 
method based on time-series data. Both models can lever-
age hardware accelerators such as Graphic Process Unit 
(GPU) to achieve enhanced precision and speed. Through 
comparative analysis of these two models and discussions 
on their practical application scenarios, we can attain a 
deeper appreciation of the advantages and value inherent 
in sequential modeling. To construct the dataset required 
for the neural network, we utilize the results generated by 
the NSGPT method as target value. NSGPT has proven 
successful in reconstructing SXR radiation profiles across 

multiple devices and implements local adaptive smoothness 
regularization, thereby significantly enhancing the accuracy 
of the reconstructions. The rest of the article is arranged 
as follows: Sect. 2 presents essential background on SXR 
diagnostics and the NSGPT approach. Section 3 details the 
training of our networks utilizing NSGPT-generated data, 
illustrating how such models enable accurate predictions 
from experimental SXR data. Section 4 evaluates the strong 
performance of these networks, highlighting their time effi-
ciency, reliability, and ability to generalize. Finally, Sect. 5 
offers a forward-looking discussion on potential develop-
ments in this field.

Background

The use of tomography diagnostics on HL-2 A dates back 
to 2016 when the SXR system was installed [2]. In this sec-
tion, the composition and distribution of the SXR diagnos-
tic system on HL-2 A, as well as the theory of the NSGPT 
algorithm, advantages, and limitations will be introduced.

Soft X-ray Diagnostics on HL-2 A

The SXR diagnostic on HL-2 A consists of 5 pinhole cam-
eras with 100 chords [2]. In this study, a combined total 
of 40 viewing chords from No. 3 and No. 4 cameras, each 
equipped with 20 Si-PIN photon-diode detectors, were 
employed to test the reconstruction method [2]. The exper-
imental setup of SXR diagnostics is shown in Fig.  1 [6]. 
The 25 μm thick beryllium foils are installed in front of the 
detectors to filter out unwanted energy range, achieving a 
response energy range from 1 keV to 10 keV. The temporal 
and spatial resolution of this system are 10 µs and 3  cm, 
respectively. Regarding the measurement of the SXR diag-
nostics, the data di from a single detector indexed by i is 
obtained by a line integral with respect to a 2D emissivity 
distribution f(x, y), which can be described by the following 
physical model:

di = R (f ) + ε � (1)

where R stands for the forward process from the 2D emis-
sion to the line-integrated data, which is calculated by tak-
ing into account the starting positions, end positions as well 
as the beam width of the lines-of-sight (LOS); ε denotes 
an error term to account for the systematic and statistical 
errors suffered in the actual experiments. The reconstruc-
tion region considered for the tomographic inversion is dis-
cretized into many pixels, which covers the whole plasma 
cross-cession [6].

Fig. 1  The experimental setup for SXR diagnostics on the HL-2 A 
tokamak involves the use of multiple cameras, each equipped with 
20 viewing chords to achieve full coverage of the poloidal plasma 
cross-section
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Bayesian Based Non-Stationary Gaussian Processes 
Tomography (NSGPT) Method

The essence of reconstruction is ill-posed problem [11, 12]. 
The Bayesian framework demonstrates the characteristics 
of flexibility and generality, enabling it to successfully 
address inverse problems. Bayesian methods excel at han-
dling uncertainties and providing a coherent approach to 
solving inverse problems by integrating experimental data, 
a priori knowledge. In the Bayesian formula, all major vari-
ables can be formulated in the probability form:

p(f |di, θ) =
p (di| f, θ)× p(f |θ)

p (di|θ)
� (2)

where, θ represents the hyper-parameters involved in the 
process of building a probabilistic mode; p (f | θ) is prior 
probability over the physical quantity to be inferred, 
mainly used to impose regularization on that quantity; 
likelihoodp (di| f, θ) is conditional probability over the 
measured data, mainly used to achieve a reasonable fit to 
the measured data; p(f |di, θ)  is posterior probability, which 
refers to the probability of a hypothesis or an event occur-
ring by combining information from prior knowledge and 
measured data.

Selecting appropriate probability models to model prior 
probabilities is a key component of Bayesian inference. Due 
to its tractability and ability to accurately capture the dis-
tribution of real-world data, Gaussian process is an excel-
lent choice as a prior distribution in Bayesian inference. The 
radiation levels at different discrete points can be modeled 
as a multivariate normal distribution:
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f  is the covariance matrix, which determines the 
correlations between the individual independent variables in 
the vector −f . Length scale l is an important hyper-parameter 
in the covariance function. It determines the smoothness of 
the random process. For stationary Gaussian Process, when 
l is a constant, it implies that the reconstructed radiation 
distribution has uniform smoothness at all positions. How-
ever, in reality, SXR radiation may have different levels of 
smoothness at the plasma edge and core regions. To address 
problem of varying smoothness in an emissivity distribu-
tion, the following non-stationary extension of the squared 
exponential covariance function has been developed [6], 

and produced promising results. The non-stationary covari-
ance equation can be represented as follows:
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 is a 2D matrix describing the local length 
scales and possible local correlations of the function at loca-
tion −r . We begin the assessment of the NSGPT method with 
steady discharge and perturbed discharge. The output of the 
NSGPT method comprises a series of 2D SXR emissivity 
profiles. These profiles have been compared to the equi-
librium magnetic flux surfaces, demonstrating satisfactory 
agreement in terms of both shape and position. In addition, 
singular-value-decomposition (SVD) have been applied for 
the analysis of SXR reconstructions. It is found that NSGPT 
tomography method shows strength in preserving the fine 
structure of perturbations embedded in the reconstructions, 
which can be further easily abstracted by SVD. It is benefi-
cial for obtaining the spatial and temporal characteristics of 
MHD.

However, NSGPT method takes a significant amount of 
computation time, it can take several minutes to produce 
a single-time reconstruction. Given that the SXR system 
was usually operated with high sampling rate, from a few 
kilohertz to several hundred kilohertz, it could take several 
months to compute all the tomographic reconstructions for a 
single pulse. Simultaneously, during the reconstruction pro-
cess, NSGPT not only relies on diagnostic signal information 
but also depends on supplementary data such as boundary 
conditions computed by the EFIT equilibrium code, among 
other auxiliary inputs. Utilizing the results obtained through 
the NSGPT, the deep learning neural networks in our work 
are expected to be faster and more independent alterna-
tive, capable of achieving precise tomography using only 
the original SXR measurement data without necessitating 
additional input information or time-consuming iterative 
computations.
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The other method is slicing the SXR data into sequence 
length n, allows for better observation and analysis of the 
periodic behavior in the MHD activities. The length of the 
time window can be considered as a hyper parameter and 
adjusted based on the sampling rate. In our case, the SXR 
time series data is segmented into fixed-length windows 
of 100 data points. Therefore, the input data for both deep 
learning and NSGPT model comprise a 100× 40 dimen-
sional matrix. The target value is the result of size 100×
1152 from NSGPT results. The 120 pulses were divided into 
14,710 temporal samples, training dataset 11,867 samples, 
validation dataset 2759 samples, and test dataset 84 samples.

Baseline Model

A baseline model has been developed as a reference for 
the single time point data. For ill-posed problems where 
the input size is smaller than the desired output, the role 
of the baseline model is to achieve up sampling by enlarg-
ing the input. The deconvolutional network [13–15], also 
referred to as the inverse CNN, is an excellent choice for 
mapping from low-dimensional input to high-dimensional 
output and preserving texture information during the expan-
sion process. Figure 2 shows the deconvolutional network 
developed for emissivity tomography. It receives the SXR 
measurements 40 lines of sight from two cameras and pro-
duces a reconstruction of the emissivity profile. After the 
network’s input, there are two dense layers with 4096 and 
7500 nodes, respectively. These layers produce outputs that 
are reshaped into 20 feature maps of size 15× 25. By apply-
ing a transposed convolution, the maps are brought up to 
size of 30× 50. Then, a flattening operation is performed 
to convert the output feature maps into a one-dimensional 
vector. Finally, this one-dimensional vector is passed to the 
subsequent fully connected layers. The network was trained 
to minimize the mean squared error (MSE) [16] between 
the output and the sample tomograms that were provided 
for training.

Time Series Reconstruction Model

Network Architecture

The model architecture of time series reconstruction model 
is shown in Fig.  3. This architecture contains an encoder 
module with eight blocks. Each block contains two 1-D con-
volutional layers with residual block. In traditional 1-D con-
volutions, the filter scans the input sequence consecutively 
with a fixed stride. In our work, dilation factors [17] have 
been introduced as an additional parameter incorporated 
into 1-D convolutions. The dilation factor determines the 
spacing between the values in the filter, allowing the filter to 

AI Methods

In this section, the techniques for data construction and the 
architecture of the employed neural network model will be 
provided. In Sect. 3.1, a comprehensive presentation of the 
dataset being utilized will be offered to ensure its suitabil-
ity for fulfilling model training requirements. In Sect. 3.2, 
a basic Convolutional Neural Network (CNN) algorithm 
serving as a benchmark will be introduced for understand-
ing and comparison. Further progressing into Sect. 3.3, the 
content will be divided into two sub-sections. In Sect. 3.3.1, 
the backbone network of time series reconstruction neu-
ral network model will be presented and explained. In 
Sect. 3.3.2, a dedicated focus will be placed on explaining 
and revealing the loss function selected for the entire model 
training process.

Datasets and Construction Methods

Building a robust and representative training database is 
crucial for deep learning models. A well-constructed train-
ing database sets the foundation for model learning and 
generalization. Data from HL-2 A campaigns are analyzed 
in this work. Since the HL-2 A campaigns exhibit notable 
differences in various aspects such as operating condi-
tions, diagnostic equipment, system calibration, and even 
fuel composition. To ensure data consistency, 120 differ-
ent plasma shots of steady and MHD perturbed discharges 
(sawtooth, fishbones) from the SXR system are chosen, 
with a sampling rate of 100 kHz.

In this work, two different dataset construction methods 
have been adopted. One of the methods involves treating 
each time point’s data as independent samples, without 
considering the temporal relationship between them. In this 
approach, the input data, consisting of measurements taken 
from 40 viewing chords, is represented as a 1D vector of 
length 40, while the target value is a 1D vector of length 
1152 derived from the SXR emissivity profiles provided by 
the NSGPT code. By decomposing the model results with 
1 × 1152 dimensions into a 36 × 32 grid, a 2D profile image 
can be obtained. This decomposition enables the represen-
tation of the SXR emissivity profiles in a two-dimensional 
format, allowing for a visual and spatial understanding of 
the data. The 120 pulses are divided into 1,471,000 single 
time point samples, training dataset 1,186,700 samples, 
validation dataset 275,900 samples, and test dataset 8,400 
samples. By having the input data as a one-dimensional 
vector, the dataset becomes simple and intuitive. The neural 
network doesn’t need to handle correlations between multi-
dimensional features. This simplification in the network’s 
input layer and feature extraction process helps in fast learn-
ing and updating of weight parameters.
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network [18] and the rectified linear unit (ReLU) [19] as 
the non-linearity function are employed. The adoption of a 
residual network facilitates effective learning of complex 
features and addresses the vanishing gradient problem often 
encountered in deep neural networks. The ReLU activation 
function is used to introduce non-linearity into the model, 
enabling the capture of nonlinear relationships within the 
data. In encoder module, the input and output have different 
widths. To account for discrepant input-output widths, we 
use an additional 1 × 1 convolution to ensure that element-
wise addition ⊕ receives tensors of the same shape. And 
two dropout blocks are applied to avoid overfitting during 

sample non-adjacent elements of the input sequence during 
convolution. By adjusting the dilation factor, the receptive 
field can be effectively expanded, enabling the capture of 
a wider range of contextual information, thereby enhanc-
ing the model’s understanding and analytical capabilities for 
complex patterns in sequential data. Here, the dilation factor 
is related to the depth of the network, with a larger dila-
tion factor as the network becomes deeper. Since the time 
series reconstruction model’s receptive field depends on the 
network depth n as well as dilation factor d, stabilization of 
deeper and larger time series reconstruction model becomes 
important. In our designed model, a generic residual 

Fig. 3  The architecture of time series reconstruction model

 

Fig. 2  Architecture of the up-convolutional network
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predicting the target values. To ensure the fairness of test, all 
models are trained from scratch and trained several times.

The evolution of loss during the training of three net-
works is depicted in Fig.  4. The evolution of loss of the 
baseline model and time series reconstruction model can 
be observed across 5 and 20 epochs of training, respec-
tively. The blue cross represents the average loss on the 
training set, while the red line represents the average loss 
on the validation set. The time series networks demonstrate 
the potential to decrease both training loss and validation 
loss. During baseline model training, the trend shows that 
the model’s loss decreases gradually on the training set, 
yet increases simultaneously on the validation set. This 
behavior may stem from the fact that the baseline model 
overfits the training set features and struggles to generalize 
effectively to previously unseen validation data. Moreover, 
time series neural networks using the smooth L1 loss has a 
smaller loss value on the validation set compared to neural 
networks with MSE loss.

The corresponding relative MAE and RMSE values are 
presented in Table 1, where the MAE of the baseline model 
is one order of magnitude higher than that of the time series 
model. Similarly, the RMSE of the baseline model is also 
larger compared to the time series model. Furthermore, it 
is observed that the time series model using the smooth L1 
loss function exhibits lower MAE and RMSE values com-
pared to the time series model with MSE loss. Fig. 5 depicts 
sample reconstructions from the same test set. Figure  5A 
is the reconstruction of steady discharge, while Fig. 5B is 
the reconstruction of MHD perturbed discharge. (a), (b), 
and (c) correspond to the results obtained from the Bayes-
ian model, baseline model, and time series model with MSE 
and smooth L1 loss, respectively. From the results, it can be 
observed that for both steady discharge and MHD perturbed 
discharge, the time series model using smooth L1 loss dem-
onstrate smoother predictions and closely resembles the 
shape of the target value. Figure  6 represents the relative 
errors between the predictions from various models and the 
target values, the time series model using smooth L1 loss 
exhibit smaller relative errors. These results suggest that the 
time series model with smooth L1 loss performs better in 
terms of accuracy and error metrics.

In order to test the application speed of different methods, 
the time spent on test set with 8400 data points is counted in 
Table 2. These neural networks are at least 9000 times faster 
than the Bayesian method on CPU and spend only several 
milliseconds on GPU reconstruction. This demonstrates the 
significant advantage in time efficiency that deep learning-
based Soft X-ray Tomography (SXT) holds over the con-
ventional Bayesian method.

eight CNN blocks. The input data comprise a 100 × 40 
dimensional matrixes. By applying the encoder module, the 
feature maps are brought up to a size of 100 × 1024. After 
the encoder output, there is an FC layer with 100 × 1152 
nodes, then output through the FC layer.

Loss Function

Smooth L1 loss [20] is used as loss function to improve 
MSE loss, which is described as followed:

smoothL1 (xi, y (xi)) =

{
0.5(xi − f (xi ))

2, |xi− f (xi)| < 1

|xi− f (xi)| − 0.5, otherwise
� (5)

where xi ,f (xi) represent the elements in the list of SXR 
emissivity profiles given by the NSGPT model and the time 
series reconstruction model, respectively. Using smooth L1 
loss generally leads to better results compared to MSE loss 
in our CNN-net. Since in our regression task where the tar-
gets are unbounded, training with MSE loss should require 
careful tuning of learning rates in order to prevent explod-
ing gradients. Smooth L1 loss can eliminate this sensitiv-
ity. Additionally, smooth L1 loss avoids the issue of sudden 
gradient changes near the origin that occur with MSE loss, 
further mitigating the risk of gradient explosion.

Experiments and Results

In this section, the discussion will be divided into two main 
parts. Section 4.1 systematically presents and analyzes the 
differences in performance between two distinct models in 
the context of reconstruction tasks, alongside the effects of 
employing various loss functions on their respective perfor-
mances. In Sect. 4.2, we further subject the selected mod-
els to noise resistance evaluation tests, thereby providing 
strong evidence for the reliability and effectiveness of these 
models in practical applications.

Ablation Experiments

In this section, ablation experiments were conducted on 
SXR data to validate the performance of neural network 
model. The experiments are conducted using a single A100 
GPU with CUDA version 11.7. The algorithms in this paper 
are implemented in Python 3.9 using torch 2.0.1. The Adam 
optimizer is used to enhance the stability of the training 
process. Mean absolute error (MAE) and root mean square 
error (RMSE) are used as the metric to measure the average 
absolute difference between the predicted and target value 
in our regression task. Lower MAE and RMSE values indi-
cate better overall performance of the model in accurately 
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have been carefully chosen for testing purposes. Follow-
ing this, an equal number of random numbers are extracted 
from a Gaussian distribution, ensuring they correspond to 
the size of the model input. Finally, the generated Gaussian 
noise sequence is added to the original data points, effec-
tively introducing random noise into the dataset. The steps 
were repeated a total of 5 times, generating different random 
noise sequences each time. The time series reconstruction 
model performed inference calculations on these random 
noise test sets. The comparison results are shown in Table 3, 
while Fig. 7 shows some of sample reconstructions obtained 
on the test sets with different level of noise, Fig. 8 presents 
the relative errors of the time series model under different 
levels of noise contamination in the data. The experimental 

Ability of Anti-Noising

During the HL-2 A campaigns, SXR signals as input to the 
model are typically subject to a certain level of measure-
ment noise, which can arise from various sources, including 
limitations in instrument accuracy, electromagnetic inter-
ference, and environmental noise. These factors impact the 
accuracy of the diagnostic signals, resulting in discrepancies 
between the model’s input and the actual values. To make 
the model more applicable to real-world scenarios, Gaussian 
noise is randomly added to the test data with varying mag-
nitudes. In the anti-noising ablation experiment, the initial 
step involves determining the mean and standard deviation 
of the Gaussian noise. Three different standard deviations 

Table 1  MAE and RMSE obtained on test set
Algorithm Indicator(10− 5) 1 2 3 4 5
Baseline
model

MAE 1.0844 1.2345 1.1740 1.1669 1.2769
RMSE 2.9639 3.4386 3.4070 3.2971 3.6908

Time series
model(MSE)

MAE 0.7857 0.7401 0.6620 0.6777 0.7647
RMSE 1.9642 1.8283 1.6349 1.6648 1.7741

Time series
model(smooth L1)

MAE 0.5955 0.5731 0.6128 0.5909 0.6371
RMSE 1.4810 1.4350 1.5259 1.5281 1.5578

Fig. 4  Evolution of MSE loss of 
baseline model (a), time series 
model with MSE loss function(b) 
and time series model with 
Smooth L1 loss function(c)
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Conclusion

In this paper, deep learning as a fast, approximated Bayes-
ian model is applied for the inference of emission profiles 
from measurements. First, based on HL-2 A experimental 

results indicate that there is no significant decrease in the 
model’s performance as the level of noise increased, this 
suggests that time series model with smooth L1 loss exhibits 
robustness to noise and can handle noisy input effectively. 
Such robustness is valuable during the HL-2 A campaigns.

Fig. 5  Sample reconstructions from the same test set
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SXR data and the Bayesian based non-stationary Gaussian 
processes tomography method, training, validation and test 
datasets are built. Second, two typical neural networks are 
carried out and trained, including an up-convolutional neu-
ral network and time series neural network. Smooth L1 loss 
is adopted to improve the stability of the training process 
and resilience against noisy or outlier data points. Third, 
ablation experiments on SXR datasets are conducted and 

Table 2  Execution time obtained on test set
Algorithm Bayesian Baseline 

model
Time 
series 
model

Execution time (GPU/s) - 0.0247 0.156
Execution time (CPU/s) 31,652 1.768 3.361

Fig. 6  Relative errors between the 
predictions from various models 
and the target values
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In the future, the network could be tested on a larger data 
set of measurements collected at previous campaigns. Rea-
sonable reconstructions can be stored as secondary database 
resources for conducting in-depth analysis of MHD mode 
structures, such as shape, size and location. Meanwhile, 
individual investigations should be conducted for cases 
where the reconstruction fails, which can provide valuable 
insights for further improving the model. Furthermore, the 

experiments results show that time series model has certain 
advantages in term of fitting accuracy, inference speed. The 
time series model has back-projection error levels at around 
0.0015%, close to that of the Bayesian tomography method, 
and inference speed in the millisecond range. Moreover, 
noise testing results indicate its abilities in constraining 
the SXR profile to match most of the data, including noisy 
environments.

Table 3  The comparison results of noise testing
Noise-level Indicator(10− 5) 1 2 3 4 5
No-noise MAE 0.5955 0.5731 0.6128 0.5909 0.6371

RMSE 1.4810 1.4350 1.5259 1.5281 1.5578
N(0, 0.05^2) MAE 0.7385 0.7361 0.7389 0.7369 0.7377

RMSE 1.6822 1.6743 1.6830 1.6749 1.6777
N(0, 0.10^2) MAE 1.0140 1.0206 1.0167 1.0201 1.0167

RMSE 2.2846 2.2999 2.2868 2.3024 2.2934
N(0, 0.15^2) MAE 1.3314 1.3394 1.3401 1.3409 1.3408

RMSE 3.0368 3.0515 3.0509 3.0610 3.0682

Fig. 7  Sample reconstructions of 
time series model with different 
level of noise
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