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Abstract
The understanding and control of complex systems in general, and thermonuclear plasmas in particular, require analysis 
tools, which can detect not the simple correlations but can also provide information about the actual mutual influence 
between quantities. Indeed, time series, the typical signals collected in many systems, carry more information than can 
be extracted with simple correlation analysis. The objective of the present work consists of showing how the technology 
of Time Delay Neural Networks (TDNNs) can extract robust indications about the actual mutual influence between time 
indexed signals. A series of numerical tests with synthetic data prove the potential of TDNN ensembles to analyse complex 
nonlinear interactions, including feedback loops. The developed techniques can not only determine the direction of causality 
between time series but can also quantify the strength of their mutual influences. An important application to thermonuclear 
fusion, the determination of the additional heating deposition profile, illustrates the capability of the approach to address 
also spatially distributed problems.
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Identification and Quantification of Causal 
Relations

The observation of regularities between events is an essen-
tial cognitive task to understand the physical world. In the 
time domain, these regularities consist of constant sequences 
of phenomena, which nowadays are investigated by vari-
ous mathematical disciplines such as statistics and machine 
learning [1, 2]. In the last years, artificial intelligence has 
driven impressive progress in the analysis of time series. 
An incredible number of tasks, from customer advice to 

investment decisions and medical diagnosis, is performed 
entirely or crucially supported by statistical and machine 
learning tools. And the range of human activities, can benefit 
from information processing tools is constantly increasing 
as confirmed recently by ChatGPT success [3].

However traditional artificial intelligence and machine 
learning tools are not conceived to distinguish between 
association and causation [4, 5]. On the other hand, the real 
objective of scientific and engineering studies consists often 
of determining the causal relations between phenomena. 
Causality requires a level of analysis deeper than the assess-
ment of statistical dependence. Indeed from a mathematical 
standpoint, the objective of dependence investigations is to 
obtain the actual probability density function (pdf) of the 
data. This is not sufficient for causal analysis, which must 
guide operational behaviour and in particular provide guid-
ance about the effects of interventions. Basically, the differ-
ence between statistical correlation and causality is the one 
between observing and acting.

Even if determining causal relationships is more diffi-
cult than simply calculating correlations, nowadays modern 
societies and the big physics experiments tend to produce 
huge amounts of data. Consequently, a lot of potentially very 
useful information is becoming available to support deeper 
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level causality studies. These considerations have motivated 
the development of techniques aimed at extracting as much 
knowledge as possible about causal influences from data, a 
field called Observational Causality Detection (OCD). The 
developed theories, tools and software packages constitute 
today a very significant body of knowledge for cross sectional 
data as reported in various overview papers. On the other hand, 
techniques for the analysis of the causal interactions between 
time series have not reached the same level of maturity. Some 
approaches have been proposed but an organic, general view 
is not consolidated [6–10].

The goal of the present work consists of showing the 
potential of Time Delay Neural Networks (TDNNs) and their 
ensembles to quantify the causal relation between time series 
[11, 12], and to show how they can be applied to nuclear fusion 
problems, where time series are a crucial for both physics 
understanding and control. Their potential is extremely high, 
because they cannot only shed light on the mutual influences 
between signals but can also quantify the strength of their 
causal interactions. The developed TDNN ensembles are very 
competitive with all the other techniques available and can 
outperform them significantly, particularly in the most difficult 
applications.

The use of TDNN ensembles can play a relevant role 
in several nuclear fusion problems, being thermonuclear 
plasmas a typical unsteady complex physical system. 
High temperature plasmas are complex systems that have 
to be kept well out of equilibrium by the injection of mat-
ter and energy [13–15]. Indeed to produce the required 
rate of fusion reactions they have to reach temperatures 
higher than the core of the sun. This energy content can-
not be achieved with simple ohmic heating and there-
fore sophisticated additional heating schemes have been 
developed in the course of the years. The calculation of 
the local effects of this injected power is a difficult task 
that requires very sophisticated simulation codes [16–19]. 
The ensembles of TDNNs could be very useful not only 
to confirm the results of these simulations but also to 
provide rapid answers for intershot analysis.

With regard to the organisation of the paper, next section 
introduces the technology of Time Delay Neural Networks 
(TDNNs), their ensembles and how they can be refined to 
investigate causal relationships between time series. In Sect. 3 
the potential of TDNN ensembles is substantiated with the 
help of various numerical tests. The application to the deposi-
tion profile in fusion is the subject of Sect. "Validation of the 
Method with Synthetic Cases" before the conclusions.

Causality Detection with TDNN Ensembles

Causality detection techniques are based on different 
assumptions. One of the most used class of algorithms for 
causality detection is based on the definition of causality 
proposed by Granger [6, 9, 10]: a variable X(t) evolving in time 
“Granger-causes” another time-evolving variable Y(t) if the 
past values of X(t) (t-1, t-2, etc.) allows for a better prediction 
of Y(t) than the prediction without the use of past X(t). So 
basically Granger causality is a simple statistical hypothesis 
test for determining whether one time series provides useful 
information to forecast another. The methods reported in the 
present work, already analysed with various synthetic cases in 
[11, 12], are based on this concept.

Adopted Approach to Causality Detection

Consider the following experimental time series: a set of 
causes X1(t),X2(t),… ,XM(t) , one new candidate cause XC(t) , 
and one possible effect Y(t) . Given two functions predicting 
Y(t) , one Yf (t) using also past values of XC(t) and one Yg(t) not 
relying on the information contained in XC(t):

The prediction error of the two functions can be written as:

where N is the number of samples in the time series. One 
may conclude that XC(t) causes Y(t) if Eg > Ef + Ethreshold , 
where Ethreshold is an uncertainty threshold determined by 
the error and nature of the time series. The Ethreshold can be 
determined with statistical techniques such as the method 
of the surrogate data.

A possible and more robust alternative to the just 
described approach is based on fitting several fk and gk func-
tions by using slightly different data (“training set”). So, the 
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average and the standard deviation of the uncertainties of fk 
and gk are calculated:

In such a situation, a statistical hypothesis test can be 
performed (based on the difference of the means) and 
one can also provide the confidence interval of the results 
(see Fig. 1 for an overall pictorial description of the entire 
methodology).

Traditional implementations of Granger causality, 
the basis of the approach followed in the present work, 
are affected by a couple of quite significant limitations. 
The most important is that many algorithms assume a 
priori the functional for of the dependence between the 
effect and the potential causes. Typically, some sort of 
autoregressive models are implemented, which work 
satisfactorily only for linear dependencies [8]. Secondly, 
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the threshold is usually a parameter tuned to maximise 
the sensitivity and specificity of the causality detection 
performances. Unfortunately, such a tuning is not fully 
general. In this work, the use of TDNN allows for a fully 
general training independent of any a priori assumption, 
while the ensemble methodology allows for a statistical 
threshold that does not need any tuning (it just depends 
of the confidence intervals required by the specific 
application).

Brief Description of Time Delay Neural Networks 
(TDNNs)

In the perspective of deriving information about the time 
evolution of systems and their mutual influence, Time Delay 
Neural Networks (TDNNs), which constitute a natural 
extension of traditional feed-forward neural networks 
[24], have proved to be very useful tools. Indeed, they are 
explicitly designed to learn from the past. Consequently, the 
topology of TDNNs is also well suited to the investigation 
of causal relations between time series.

The architecture of Time Delay Neural Networks is 
explicitly devised to predict the future of time series on the 

Fig. 1   Top: overview of the entire procedure to investigate the causal coupling between systems. Bottom-left: the architecture of the ensembles. 
Bottom-right: topology of an individual time delay neural network (particularized for the trivariate case)
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basis of their past evolution. This is achieved by providing 
as inputs to this type of networks sequences of subsequent 
time points and not single time slices of data. Therefore, 
the inputs to TDNNs can be conceptualised as windows 
of length p into the past. In mathematical terms, this type 
of network implements a non-linear autoregressive model 
of order p. Given their simple architecture, the training of 
traditional feed-forward networks can be easily adapted to 
the topology of TDNNs.

However, the simple architecture of traditional 
TDNNs is not completely adequate to learn the temporal 
structure of the data with the aim of assessing their causal 
relationships. A slightly modified version of TDNNs, 
shown in the bottom panel of Fig. 1, has therefore been 
devised and it is the one adopted to perform the studies 
reported in the rest of the paper. Moreover, individual 
TDNNs, even if very performing, are not immune to bias 
when deployed to address involved cases. Therefore, the 
final technology implemented consist of Ensembles of 
DNNs, with the topology depicted in the middle panel of 
Fig. 1. Other approaches to reduce bias, such as repeating 
the training with different seeds or dropout learning [25], 
are of course viable alternatives. However, the proposed 
ensembles provide additional opportunities, such as the 
use of bagging noise-based ensembles or adaption of 
random forests [26, 27], which can be very useful in many 
practical applications.

These ensembles of TDNNs, deployed to obtain the results 
described in the following sections, have been implemented 
with the MATLAB toolbox. The training technique is 
backpropagation using the Levenberg–Marquardt algorithm. 
About 5000 epochs have proved to be normally sufficient 
to solve the numerical examples reported (in any case, 
convergence has also been achieved for less than the 
maximum limit set to 10,000 epochs and with 200 validation 
checks).

As mentioned, the concept of causality adopted in 
the present work is the one of improved predictivity. 
Consequently, the TDNNs ensembles have been trained 
and deployed to predict the future evolution of the signal 
targets. The quality of the predictions is then determined by 
the residuals, the differences between the predictions and the 
actual values of the target time series. The residuals of the 
target quantity are calculated first providing all the variables 
as inputs to the TDNN ensembles. Then the residuals are 
computed again but after removing a candidate driver from 
the input set (see top panel of Fig. 1). The variance of the 
residuals, the one obtained considering all the inputs, is 
then compared with the one obtained after removing the 
specific driver. If the variance, obtained after removing the 
potential driver, is statistically significantly higher, than the 

one calculated when the candidate driver was included, then 
the removed quantity is considered to have a causal influence 
on the target.

Causality Quantification

In many applications, it is relevant to determine not only 
whether one variable causes another, but also to quantify the 
level of influence exerted by one system to another. A very 
useful indicator to evaluate such information is the error 
ratio, defined in the previous work as R�

(
Xc, Y

)
:

Its uncertainty can be easily calculated with simple error 
propagation analysis:
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 ) and its uncertainty 
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 ) one may perform a statistical test to determine 
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)
 is statistically larger than one (and therefore if 

there is causality between Xc and Y).
The interpretability of such indicator can be easily 

understood with the help of two examples.
In the first case, let us suppose that the equation governing 

Y(t) is:

where w is constant and � is term associated to noise or 
random fluctuations. A statistical analysis allows writing:

Equation  (10) lends itself to a clear interpretation: 
R�
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)
− 1 quantifies the amount of influence that Xc 

exerts on Y  , in terms of the variance that flows from Xc to Y  
(normalised by the variance of the noise affecting Y).

A slightly more general case may be:

In this case, simple statistical analysis leads to:
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The most general case is expressed by the following 
equation:

Now the indicator R�

(
Xc, Y

)
 can be written as:

In this case, the cause of XC(t − 1) depends on other 
variables (for example, one may have something like 
q
(

X1(t − 1),… ,XM(t − 1), Y(t − 1),XC(t − 1)
)

= wY(t − 1)XC(t − 1)   ) . 
Since there is not a decoupling between the variables 
(because causes are coupled), this is a more delicate problem 
in terms of both analysis and interpretation, and different 
methodologies based on modelling or knowledge of a priori 
information is needed. A possible approach is the use of 
the genetic programming via symbolic regression for time 
series [5].

Validation of the Method with Synthetic 
Cases

In this section, some numerical models are introduced 
to investigate the capabilities of new methodology for 
both causality detection and quantification. The training, 
validation and test sets are in the proportion of 75%, 15% 
and 15% of the overall database.

Analysed Systems

Three different systems, all based on three coupled 
autoregressive equations, are investigated as case studies.

In system A, both x(t) and y(t) are independent from 
external causes and both influence z(t) with an intensity 
equal to wx and wy respectively. The causality is linear 
and independent, and therefore the amount of influence 
(variance) of x on z is independent of the influence 
(variance) of y on z. �(0, 0.1) is a random number sampled 
from a normal distribution with mean equal to zero and 
standard deviation equal to 0.1.

(13)
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SystemA∶

⎧
⎪⎨⎪⎩

x(t) = 0.95x(t − 1) + �(0, 0.1)

y(t) = 0.95y(t − 1) + �(0, 0.1)

z(t) = 0.95z(t − 1) + wxx(t − 1) + wyy(t − 1) + �(0, 0.1)

In system B, again, both x(t) and y(t) are independent 
and both exert an influence on z(t) . However, in this case 
their effects are not independent, because their influence 
depends on their mutual product. Consequently, they have 
no individual causal influence but they affect y (t) only if 
they are both present.

This last system C replicates the same of case A, with the 
difference that there is a feedback loop between y(t) and z(t) . 
Being able to handled causal relationships with feedback 
is particularly important, because in nature many complex 
systems present this type of interactions. It will be shown 
than in this situation, even if the same coefficient (0.5) is 
applied to z(t − 1) in the equation of y(t) , the value of R�(y, z) 
will change because of wy , that in the feedback loop causes 
a variation of z . The draw and stock diagrams of the three 
systems are shown in Fig. 2.

Results

The coefficients of causality Rσ as a function of both Wx and 
Wy are shown in Fig. 3 for system A.

For what concerns the time series x(t) and y(t), they 
result to be caused only by their past values. In fact, only 
Rσ(x, x) − 1 and Rσ(y, y) − 1 are significantly larger than 
zero (see Rσ(y, x) , Rσ(z, x) , Rσ(y, y) , Rσ(z, y) ). Moreover, 
their values are independent of both coefficients Wx and Wy , 
which model the strength of the causal influence between 
the two time series.

(16)

SystemB∶

⎧
⎪⎨⎪⎩

x(t) = 0.5x(t − 1) + �(0, 0.1)

y(t) = 0.5y(t − 1) + �(0, 0.1)

z(t) = 0.5z(t − 1) + wx(t − 1)y(t − 1) + �(0, 0.1)

(17)

SystemC ∶

⎧
⎪⎨⎪⎩

x(t) = 0.5x(t − 1) + �(0, 0.1)

y(t) = 0.5y(t − 1) + 0.5z(t − 1) + �(0, 0.1)

z(t) = 0.5z(t − 1) + wxx(t − 1) + wyy(t − 1) + �(0, 0.1)

Fig. 2   Pictorial view of the causal relationships for the three numeri-
cal cases A, B and C. All systems present inertia whereas only the last 
one contains also a feedback loop
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Fig. 3   Coefficients of causality R� as a function of Wx and Wy for System A 

Fig. 4   Coefficients of causality R� as a function of W for System B 
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In the case of time-series z(t), it is observed what 
expected: Rσ(x, z) increases proportionally with Wx , while 
Rσ(y, z) with Wy . No dependences between Rσ(x, z) and Wy 
or between Rσ(y, z) and Wx are detected. Rσ(z, z) is large and 
almost independent of the two causal intensities determined 
by the coefficients Wx and Wy.

The results for system B are summarised in Fig. 4. Again, 
x(t) and y(t) depend just on their past values respectively. 
The time series z(t) depends on all values. In this case, both 
Rσ(x, z) and Rσ(y, z) increase with W and the causal effects 
of x(t) and y(t) on z(t) are not separable.

Figure 5 shows the results for System C. The time series 
x(t) is independent of other observations. High causality val-
ues for y(t) are found for both y(t) and z(t). As for system A, 
Rσ(x, z) increases proportionally with Wx , while Rσ(y, z) with 
Wy . However, since the system C is characterised by a feed-
back loop between y and z, a variation of Wx and Wy directly 
involves a different causality intensity R�(z, y) , as it is shown 

Fig. 5   Coefficients of causality R� as a function of Wx and Wy for System C 

Fig. 6   R�(z, y) as a function of both Wx and Wy
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in Fig. 6. Indeed, even if the past value of z linearly causes y, 
the feedback loop implies that the cause is not linear.

Nuclear Fusion Case Study: Additional 
Heating Profile Estimation

An important real-life example of a very complex system, 
in which the maze of causal relationships is very difficult 
to disentangle, is the tokamak. In the devices implement-
ing this magnetic configuration, high temperature plas-
mas are confined for the research on thermonuclear fusion 
[11]. The main objective consists of achieving conditions, 
in which the production of energy from the coalescence of 
light nuclei becomes economically viable [20]. A reactor 
implementing this concept constitutes one of the most 
ambitious engineering challenges of present-day societies 
(see the building of the next generation experiment ITER 
in the south of France). One particularly delicate aspect 
is the heating of the plasmas confined by the tokomak 
field configuration. Indeed, at the temperatures of hun-
dreds of millions of degrees ohmic heating becomes 
ineffective and other schemes have to be deployed. The 
research in the field of additional heating techniques for 
tokamak devices is a very active area [21–23]. Among 
other aspects, the determination of the power deposition 
profile is a particularly delicate task, which has signifi-
cant implications both operational and interpretative. 
For example, in many studies the properties of the trans-
port are investigated, e.g. using modulated ECRH, while 
assuming the theoretical deposition profile. This highly 
problematic, as typically, the experimentally deposition 
profiles are significantly broader than the theoretical pro-
files [24]. As the transport partial differential equation 
contains source, sinks and transport, a wrong assumption 
on the deposition, will lead to miss-interpretation of the 
transport. The details of the power deposition inside the 
plasma is typically investigated with very sophisticated 
codes, which require human supervision and are com-
putationally quite demanding. There is therefore scope 
for fast but sufficiently accurate algorithms, capable of 
determining the effects of the additional heating power 
on the temperature profile in reasonably short time. The 
potential of the TDNN ensembles to contribute to this 
aspect is discussed in the rest of this section. It should 
be emphasised that the case reported in the following is 
not a realistic physics study but just a numerical exam-
ple, to motivate the use of the TDNN technology in more 
detailed and realistic investigations of the subject.

Model

Let us consider a one-dimensional case where both the 
temperature (T) and the density (n) are a function of the 
normalised minor radius coordinate rn = r/a (a is the minor 
radius). Moreover, suppose that the density profile is given 
by the following equation:

 where n0, �, and � are free parameters defining the shape 
and the value of the electron density.

One may assume that the temperature changes according 
with the energy conservation law:

 where Γheat

(
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stant for simplicity sake in the present treatment.
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Results

Figure 7 shows in blue the heating profiles for the four 
cases analysed. In red the causality intensity indica-
tor R� − 1 , quantifying the effect of the input power on 
the temperature, is reported. The causality intensity is 
resolved for each position ri∕a , by comparing the two 
TDNN models:

So, R�

(
ri∕a

)
− 1 should quantify how much the input 

power is directly causing a local variation of the local 
temperature. Four different power deposition profiles 
have been simulated. They are shown as blue curves in 
Fig. 7. At first glance, it can be observed that there is a 
clear proportionality between the causality intensity and 
the heating profile, which perfectly overlap for case 1 
(plot on the top-left). For the other cases, there is a good 
match between the causality intensity coefficients and the 
respective heating profiles, even if not perfect.
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In Fig. 8, the correlation between the heating profile 
and the causality intensity is analysed for the four cases. A 
regression analysis has been performed:

and the result of the fitting is reported in the figure. The 
adjusted R2 of the fit is 98.2% (calculated in logarithmic 
scale, as the rest of the figure).

(25)
log

(
R� − 1

)
= 0.118log

(
Hp

)2
+ 1.648log

(
Hp

)
+ 5.928

Fig. 7   Power deposition profiles in blue and the indicator R�

(
ri∕a

)
− 1 in blue

Fig. 8   R� − 1 vs the true value of the heating profile for the four 
cases. The red line is the result from a 2nd order polynomial function
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These differences between causality intensity and heating 
profiles are due, mostly, to the non-linearity of the phenom-
enon described here. In fact, a local value of the heating 
profile can have completely different causality values on the 
temperature since both diffusion and radiation depend on the 
temperature themselves. This clearly implies that a meas-
urement of the heating profile can be investigated by using 
classical methodologies (e.g. numerical simulations) or by 
using the new branch of artificial intelligence that combines 
physics with data-driven techniques, the so-called Physics-
Informed Machine Leaning [25], which is gaining increasing 
attention in most branches of the applied sciences.

Conclusions and Future Work

The investigation of complex system requires the 
development of new analysis tools capable of providing 
information about the causal relationships between time 
series and not only about their correlations. Ensembles of 
TDNNs have proved to be very performing in this respect. 
Various numerical tests have proved that they can handle 
quite complex situations, even including feedback loops 
between the quantities involved. Moreover, they tend to 
outperform all the main techniques reported in the literature 
in terms of both flexibility and accuracy. In addition, they 
are easy to implement and fast to run (Computational times 
are of course dependent of sample size. For time-series of 
1000 samples, the computational time is around 30 min 
on a common laptop). Another competitive advantage is 
the capability of TDNNs to quantify the level of mutual 
influence between time series not only the directionality of 
the causal relationships.

Application to arguably the most complex laboratory 
system in big physics, magnetic confinement thermonuclear 
fusion, has proven the capability of the approach to handle 
real life data without any major issue. The prospects in this 
field are particularly promising for both the tokamak [15, 
26] and the RFP configuration [27]. Indeed, the approach 
could be used to address various crucial issues from the 
control of the total radiation [28, 29] to the prediction of 
disruptions [30–35]. With regard to the specific aspect of 
investigating the heating system, very interesting would 
be the simultaneous analysis of the deposition and the 
power transport [36]. From a methodological perspective, 
further work would be necessary to couple TDNNs with 
symbolic regression in order to extract from the data also the 
mathematical equations governing the interactions between 
the systems involved [37, 38].
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