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Abstract The problem of the reconstruction of the

parameters characterizing the plasma shape in a tokamak

device is of paramount importance both for present day

experiments and for future reactor. The plasma shape can

only be evaluated by diagnostic data, such as poloidal flux

and magnetic field measured respectively by the flux loops

and magnetic probes located on the vacuum vessel outside

the plasma. The aim of the present paper is to take a step

forward in the application of the neural network approach

for the identification of non-circular plasma equilibrium

and data analysis for the problem of the optimal location of

a limited number of magnetic sensors. We have adopted a

machine learning method, back-propagation neural net-

work, to analyze the magnetic diagnostic data. The data-

base has been generated by means of a specially adapted

version of an MHD equilibrium code EFIT with reference

to the EAST geometry and stored in the EAST mdsplus

database. The network uses external magnetic measure-

ments as input data and the selected plasma parameters as

output data to train and test. Then a novel strategy is

implemented for the selection of the optimum location of a

limited number of magnetic probes based data analysis of

the network. The average accuracy of the identification

procedure is quite good (e.g., the maximum relative error is

0.260 % of internal inductance), with a contrast of the

computation results of EFIT as desired output. It has been

shown that the degradation of the performance is rather

small (e.g., RMS error of minor radius vary from 4.307 to

4.765 %) when the number of magnetic probes is reduced

by nearly half.

Keywords Neural networks � Plasma equilibrium � Data
analysis

Introduction

Thermonuclear plasmas are nonlinear, open systems char-

acterized by a very high level of complexity, which prac-

tically prevents the formulation of theories from basic

principles. This complexity poses an issue to the physical

interpretation because thermonuclear plasmas are very

difficult to access for measurement, especially in hostile

environment. The consequences are typically a limited

experimental characterization of many phenomena and the

presence of high noise levels in the data. In future reactors,

the need for the physical interpretation of the measure-

ments will probably be much less important, whereas the

problem of estimating the set of plasma parameters

required for the control of the radial and vertical positions

of the plasma column in the vacuum chamber as well as for

the control of its shape becomes rather crucial [1–4]. The

precious challenges are compounded by the difficulties

inherent in interpreting the large amounts of data produced

by present day diagnostics. It is probably impossible to

develop a ‘standard model’ for a really complex system.

Indeed the capability to generate enormous amounts of

information is one of the distinguishing characteristics of

modern tokamak experiments. In JET, more than 45

gigabytes of data can be produced in a well diagnosed

discharge and the whole database now exceeds 200 ter-

abytes [1, 6]. Moreover, the amount of experimental data
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produced is expected to increase significantly in the future

generation of devices. Given the lack of a unifying theory,

the limited experimental description of many phenomena,

the presence of significant noise in the measurements and

the large amounts of data available, sometimes important

information remains hidden in the databases and it can be

arduous to perform sound inference with tradition methods.

To tackle these challenges, new data analysis tools are

required to increase the physics output that can be derived

from the measurements.

These new data analysis methods and techniques consist

of collecting a series of original contributions in this field

of innovative data analysis techniques for the exploration

of databases, for interpretation of the physical contents of

the data and the development of more effective real time

control techniques [1]. In the past, several neural network

approaches have been considered to apply on many non-

linear problems, for example, plasma configurations clas-

sification and plasma equilibrium reconstruction [2, 3].

An application of neural network models to experiment

ASDEX Upgrade data generated during the operational

phases of the experiment was presented by Francesco

Morabito in [2, 3]. The performance of neural network

models were compared to those obtained by using the real

time version of the Function Parameterization (FP) tech-

nique which is a statistical one based on Principal Com-

ponent Analysis and Function Parameterization

(PCA ? FP) implemented on the plasma control computer

of the machine. A 18-10-4 multilayered architecture was

used to solve the problem, once a training database of 1000

cases (250 per category) was selected. The NN method

used in classification on the preprocess data outperform

PCA ? FP technique in terms of computation time in the

online evaluation phase. However, the classification results

presented concerned only four shots #940, 942, 1162, 3513.

In [4], the application of artificial neural network tech-

nique of data interpretation to characterization and classi-

fication of measurements of plasma columns was proposed.

This paper focused attention on ITER configuration in

which they used a Neural Network approach (NN) to

classify measurement (inner, outer and divertor). The

exploited approach showed a strong adaptability of NNs

with respect to the originally database, including a database

of 4848 lower single null equilibrium.

The neural network technique has been successfully

applied to the extraction of equilibrium parameters from

measurements of single-null diverted plasmas in the DIII-D

tokamak by Lister in [5]. It discussed three previous

approaches to approximating the non-linear mapping: Ad

hoc trail functions used in DIII-D, reducing the data by

principal component analysis (PCA) and subsequently to

develop an expansion for the extracted parameters, and the

linear method developed for the control of TCV and

ALCATOR C-MOD. It chose 22 tangential magnetic field

probes and 20 flux loops as inputs and seven parameters

used in DIII-D for shape control were chosen as outputs.

However, the data set used in this study was restricted to

single-null diverted discharges.

A single hidden layer back-propagation neural network

is described in [6] to establish a nonlinear mapping

between magnetic flux measurements and some shaping

parameters of non-circular plasma. The database has been

generated by means of a specially adapted version of an

MHD equilibrium code on ASDEX Upgrade. The input

parameters were 31 flux values furnished by 31 sensors

located around the plasma. The plasma quantities including

major and minor radius, elongation and triangularity,

internal inductance, poloidal beta, R and Z co-ordinates of

the X point were selected as output parameters. The

comparison between neural network method and statistical

method leads to the conclusion that the simultaneous

analysis of the behavior of the neural network can solve the

problem of the optimal location of a limited number of

sensors. However, the only use of flux measurements as

input parameters is in general not sufficient for analysis of

the plasma parameters.

In this paper, we use an artificial neural network (ANN)

method, fed by signals from 38 magnetic probes and 35

flux loops, to establish neural network mapping between

magnetic measurements and some shaping parameters of

EAST tokamak plasma. The data for network training and

validation were selected from the EAST_PCS and EFI-

T_EAST database. In particular, this study focuses on

flattop phase magnetic measurements database. The flattop

scenarios are very important because they will be normal

operating conditions in next step tokamaks such as the

International Thermonuclear Experimental Reactor (ITER)

and CFETR. These extrapolations in size and physics

performance provide major constraints on the design of

ITER and CFETR. This paper shows that the neural net-

work can be exploited for selecting the optimal location of

a limited number of sensors. It can even become a critical

issue for future reactors that the number of sensors will be

limited to the minimum required for the identification and

control of the plasma position and shape in the vacuum

chamber.

This paper is organized as follows: ‘‘Principles of Back-

Propagation Neural Network’’ section is a description of

the neural network topology adopted for the case studied,

including the basic principles of neural networks, while

‘‘Generation of the Dataset’’ section describes the details of

the database that has been built to generate the computed

equilibrium dataset. In ‘‘Application to Experimental Data

from EAST’’ section the results obtained when applying

the approach to EAST geometry is discussed, demonstra-

tion of how the proposed approach is relevant to the
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problem of the optimum choice of the number and location

of probes. Finally, ‘‘Summary and Conclusions’’ section

summarize the results and conclusions.

Principles of Back-Propagation Neural Network

In a wide variety of artificial neural network [7, 9], the BP

neural network, which adjusts connection weights in

accordance with the error gradient descent rule, is one of

most mature neural networks. Today, ANNs are applied to

solve an increasing number of real world problems of

considerable complexity. They offer ideal solutions to a

variety of classification problems such as pattern recogni-

tion, speech, character and signal recognition, as well as

functional prediction and system modelling. The BP neural

network has been used in an E-business credit risk early-

warning system, the movie box office forecasting system,

rainfall prediction, population prediction [8, 9], and so on.

The application field is broad and capable of nonlinear

mapping, self-organizing, error feedback adjustment, gen-

eralization and fault tolerance.

An artificial neural network is composed of activated

functions of neurons, the network topology, connection

weights and the threshold of neurons. Generally speaking,

when the network topology is fixed, the output is affected

by changes of connection weights. The learning procedure

is generally based on the definition of an error function,

which has to be minimized with respect to the weights and

bias in the network [9]. If the error function is a differen-

tiable function of the network weights, it is possible to

estimate the derivative of the error with respect to the

weights and modify the weights in order to minimize the

error function. The back-propagation algorithm is based on

the evaluation of the derivatives of the error function.

The multi-layer BP neural network presented in Fig. 1,

with 73 inputs, 10 neurons in the first hidden layer, 5

neurons in the second hidden layer and 8 neurons in the

output layer in our study. The activation function is a

differentiable function and several neural network activa-

tion functions. An activation function is used to the input to

generate a nonlinear output, while neural network imple-

ments a nonlinear function mapping one multidimensional

space into another one.

The artificial neurons include input fx1; x2; . . .; xng,
output y, weight of the connection xi and threshold h.f is

an activation function and n is a middle variable. The

relationship between input and output can be described in

(1).

n ¼ gðXÞ ¼
Xn

i¼1

xixi � h; y ¼ f ðnÞ ¼ f
Xn

i¼1

xixi � h

 !

) y ¼ f ðnÞ ¼ f
Xn

i¼0

xixi

 !

ð1Þ

The learning approach works like this: input data is put

forward from input layer to hidden layer, then to output

layer, error information is propagated backward from

output layer to hidden layer then to input layer. The B-P

learning steps include:

1. Select a pattern from the training set and present it to

the network.

2. Compute activation of input, hidden and output

neurons in that sequence.

3. Compute the error over the output neurons by

comparing the generated outputs with the desired

outputs.

4. Use the calculated error to update all weights in the

network, such that a global error measure gets reduced.

Fig. 1 Topology of the back-

propagation neural network
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5. Last but not least, repeat step 1 through step 4 until the

global error falls below a predefined threshold.

The training of the network continues until minimization

of the sum of the squares of errors given by the

relationship:

The sum of the squares of errors : eðxÞ ¼ 1

2

Xn

i¼1

½di � yi�2

ð2Þ

eðxÞ is squared error, di is desired output, yi is generated

output. The objective is to minimize the squared error i.e.

reach the Minimum Squared Error (MSE). Gradient des-

cent is an optimization method for finding out the weight

vector leading to the MSE. The vector form:

x ¼ xþ g½�reðxÞ�, g is learning rate and �reðxÞ is

gradient.For output layer, weight update rule works like

this:

xji ¼ xji � gxjiyið1� yiÞðyi � diÞ ð3Þ
oe

oxji

¼ oe

oyi

oyi

ori

ori
oxji

ð4Þ

e ¼ 1

2

X
ðdi � yiÞ2 )

oe

oyi
¼ ðyi � diÞ ð5Þ

yi ¼
1

1þ e�ri
) oyi

ori
¼ yið1� yiÞ ð6Þ

ri ¼
X

xjixji )
ori
oxji

¼ xji ð7Þ

oe

oxji

¼ xjiyið1� yiÞðyi � diÞ ð8Þ

Dxji ¼ �g
oe

oxji

ð9Þ

) xji ¼ xji � gxjiyið1� yiÞðyi � diÞ ð10Þ

For hidden layer, weight update rule works like this:

oe

oyi
¼ ðyi � diÞ;

oyi

ori
¼ yið1� yiÞ;

ori
oy

0
j

¼ xji;

oy
0
j

or0
j

¼ y
0

jð1� y
0

jÞ;
or

0
j

oxkj

¼ xkj

ð11Þ

oe

oxkj

¼ xkjy
0

jð1� y
0

jÞ
Xn

i¼1

½xjiyið1� yiÞðyi � diÞ� ð12Þ

Dxkj ¼ �g
oe

oxkj

ð13Þ

) xkj ¼ xkj � gxkjy
0

jð1� y
0

jÞ
Xn

i¼1

½xjiyið1� yiÞðyi � diÞ�

ð14Þ

An ANN is composed of simple processing elements

operating in parallel. The processing ability of the network

is stored in the inter-unit connection strengths (weights),

obtained by a process of adaptation to a set of training

patterns (learning).

The neural network on EAST has two categories of

diagnostic signals input including 35 flux loops and 38

magnetic probes. In the experiment on EAST tokamak

database, we select some representative of the discharge

data as training and testing samples which are all lower

divertor configuration discharges. The determination of

input variable and network topology are basically deter-

mined by experience or through trial and error. The net-

work includes two hidden layers, which optimal number of

neurons of hidden layers is 10 and 5 respectively.

Generation of the Dataset

The database used for the NNs has been generated by

means of an equilibrium code which represents a numerical

model of the experiment, using the EAST configuration

and mechanical structures. Each record of this database

includes both the values of the physical quantities of

interest, namely, some global parameters which are sup-

posed to completely describe the state of the system, and

the related measurements.

The code used to generate the dataset during both

training and testing phases is EFIT code, which was first

developed by L.LAO to complete magnetic analyses for

DIII tokamak [10, 11].The main task of EFIT reconstruc-

tion algorithm is to compute the distributions in the plane

(R, Z) of the poloidal flux w, and toroidal current density

JT , which provide a least squares best fit to diagnostic data

and satisfy the model given by the Grad–Shafranov

equation.

R
o

oR

1

R

ow
oR

� �
þ o2w

oZ2
¼ �l0R

2p
0 ðwÞ � l20FðwÞF

0 ðwÞ ð15Þ

The reconstruction code can provide plasma shape

parameters which can be used as neural network output

parameters. In fact, the dataset is composed of 38 magnetic

probes and 35 flux loops measurement data, used as input

parameters of NNs, and the corresponding plasma param-

eters, used as output parameters.

EAST is an advanced device with full superconducting

magnets to demonstrate high performance and steady state

operation in ITER-like shape. EAST is normally operated

at R = 1.8–1.9 m, minor radius a = 0.45–0.5 m, toroidal

field Bt = 1.53–3.5 T, and plasma current Ip = 0.2–1 MA

[12–14]. On EAST tokamak, there are 38 magnetic poloi-

dal probes mounted inside the vessel and 35 poloidal flux
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loops installed inside the torus. The magnetic probes are

two-dimensional with a probe measuring Bh and the other

measuring Br, and used to detect the poloidal magnetic

field and equilibrium reconstruction together with flux

loops.

In the magnetic sensors presented here [15], only

unprocessed data are used in NNs (e.g. processed magnetic

measurement data for equilibrium reconstruction compu-

tation is not used).

The dataset is relatively large selected from 4 shots

#51800, 51802, 51804, 51806, so we randomly sampled

1900 time slices training examples and 100 time slice

testing examples. Based on the above discussion, the input

parameters that have been initially considered for the

present analysis are 35 flux values and 38 magnetic probes

furnished by 35 ? 38 magnetic sensors located around the

plasma as is shown in Fig. 2.

As output parameters, the following plasma quantities

have been selected:

• Minor radius

• Elongation and triangularity

• Internal inductance

• R and Z co-ordinates of lower X point

• R and Z co-ordinates of up X point

All the diagnostic data are stored in mdsplus data server.

EAST plasma equilibrium reconstruction is carried out

offline using a sparse time slice manually after the

discharge.

Based on the above discussion, the available data is

divided into two subsets:

1. The first subset is the training set, which is used for

computing the gradient and updating the network

weights and biases. It includes 1900 time slices

discharge data, and every time slice discharge includes

magnetic probes and flux loops input data and plasma

parameters data calculated from EFIT.

2. The test set is not used during the training, but is used to

obtain the plasma parameters and compare the errors

between predicted output of NNs and desired output

calculated from EFIT. The test set includes 100 time

slices discharge data, which are used to test the network

and compare the result of NNs with EFIT results.

From a practical point of view, we have selected three

different input datasets for testing NNs performance and

data analysis. The first part of the datasets including 2000

time slices data are tested in three steps:

1. use 35 flux loops and 38 magnetic probes as input

parameters, the eight output parameters include: minor

radius, triangularity, elongation, internal inductance, X

point below R, X point up R, X point below Z, X point

up Z.

2. use 35 flux loops as input parameters, the eight output

parameters include: minor radius, triangularity, elon-

gation, internal inductance, X point below R, X point

up R, X point below Z, X point up Z.

Fig. 2 Cross-section of the

EAST tokamak; also the

distribution of the magnetic

diagnostics for equilibrium

reconstruction: 14 PF coils

(including PF 1–12 and 2 active

feedback IC coils), limiter (pink

lines), flux loops (blue open

circle), and magnetic probes

(blue open square) (Color

figure online)
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3. use 38 magnetic probes as input parameters, the eight

output parameters include: minor radius, triangularity,

elongation, internal inductance, X point below R, X

point up R, X point below Z, X point up Z.

It is noted that the classification of neural networks, i.e.

the ability to distinguish between the limiter, divertor,

ITER-like configurations on the bases of only magnetic

measurement, will not be discussed in this paper.

Application to Experimental Data from EAST

The NN Performance Analysis of Different Input

Data

The results obtained with the application of the above

mentioned neural network to the generated dataset of

plasma equilibrium are shown in follows. Several different

diagnostic measurement inputs with varying numbers of

magnetic sensors were trained on the problem under study.

For the divertor configuration we have also analyzed the

performance of network between different input magnetic

measurement data. For input variables we chose: (1) a set

of magnetic probes (38 coils); (2) a set of magnetic flux

loops (35 loops); (3) both 38 magnetic probes and 35 flux

loops.

The results achieved are also satisfactory: a good

accuracy has been achieved as shown in Table 1 when we

use 38 magnetic probes data as input parameters when we

retrain the neural network until optimization. The param-

eter units of minor radius, X point below R, X point up R,

X point below Z, X point up Z are all centimeters in this

paper.

From the prediction results of neural network, we see

that the relative errors of different output parameters are

acceptably small in Fig. 3a–c. (Here we show the relative

error of minor radius, triangularity, elongation, the results

of other parameters are similar) and Fig. 4.

The results achieved are satisfactory: a good accuracy

has been achieved as shown in Table 2 when we use 35

flux loops data as input parameters when we retrain the

neural network until optimization. However, when pro-

ceeding in this way, it is noted that the retrained network

deals with a different problem.

The results achieved are satisfactory: a good accuracy

has been achieved as shown in Table 3 when we used 38

magnetic probes and 35 flux loops data as input parameters.

In our statistics results of output parameters, every

parameter has 100 predicted outputs from neural network

and 100 desired outputs from EFIT computation. We had

chosen 100 time slices data as test dataset to get predicted

results from trained neural network and compare the pre-

dicted output value with desired output value of every time

slice.

The procedure for reducing the input variables starts

from inspection of Table 4. We have then trained, using the

same dataset, a new network with different input parame-

ters and we have achieved the results in Table 4. It can be

seen the degradation of the performance is rather small.

Finally, in Table 4 we report RMS error of all output

plasma parameters when using the optimization neural

network of different input parameters. Obviously, for most

parameters, it can be noted that the accuracy of results

using 38 magnetic probes and 35 flux loops as input

parameters is better than that only using 38 magnetic

probes or 35 flux loops as input parameters. In addition,

flux loops have more important influence on minor radius

measurement, since RMS error is 3.741 % which is lower

than 4.307 and 4.661 %. At the same time, magnetic

probes play a more important role in identification of X

point position than flux loops.

Minimization of the Magnetic Probes

For EAST and next generation ITER-like reactors, it is

very important to minimize and optimize the number of

magnetic sensors to be mounted inside the device. The

neural network approach is particularly well suited to this

problem, and can be used to rank the various magnetic

probes. Our approach is to start from a relatively high

numbers of magnetic probes, almost evenly distributed

Table 1 38 magnetic probes as

input parameters
Output parameters Range Standard deviation RMS error (%) Relative error (%)

Minor radius 44.543–45.585 0.288 4.661 0.083

Triangularity 0.529–0.535 0.002 0.044 0.069

Elongation 1.546–1.591 0.013 0.186 0.094

Internal inductance 1.225–1.423 0.059 0.401 0.239

X point below R 161.009–161.468 0.098 1.675 0.008

X point up R 160.262–160.542 0.057 1.495 0.007

X point below Z -77.222 to -75.894 0.432 7.394 0.081

X point up Z 77.411–78.256 0.179 4.671 0.045
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around the vessel, and then generate a procedure capable of

ranking them in decreasing order of importance. In order to

rank the magnetic probes, a possible procedure is to

exclude each signal in turn from the set of inputs and

retrain the network. However, when proceeding in this

way, it is quite difficult to establish a clear rule to rank the

probes, since the retrained network deals with a different

problem. For this reason, we have preferred to force to zero

the signal corresponding to a certain throughout the whole

test dataset. Obviously the RMS error on the output

parameters generally increases with respect to the reference

case. By iterating this procedure to all probes, we have

established a possible ranking rule for them. The results

achieved when applying this simple technique are shown in

Table 5. It has been found that, in spite of the completely

different method, the results are in very good agreement

with the achievements from EFIT. The parameter units of

minor radius, X point below R, X point up R, X point

below Z, X point up Z are all centimeters in this paper.

The procedure of reducing the number of probes starts

from inspection of Table 5. If one assumes that the ranking

parameters are the error averaged on the output parameters,

we come to the conclusion that probes Nos. 9, 22, 30, 32,

35, 36, 37, 38 are the first candidates for elimination. For

example, it can be noted that Nos. 9, 22, 30, 32, 35, 36, 37,

38 have weakest influence on the output result, while the

minimum RMS errors appear when the 8 probes signal

were forced to zero separately. Indeed, to assure the signal

levels from all magnetic sensors, a series of vacuum shots

were carefully designed and performed before each cam-

paign. The measurement signal used for EFIT computation

are selected at the test shot, that is to say, Nos. 9, 22, 30,

32, 35, 36, 37, 38 are not used as EFIT magnetic mea-

surement input data. However, they were used as noise

signals to verify the robustness of the neural network.

In this respect, Table 5 can be used to assess the criti-

cality of the magnetic probes measurement coming from a

certain sensor with respect to a specific shape parameter.

For example, it can be noted that probe No. 21 is the most

critical for a good identification of the Z co-ordinate of the

lower X point, while probes Nos. 23 and 24 are the second

and third critical for the Z co-ordinate of the lower X point.

Probes Nos. 5 and 6 are very important for a good identi-

fication of the internal inductance,

As already pointed out above, it is not always possible to

isolate and assess the contribution of each individual mag-

netic probe, since the information on the field components

actually comes from a pair of sensors. We remark that the

problem of an optimal and well balanced distribution of flux

and fieldmeasurements around the plasma deserves a careful

Fig. 3 a Relative error of minor radius. b Relative error of

triangularity. c. Relative error of elongation
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and deeper investigation. For this purpose, it is necessary to

analyze the real experimental measurements, which is defi-

nitely beyond the scope of this paper.

Table 6 indicates that very good results can also be

obtained with a much smaller number of sensors. We have

retrained, using the same dataset, a new network with 30

magnetic probes and we have achieved the Table 6 results.

It can be seen that the degradation of performance is rather

small when the number of magnetic probes was reduced to

20. This event suggests that 38 probes are redundant for the

identification of the selected shape parameters and there-

fore a reduction procedure make sense.
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Fig. 4 The predicted output and desired output of eight plasma output parameters

Table 2 Performance with

respect to the output parameters

when using 35 flux loops as

input parameters

Output parameters Range Standard deviation RMS error (%) Relative error (%)

Minor radius (cm) 44.595–45.572 0.281 3.741 0.066

Triangularity 0.528–0.535 0.001 0.040 0.060

Elongation 1.546–1.590 0.013 0.152 0.079

Internal inductance 1.240–1.425 0.058 0.471 0.260

X point below R 161.014–161.440 0.093 2.382 0.012

X point up R 160.280–160.496 0.050 2.956 0.015

X point below Z -77.206 to -75.898 0.421 8.286 0.074

X point up Z 77.414–78.198 0.174 5.002 0.050

Table 3 Performance with

respect to the output parameters

when using 38 magnetic probes

and 35 flux loops as input

parameters

Output parameters Range Standard deviation RMS error (%) Relative error (%)

Minor radius 44.554–45.638 0.290 4.307 0.075

Triangularity 0.529–0.535 0.002 0.037 0.057

Elongation 1.544–1.591 0.013 0.147 0.076

Internal inductance 1.230–1.431 0.059 0.331 0.190

X point below R 160.997–161.464 0.094 1.650 0.010

X point up R 160.249–160.557 0.053 1.336 0.012

X point below Z -77.219 to -75.872 0.411 7.005 0.071

X point up Z 77.386–78.234 0.181 4.931 0.047
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Table 4 Comparison of

performance of optimization

neural network of different

input parameters

Output quantity RMS error (%)

(Full scale)

Input = 38 ? 35

RMS error (%)

(Full scale)

Input = 35

RMS error (%)

(Full scale)

Input = 38

Minor radius 4.307 3.741 4.661

Triangularity 0.037 0.040 0.044

Elongation 0.147 0.152 0.186

Internal inductance 0.331 0.471 0.401

X point below R 1.650 2.382 1.675

X point up R 1.336 2.956 1.495

X point below Z 7.005 8.286 7.394

X point up Z 4.031 5.002 4.671

Table 5 38magnetic probes as input parameters

Number of lacked

probes

Minor

radius

Triangularity Elongation Internal

inductance

X point

below R

X point

up R

X point

below Z

X point

up Z

Average

error

1 0.6358 0.0108 0.0289 0.1246 0.2092 0.3712 0.7845 0.8637 0.3785

2 1.0821 0.0070 0.0427 0.1733 0.1250 0.1104 0.4993 0.3897 0.3037

3 0.5740 0.0051 0.0239 0.1001 0.1139 0.0715 0.4217 0.3540 0.2080

4 0.9325 0.0136 0.0223 0.0507 0.5597 0.1808 1.2261 0.3115 0.4121

5 1.6643 0.0262 0.0660 0.2638 0.0965 0.4498 1.5027 1.3296 0.6749

6 1.2645 0.0019 0.0596 0.2703 0.2622 0.1448 1.6932 0.7583 0.5569

7 0.8013 0.0072 0.0321 0.1394 0.1003 0.0627 0.3822 0.4384 0.2455

8 1.8450 0.0019 0.0674 0.2374 0.4434 0.6955 1.5547 0.4503 0.6619

9 0.2978 0.0048 0.0121 0.0497 0.0986 0.0942 0.4284 0.2553 0.1551

10 0.3605 0.0019 0.0149 0.0630 0.1124 0.1604 0.5787 0.1782 0.1838

11 0.0112 0.0137 0.0607 0.2685 0.1577 1.5179 1.5179 0.1642 0.3241

12 1.0331 0.0183 0.0363 0.1335 0.1954 0.2606 1.4737 0.6052 0.4695

13 0.3812 0.0037 0.0175 0.0816 0.2933 0.3150 0.3233 0.6635 0.2599

14 1.0550 0.0034 0.0464 0.2006 0.0869 0.2887 1.4908 0.3859 0.4447

15 0.3131 0.0059 0.0136 0.0613 0.0922 0.1515 0.8981 0.1836 0.2149

16 0.3834 0.0043 0.0270 0.1436 0.4505 0.3525 0.4252 1.0458 0.3540

17 0.3388 0.0098 0.0132 0.0726 0.3777 0.0623 1.4453 0.3227 0.3303

18 1.0053 0.0091 0.0353 0.1300 0.2628 0.1275 0.4456 0.2115 0.2748

19 1.3618 0.0081 0.0574 0.2422 0.0742 0.0720 0.6442 0.7052 0.3956

20 0.4877 0.0113 0.0192 0.0732 0.0930 0.2499 1.0338 0.5010 0.3086

21 0.3099 0.0119 0.0175 0.0984 0.3434 0.1852 1.9803 0.2534 0.4000

22 0.3469 0.0048 0.0116 0.0390 0.1200 0.0827 0.4169 0.1680 0.1487

23 0.2661 0.0080 0.0192 0.1080 0.3291 0.1111 1.5992 0.3433 0.3480

24 0.4030 0.0084 0.0192 0.0892 0.1071 0.3379 1.5303 0.2621 0.3446

25 0.6805 0.0042 0.0324 0.1461 0.1941 0.0649 0.7531 0.5448 0.3025

26 1.7540 0.0190 0.0690 0.2754 0.1159 0.1763 0.6808 0.9243 0.5018

27 0.2780 0.0043 0.0145 0.0756 0.2874 0.0872 0.8290 0.3847 0.2451

28 0.5427 0.0057 0.0246 0.1100 0.1187 0.3022 1.3415 0.2887 0.3418

29 0.7972 0.0023 0.0259 0.0920 0.3089 0.3713 0.5748 0.3645 0.3171

30 0.0427 4.564e-04 0.0016 0.0046 0.00180 0.0135 0.00715 0.0481 0.0251

31 0.3448 0.0015 0.0216 0.1114 0.3401 0.1811 0.6796 0.6801 0.2950

32 0.2704 0.0086 0.0185 0.1029 0.4870 0.5929 0.6343 1.2218 0.4170

33 1.0286 0.0041 0.0515 0.2384 0.3274 0.1034 1.1125 0.9618 0.4785
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Summary and Conclusions

In this paper, NNs for data analysis of magnetic measure-

ment database on EAST tokamak are presented. Particu-

larly, addressing our attention on EAST single-null

diverted discharges, we have exploited a machine learning

method to analyze the optimum selection of the magnetic

probes. It has been proved that the performance of the

method is very good compared with the calculation result

of EFIT, in terms of precision and duration of the training

phase. It has been shown that, by inspecting the good

properties of fault tolerance of the method, one can derive

interesting information about the relative importance of the

various magnetic probes. The above considerations lead to

the conclusion that the simultaneous analysis of the beha-

viour of the neural network used to train and test can give

interesting guidelines for the problem of the optimal

location of a limited number of sensors.

However, the iteration of the above procedure can be

rather cumbersome if one aims for a strong reduction of the

number of sensors, as would be the case for the selection of

the optimal location of a very limited number of probes. In

fact, at each step, one has first to produce a table similar to

Table 5 and then train and test a new network.

In conclusion, the method looks very promising espe-

cially for the real time control of the plasma shape

parameters in the ITER-like device. In fact, if we assume

that the quality factor of a method for this task is given by

its quickness, accuracy and robustness, we believe that the

neural network approach can achieve a very good score.

Subsequent work of this paper is to analyse in detail the

theoretical feasibility of BP neural network prediction.

Anyhow, the present results encourage us and enhance our

confidence. In the future, more diagnostic signals (includ-

ing ECE, MSE, Soft X information) and more efficient

machine learning methods will be required and developed

for data analysis based on different tokamak shape con-

figurations [16–22].
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Table 6 Effect on the neural

network performance of a

reduction of the number of

sensors

Output quantity RMS error (%)

(Full scale)

N = 38

RMS error (%)

(Full scale)

N = 30

RMS error (%)

(Full scale)

N = 20

Minor radius 4.307 4.509 4.765

Triangularity 0.037 0.045 0.048

Elongation 0.147 0.173 0.185

Internal inductance 0.331 0.453 0.487

X point below R 1.650 1.737 1.630

X point up R 1.336 1.433 1.484

X point below Z 7.005 6.755 7.642

X point up Z 4.031 4.594 4.895

Table 5 continued

Number of lacked

probes

Minor

radius

Triangularity Elongation Internal

inductance

X point

below R

X point

up R

X point

below Z

X point

up Z

Average

error

34 0.3786 0.0111 0.0235 0.1214 0.4144 0.5843 0.8667 1.2417 0.4552

35 0.1888 1.5124-04 0.0173 0.0859 0.0845 0.0520 0.0348 0.0046 0.0585

36 0.0471 4.324e-04 0.0018 0.0043 0.0175 0.0139 0.0710 0.0503 0.0258

37 1.0823 0.0075 0.0388 0.1448 0.2772 0.2077 0.0357 0.0168 0.2263

38 0.1394 0.0020 0.0138 0.0553 0.0313 0.3536 0.2521 0.2646 0.1390

9,22,

30,32,35

36,37,38

0.2341 0.0112 0.0594 0.2646 0.3359 0.3003 0.4826 0.2913 0.2476
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