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Abstract The general form of description of Kolmogo-

rov–Arnold–Moser (KAM) theorem in controlled plasma

fusion, is obtained via the theory of artificial fuzzy neural

networks. Without of the global maximum entropy prin-

ciple, the complexity function is used for the Monte Carlo

simulations.
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Introduction

Recently, stochastic fluctuations have been discussed in

relation to ELM (edge localized mode) mitigation in

tokamaks. Auxilliary coils are being added to existing

configurations to control transport in several tokamaks.

These additional coils are new and dominating sources of

stochasticity. Examples can be found on the tokamaks Tore

Supra, DIII-D, and TEXTOR, and are being planned for

JET, ASDEX-UPGRADE, and ITER.

Edge localized modes are periodic disturbances of the

plasma periphery occuring in tokamaks with an H-mode

edge transport barrier. As a result, a fraction of the plasma

is transferred to the open field lines in the divertor region,

ultimately appearing at the divertor target plates.

Turbulence plays a very important role in particles and

energy cross-field transport to the wall in the edge plasma.

Using the TCABR tokamak facility are analyzed turbulent

electrostatic fluctuations in a stationary toroidal magne-

toplasma, created by radio-frequency waves and confined

by two different toroidal magnetic fields. Turbulence has

recurrent properties, as those observed in recurrent fully

chaotic low-dimensional systems [1]. Therefore, evolution

of measurements of low-dimensional dynamical systems

can be used to describe the recurrence observed in the

tokamak edge turbulence.

Empirically we know that we need both fuelling and

heating to maintain steady state. This means that a pure

heat source cannot maintain the density and a pure particle

source cannot maintain the temperature. The non-

Markovian mixing length has turned out to automatically

give us the right level also of momentum transport.

The understanding and reduction of turbulent transport

in magnetic confinement devices is not only an academic

task but also a matter of practical interest, since high

confinement has been chosen as the regime for ITER and

possible future reactors because it reduces size and cost.

Over the past decade, step-by-step new regimes of plasma

operation have been identified, whereby turbulence can be

externally controlled, which led to better and better con-

finement. Theoretical models were often only predicting

the global level of turbulence as well as the scaling of this

level with varying plasma parameters.

The various neutron diagnostic techniques used to

determine the characteristics of the neutron fields of the

plasma focus device have been developed with the fol-

lowing aim: identification of the neutron emission and

plasma focus device operational parameters. Our algorithm

recognizes the prepared scenarios and it classifies them into

groups. The new feedback control of the neutron emission

rate and the radiative power in the divertor has been per-

formed. The feedback control of neutron emission rate was

demonstrated with controlling the heating power.

In the aim to obtain the possibility of uniform stabil-

ization of a control system we used the method of adaptive

controllers for nonlinear transport systems. It opens the
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possibilities for experimentation with the influence of real

actuators on different devices in nuclear technology and

radiation science.

The Kolmogorov–Arnold–Moser (KAM) theory of

dynamical systems asserts that in certain circumstances

most of the magnetic lines will sweep out nested flux

surfaces rather that ergodic regions so that the confinement

of the plasma will be adequate for fusion in power plant

[2]. A generalization of Brownian motion to strongly cor-

related (long-memory) random processes is fractional

Brownian motion (FBM). Many current models for long-

memory are non-Markovian Monte Carlo methods can

often be run with a limited amount of computer time and

provide a solution with some estimable uncertainity.

Markov Chains

For irreducible stochastic matrix the controlled Markov

chain is said to be ergodic and there exists a stationary

strategy. By Ruelle–Perron–Frobenius theorem there exists

a countable measure such that under certain conditions

convergence toward this measure is uniform and expo-

nential. It is called thermodynamic formalism for countable

Markov shifts. The positive recurrence is necessary and

sufficient condition for a Ruelle–Perron–Frobenius theo-

rem to hold. In the case of an unbounded integrable target

function, in the equation y(k + 1) = P[y(k),u(k)] the input

function u(k) should be an unbounded function. The con-

vergence of step functions to the function v(k) of the

infinite fuzzy logic controller in this case cannot be

uniform, i.e. the generalized fixed point theorem does not

hold true.

Turbulence as a whole is generally not an equilibrium

phenomenon. As a simulation approach to study thermo-

dynamics the Monte Carlo histogram technique is usually

used. In the case of infinite degrees of freedom, obtaining

the histogram corresponds to considering an appropriate

probabilistic distribution. In the case of nonlinearity, we

must be able, by addition of another actuators with the

methods of artificial intelligence and synergetics to bring

the plasma regime to the linear case.

The control and observation processes for many

dynamical systems are often severely limited. For many

systems described by partial differential equations it is

usually impossible to influence or sense the state of the

system at each point of the spatial domain. Indeed control

and sensors are restricted to a few points or parts of the

boundary. Modelling such limitations result is unbounded

input and output operators. The model of collisionless

plasmas, specially in controlled fusion is too idealized and

collisional effects need to be incorporated. We shall see

what is the role of recurrence for obtaining of good

machine behaviour. The solution of nonrecurrent processes

cannot be found in the united form. The interesting prob-

lem is an analysis of limit distribution of integral

functionals in a null-recurrent diffusion process. The

method for obtaining of adaptive recurrence equilibriums is

explained. If we have only strong stabilization of the pro-

cess then in the case when there are constants appropriate

from strong convergence we can get uniform convergence

by the principle of uniform boundedness. Generally, we

have transport equations with unbounded second-order

differential collision operators. For the stabilization of such

systems it is necessary introduce the unbounded input

control functions.

Complexity Function

The notions of the complexity function and entropy func-

tion are introduced to describe systems with nonzero or

zero Lyapunov exponents or systems that exhibit strong

intermittent behaviour with flights, trappings, weak mixing

etc. The important part of the new notions is the appear-

ance of epsilon-separation of initially close trajectories. It

is found that Hamiltonian chaotic dynamics possesses in

many cases a kinetics that does not obey the Gaussian law

process and that fluctuations of the observables can be

persistent, i.e., there is not any characteristic time of the

fluctuation decay. The new approach to the problem of

complexity and entropy covers different limit cases,

exponential and polynomial, depending on the local

instability of trajectories and the way of the trajectories’

dispersion.

The behaviour of systems with zero Lyapunov expo-

nents definitely have some level of complexity and some

value of entropy in physical sense, but the regular notion of

the Kolmogorov–Sinai entropy of the standard definitions

of complexity cannot be applied to such systems. Space-

time nonuniformity suggest that vicinities of any trajecto-

ries may have very different dynamics of trajectories. It is

difficult, if not impossible, to describe a trajectory finite-

time behaviour on the basis of the information about the

trajectory from an infinitesimal domain of phase space. A

notion of complexity that is based on the verification of

divergence of trajectories from fixed several ones is

introduced. If consideration is restricted to a neighbour-

hood of one (or several) basic orbit, then fast separated

pieces of orbits correspond to a mixing type of behaviour

can be eliminated. It is important to consider complexity

function and exit time distribution. If time t is fairly big we

can select a set of points x that are almost uniformly dis-

tributed. We can consider a collection of flights and their

lenghts and time intervals from different domain. As a

result we have semilocal flights complexity function [3].
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We wish to investigate the problems of computing the

intervals of possible values of the latest starting times and

floats of activities in networks with uncertain durations

modeled by fuzzy or interval numbers. Problem of evalu-

ating the possible criticality of an activity—a polynomially

solvable case is considered. A class of neural architectures

of polynomial neural networks (PNNs) is introduced [4].

PNN is flexible neural architecture whose structure (topol-

ogy) is developed through learning. In particular, the

number of layers of the PNN is not fixed in advance but is

generated on the fly. In this sense, PNN is a self-organizing

network. Especially, the generic rules in the system assume

the form ‘‘if A then y = P(x)’’, where A is a fuzzy relation in

the condition space while P(x) is a polynomial forming a

conclusion part of the rule. When the complexity of the

system to be modeled increases, both experimental data and

some prior domain knowledge are of importance to com-

plete and efficient design procedure. Each neuron (node)

of the network realizes a polynomial type of particular

description of the mapping between input and output

variables. Bernstein polynomials associated with fuzzy

valued functions are employed to approximate continuous

fuzzy valued function defined on a compact set. Universal

approximations of continuous fuzzy valued functions by

regular fuzzy neural networks are obtained [5].

Singularly perturbed control systems have been

intensively studied. The multitime-scale approach is a

fundamental characteristic of singular perturbation meth-

ods. In other words, the method can decompose the original

systems into the fast and slow subsystems. Therefore, the

controller of actual system is a compact form of the con-

trollers for its relative fast and slow subsystems [6].

Intelligent identification is a significant approach for

modeling complex, uncertain and highly nonlinear

dynamic systems. The nonlinear autoregressive with

exogenous input model can be used. This structure is used

in most nonlinear identification methods such as neural

networks and fuzzy models. A simple but effective fuzzy-

rule-based models of complex systems from input-output

data was developed. In recent years, the corresponding

research result have been extended to multiple-input-

multiple-output nonlinear systems. The basic idea of these

works is to use the fuzzy logic systems to approximate the

unknown nonlinear functions in systems and design adap-

tive fuzzy controllers by using Lypunov stability theory.

From a mathematical point of view, fuzzy logic systems

can be used as practical function approximators.

Monte Carlo Simulations

Monte Carlo methods are online simulation methods that

learn from experience based on randomly generated

simulations, without the need for complete knowledge of

the environment. Given a random set of experiences (or

trials), with garantee from the weak law of large numbers,

the simulation result will eventually converge when each

state is encountered for an infinite number of trials. The

evaluative feedback is collected for each instance of

example presented to the induction algorithm based on the

state of the feature sets. The average feedback or weight of

each feature represents the relative importance of the

feature over other features. Higher weight value means that

the particular feature is of higher importance.

A novel feature selection approach, the Monte Carlo

evaluative selection (MCES) is proposed in the paper [7].

MCES is an objective sampling method that derives a

better estimation of the relevancy measure. The algorithm

is objectively designed to be applicable to both classifi-

cation and nonlinear repressive tasks. Most of the filter

approaches assume some type of relevancy measures to

determine the relevancy of the input features are to be

excluded in a feature selection system. Irrelevant features:

in computational learning, accuracy is one of the efficient

measures to define the relevancy. It is a relationship

between the input features that are highly correlated to the

some other features in the same system, then they can be

considered as redundant features and should be removed.

A computational learning or soft computing type of

induction or inference system is generally stochastic or

nondeterministic. The effectiveness of the feature selec-

tion algorithm is highly proportional to the number of

trials attempted during the different learning states of the

system. The goal of the feature selection algorithm is to

extract the significance of each feature based on the

knowledge inherently present in a system after the train-

ing process.

In recent years, support vector machines (SVMs) with

linear or nonlinear kernels [8] have become one of the most

promising learning algorithms for classification as well as

for regression, which are two fundamental tasks in data

mining. Via the use of kernel mapping, variants of SVMs

have successfully incorporated effective and flexible non-

linear models. The reduced SVM mixture model via

uniform random sampling minimizes the maximal model

bias (deviation) between the reduced model and the full

model. The uniform random subset should be done within

each class and then be combined together, the stratified

sampling is a ‘‘must’’ for multiple classification in order to

reduce the variance due to the Monte Carlo sampling,

especially for problems with large numbers of classes. This

random subset approach can drastically cut down the

model complexity, while the sampling design helps to

quide the bases selection in terms of minimal model vari-

ation. The uniform design is a space-filling design and it

seeks to obtain maximal model robustness.
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Limitations of Markov chain Monte Carlo algorithms to

sample from the posterior probability of a tree given the

data are founded [9]. In particular, they design a Markov

chain whose stationary distribution is the desired posterior

distribution, computed using the likehood and the priors.

Hence, the running time of the algorithm depends on the

convergence rate of the Markov chain to its stationary

distribution. However, there is no theoretical understanding

of the circumstances which the Markov chains will con-

verge quickly or slowly.

Recently, dynamical behaviours defined on various

complex networks have been extensively studied in many

fields for phase transitions with long-range directed inter-

actions. The lattice structure is replaced again after a

Monte Carlo step. The system exhibits a transition from the

homogenous state to a global oscillation state again and

then the last self-organizing state with fraction q increasing

[10]. In our simulation, we change the directed small-world

structure per Monte Carlo step.

Harris recurrence is a concept introduced 50 years ago by

Harris. More recently, connections between Harris recur-

rence and Markov chain Monte Carlo algorithms were

investigated. The hierarchical structure is a common feature

of many networked systems and has received a considerable

amount of attention in recent years. It is shown that the

hierarchical structure is related to some significant charac-

teristics of complex systems, such as the high clustering

coefficient and scale-free degree distribution.

The algorith based on spectral partitioning for recon-

structing the hierarchical structure from a network is

proposed [11]. There is a large literature within computer

science on spectral partitioning, in which network proper-

ties are linked to the spectrum of the graph Laplacian

matrix. Many applications of Markov chain Monte Carlo

(MCMC) involve very large and/or complex state spaces,

and convergence rates are an important issue. A major

problem in MCMC is thus to find sampling schemes whose

mixing times do not grow too rapidly as the size or com-

plexity of the space is increased.

In a multi-modal space a local chain will equilibrate

rapidly within a mode, but takes a long time to move from

one mode to another. Hence, the entire chain converges

slowly to a target distribution. However, a small fraction of

heavy-tailed proposals enables a small-world chain to

move from mode to mode much more quickly.

A positive, self-similar Markov process (PSSMP) is a

strong Markov process with paths which possesses a scal-

ing properties. The main result asserts that any PSSMP

may, up to its first hitting time at 0, be expresses as the

exponential of a Levy process, time changed by the inverse

of its exponential functional. We obtain one-to-one relation

between the class of PSSMPs killed at time s and one of the

Levy processes [12].

Artificial Neural Networks

Accurate neural network approximation for closed-loop

system dynamics is achieved in a local region along a

periodic state trajectory, and a learning ability is imple-

mented during a closed-loop feedback control process.

Second, based on the deterministic learning mechanism, a

neural learning control sheme is proposed which can

effectively recall and reuse the learned knowledge to

achieve closed-loop stability and improved control per-

formance. Most of the works in the neural control literature

only require the universal approximation capability of

neural networks, which is also possessed by meany other

function approximators such as polynomial, rational and

spline functions, wavelets, and fuzzy logic systems.

Adaptive control has a main feature the ability to adapt to

or ‘‘learn’’ the unknown parameters throught online

adjustment of controller parameters in order to achive a

desired level for control performance. The nature of the

deterministic learning mechanism has been shown to be

related to the exponential stability of the closed-loop

adaptive system.

When a system is trained by examples, it is important to

improve its generalization ability and at the same time to

reduce its complexity. By pruning some insignificant

connections, this approach is also suitable for reducing the

network complexity by constructing a compact one. A

large initial size allows the network to learn quickly with

less sensitivity to initial conditions and a lower probability

to be trapped in local minima. The trimmed network favors

improving generalization and reducing complexity. The

neural networks can be classified as static (feedforward)

and dynamic (recurrent) [13]. The output of a dynamic

system is a function of past outputs and past inputs.

Recurrent neural network (RNN) is a powerful tool for

sequence learning and prediction. Characterized with the

recurrent connection, RNN is able to memorize the past

information, therefore, it can be learn and predict dynamic

properties of the sequential behaviour. The paper [14]

presents incremental hierarchical discriminant regression

(IHDR) which incrementally builds a decision tree or

regression tree for very high-dimensional regression or

decision spaces by an online, real-time learning system.

The IHDR tree dynamically assigns long-term memory to

avoid the loss-of-memory problem typical with a global-

fitting learning algorithm for neural networks. A major

challenge for an incrementally built tree is that the number

of samples varies arbitrarily during the construction pro-

cess. Prediction trees, also called decision trees, have been

widely used in machine learning to generate a set of tree-

based prediction rules for better prediction for unknown

future data. The time complexity is typically not an issue

for decision trees.
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With the demand of online, real-time, incremental,

multimodality learning with high-dimensional sensing by

an autonomously learning embodied agent, we require a

general purpose regression technique that satisfies all of the

following challenging requirements. It must adapt to

increasing complexity dynamically. It cannot have a fixed

number of parameters like a traditional neural network,

since the complexity of the desired regression function is

unpredictable. It must be able to retain most of the infor-

mation of the long-term memory without catastrophic

memory loss.

For example, consider neural networks with incremental

backpropagation learning. They perform incremental

learning and can adapt to the latest sample with a few

iterations, but they not have a systematically organized

long-term memory, and, thus, early samples will be for-

gotten in latter training. Cascade-correlation learning

architecture improves them by adding hidden units incre-

mentally and fixing their weights to become permanent

feature detectors in the network. Thus, it adds long-term

memory. Major problems for them include the high-

dimensional inputs and local minima.

Neural networks can be classified into static and

dynamic categories. Static networks have no feedback

elements and contain no delays; the output depends not

only on the current input to the network, but also on the

current or previous inputs, outputs, or states of the network.

These dynamic networks may be recurrent networks with

feedback connections or feedforward networks with

imbedded tapped delay lines.

Last years, extremaly good initial results were obtained

with the suppresion of edge localized modes (ELMs) with

stochastic layers. It remains important to understand the

impact of plasma shape and plasma profiles on the stability

limit. The divertor enables access to a new neutral beam

injection (NBI), heated, high-density operating regime with

improved confinement properties. Quasi–Monte Carlo

methods are developed by using smoothing and dimension

reduction of the integration domain. Specifically, we are

interested in conditions under which an unbounded mem-

ory can induce qualitative changes in the distribution of the

position, as compared to the Markovian case with Gaussian

distribution pertaining on large space and time scale.

Hence, one has the standard Markovian random walk,

which, on large scales, converges to Brownian motion.

The Kolmogorov–Arnold–Moser (KAM) theorem:

phase spaces of Hamiltonian systems split up in various

areas when coupling between the degrees of freedom are

coupled in such a way that the equations become unin-

tegrable. These areas are either island shaped or unbroken

layers (KAM tori) or chaotic [15]. Levy determined the

conditions for a family of distributions to be stable. These

distributions are usually called Levy stable distributions.

Unfortunately, the general form of Levy distributions is not

available. Levy flight and walks are stochastic processes

which provide a framework for the description and analysis

of anomalous random walks in physics.

Diffusion in most plasma devices, particularly tokam-

aks, is higher than one would predict from understood

causes. In collaboration with Ben Carreras, George Za-

slavsky has undertaken to apply sophisticated methods for

analyzing edge fluctuation data from DIII-D tokamak in

order to discover non-Gaussian processes which may have

major effects on transport. The analysis hand the start of

advanced data analysis of turbulence in tokamaks [16].

The non-Markovian character of the dynamics is

expressed in the fact that the evolution equation is different

for each initial position. Now, the problem is to describe

non-Markovian processes. The next theorem holds:

Theorem Let us have plasma behaviour which is

described by KAM theory. Then, it can be obtained as

follows: (a) by a generalized fixed point method with

unbounded input and output functions in the deterministic

case (H mode), and (b) by artificial neural networks with

delays in the stochastic case (L–H transitions and ELMs).

Proof (a) The proof is given in Ref. [17]. It all follows

according to the contraction mapping principle with infinite

fuzzy logic controllers.

(b) Instead of the maximum entropy principle we must

consider learning and simulations of complexity by artifi-

cial neural networks to obtain recurrent behaviour of the

system.

Conclusion

Self-similarity and long-range correlations are present in

the plasma edge of fusion devices. Since the turbulence is

self-similar, the probability distribution functions (PDF)

may also be expected to display self-similarity, i.e. when

averaging the signal over time, the PDF changes amplitude

but not shape.

A new method is presented to derive kinetic equations

for systems undergoing nonlinear transport in the presence

of memory effects. In the framework of mesoscopic non-

equilibrium thermodynamics is obtained a generalized

Fokker–Planck equation incorporating memory effects

through time-dependent coefficients. The nonMarkovian

dynamics of anomalous diffusion is discussed [18].

There are many different areas where fractional equa-

tions describe real processes. The physical reasons for the

appearance of fractional equations are intermittancy, disi-

pation, wave propagation in complex media, long memory

and others. The equilibrium of the fractal turbulent medium

exists for the magnetic field with the power law relation
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[19]. Magnetohydrodynamics equations for the fractal

distribution of charged particles are suggested. The frac-

tional integrals are considered as approximations of

integrals on fractals. The generalization of the Fokker–

Planck equation can be used to describe kinetics in fractals

media. Some results hold true for fractional Vlasov–Pois-

son–Fokker–Planck equation. The physical values on

fractals can be ‘‘averaged’’, and the distribution of the

values on fractal can be replaced by some continuous

distribution [20]. In the absence of any external source,

turbulent flows decay because of dissipation. The uni-

formly sheared flow is one of the simplest ways of

producing and maintaining turbulence [21, 22].
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