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AN EXAMPLE OF AN ACCURATE SOLUTION OF A PROBLEM 
ON STRATIFIED FLOWS CAUSED BY SPATIAL
INHOMOGENEITIES OF TRANSFER COEFFICIENTS

L. Kh. Ingel′ UDC 532.5:536.25:551.511

In the recent literature, attention has been drawn to the previously uninvestigated mechanism of the occurrence of 
fl ows in a stratifi ed fl uid in a gravity fi eld. Such fl ows can occur in the absence of pulse and buoyancy sources due 
to horizontal inhomogeneity of transfer coeffi  cients. For the fi rst time, this investigation provides an example of an 
exact analytical solution of such a problem free from assumptions of amplitude smallness.
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Introduction. In recent investigations [1, 2], attention has been drawn to the previously uninvestigated mechanism 
of the occurrence of fl ows in a stratifi ed fl uid in a gravity fi eld. It is obvious that in a steadily stratifi ed medium, there is 
heat (buoyancy) diff usion directed from top to bottom. If the thermal conductivity coeffi  cient is spatially inhomogeneous 
(depends on horizontal coordinates), this results in the occurrence of horizontal inhomogeneities in distributions of 
buoyancy and hydrostatic pressure (weight of the medium column) and hence in the occurrence of horizontal fl ows. Spatial 
inhomogeneities of eff ective transfer coeffi  cients are especially characteristic of turbulent exchange [1–3]. Therefore, such 
density currents must exist, for example, in the atmosphere [1].

Due to the complexity of mathematical problems with spatially inhomogeneous transfer coeffi  cients, accurate 
analytical solutions of such problems have been almost absent so far in the literature. This paper provides an example of 
such a solution for the simplest two-layer model.

Problem Formulation. Let an unbounded medium be stratifi ed steadily; the constant vertical temperature gradient 
γ > 0, and the thermal diff usivity Ku = const. In a stationary mode, in this medium, there is a homogeneous descending 
heat fl ux proportional to γKu. Suppose that at a certain instant of time, in the region below certain inclined interface 
n = 0 (Fig. 1), the thermal diff usivity decreased to the constant value Kd < Ku. On the inclined interface, there occurs heat 
fl ux discontinuity: above the boundary, it was proportional to γKu and below, it would be equal for a moment to a smaller 
γKd value. Hence, in the vicinity of the inclined interface, heat accumulation will start. Due to buoyancy deviation, an 
ascending motion must occur along this boundary. This motion brings from below colder fl uid volumes, which results in 
the compensation of excessive heat accumulated due to the diff erence in the transfer coeffi  cients. We may assume that, 
as a result, a stationary fl ow occurs along the inclined interface, providing heat balance (the geometry of the problem is 
schematically shown in Fig. 1.

Stationary Solution. We seek an appropriate stationary solution for a two-layer one-dimensional problem in a 
system of coordinates (s, n). For simplicity, we limit ourselves to the case when the values of heat transfer and momentum 
transfer coeffi  cients coincide (the value of the Prandtl number is everywhere equal to unity, which is a widely accepted 
hypothesis in describing turbulent exchange). The system of equations for the dynamics and transfer of heat in a Boussinesq 
approximation above the inclined interface is similar to the model of Prandtl downslope fl ows and has the form [4–9]:
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Here, θ is temperature deviation (for air in the atmosphere, potential temperature [4]) from the background.
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Note that the system of hydrodynamics and heat transfer equations was reduced to a linear system (1) only due to 
the symmetry of the problem without any assumptions about the smallness of perturbation amplitudes. Excluding one of 
the variables, we come to the equation 
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and the buoyancy frequency N = (gγ)1/2. The general solution of Eq. (2) represents a linear combination of four exponents 
with complex indices. Considering the disturbance decay conditions at n → ∞, we have
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Below the interface, the solution appears similar but with the change of sign of the exponent and the replacement 
of the subscript "u" with "d":
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Using (1), it is also not diffi  cult to obtain expressions for temperature deviations. The solutions on both sides of the interface 
join at n = 0 where the following conditions are fulfi lled:
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The latter condition is an equality of diff usion heat fl uxes on both sides of the interface. From the above-mentioned 
conditions, it is not diffi  cult to obtain expressions for integration constants:
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Thus, the solution will have the form
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Fig. 1. Downward vertical arrows indicate schematically the diff usion heat fl uxes above 
and below the interface (at diff erent values of thermal diff usivity).
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where the top sign and the subscript "u" correspond to the region above the interface.
Solution Analysis. We can see that if the intensity of exchange in the lower region is weaker than in the upper 

one (Kd < Ku), then u > 0; near the interface n = 0, as was to be expected, there is a positive temperature deviation and an 
ascending motion along this boundary. It is interesting to note that with decrease in the angle of inclination φ this eff ect of 
the inhomogeneity of transfer coeffi  cients increases: the layers′ thickness hu,d increases; fl atly inclined fl ows transfer little 
heat, and a rather high velocity is required to sustain the heat balance near the interface. But this refers to the stationary 
mode under investigation whose setting time must increase with decrease in the inclination angle since the spatial scales 
hu,d grow.

We assume the parameter values characteristic of turbulent exchange in the atmosphere: N = 10–2 s–1, Ku = 5 m2/s, 
Kd = 1 m2/s. Then at φ = 0.05, the velocity of the occurring fl ow is ~0.4 m/s, and the temperature deviation is about 0.1 K.

Conclusions. In a quite substantive body of literature on the theory of downslope fl ows (see, for example, [5–9] 
and the references in these works), it is commonly believed that these fl ows are due to thermal disturbances on the lower 
boundary. A qualitatively new result follows from the above-said: at a horizontal imhomogeneity of transfer coeffi  cients, 
when the density gradient does not coincide in direction with the force of gravity, the static state in nonequilibrium stratifi ed 
media is impossible. Signifi cant fl ows may occur in the absence of sources of buoyancy and/or momentum in the medium.

This also means the existence of the eff ect of occurrence of ordered fl ows in a turbulized density-stratifi ed medium 
near hard inclined boundaries. Indeed, near hard boundaries, turbulent exchange is weakened, hence, there is spatial 
inhomogeneity of eff ective transfer coeffi  cients, which, as shown above, must result in the occurrence of regular fl ows.

NOTATION

Cj, integration constants, m/s; g, free-fall acceleration, m/s2; h, spatial scale, m; K, transfer coeffi  cient, m/s2; 
N, buoyancy frequency (Brunt–Väisälä frequency), s–1; n, coordinate in the direction normal to the slope, m; s, slope 
coordinate, m; U, velocity scale, m/s; u, velocity component in the direction of the s axis, m/s; x and z, horizontal and 
vertical coordinates, m; α, coeffi  cient of thermal expansion of a medium, K–1; γ, background vertical gradient of temperature 
(of potential temperature), K/m; θ, temperature deviation, K; φ, lower boundary angle of inclination to the horizon, rad. 
Subscripts: d and u refer to the lower and upper layers, respectively; j, integration constant number.
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