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HEAT CONDUCTION AND HEAT TRANSFER IN TECHNOLOGICAL PROCESSES

UNIQUENESS AND STABILITY OF SOLVING 
THE INVERSE PROBLEM OF THERMOELASTICITY. 
PART 2. REGULARIZATION

A. G. Vikulov UDC 51.74,536.21,53.096

Based on the analysis of direct variational methods used in the Hilbert space — the regularization method and 
the iterative regularization method — an iterative variational method was developed for regularization of the 
mathematically incorrect solution of nonlinear inverse thermoelasticity problems described by partial diff erential 
equations. Using the quadratic functional of the regularization method, an integral equation of the fi rst kind is 
obtained, which connects the norms of increments of the direct and inverse thermoelasticity problems. The solution 
of the inverse problem is linearized by calculating the norms in the Hilbert space of square-integrable functions. 
The integral equation is regularized by reducing it to the Euler equation. The discretization of the boundary-value 
problem, described by the Euler equation, is performed, and the resulting system of linear algebraic equations is 
solved. A computational experiment was carried out for the simultaneous identifi cation of two nonlinear temperature 
functions that confi rms the effi  ciency of the method and shows that in the iterative selection of a quasi-solution for 
simultaneous determination of several functions, one experimental mode can be used.

Keywords: thermoelasticity, inverse problems, regularization, variational method, fi nite-diff erence method.

Introduction. The article considers the problem of determining the function w on the right-hand side of the operator 
equation [1]:
 ( ) , , ,Au f w f F u U     (1)

where F, U  R are the metric spaces, and the right side of the equation f includes the boundary and initial conditions, If this 
part is given exactly, then, if the solution of the equation exists and is unique, it is usually stable, i.e., depends continuously on f.

The inverse problem for the desired function w is formulated similarly:

 1, ( ) , , .Bw u B A f w f F u U      (2)

In inverse problems, the element w is determined by experimental (identifi cation) or specially set (control) function u, 
which has a dispersion or is known approximately. Further, we will talk about Eq. (1), implying the same for Eq. (2).

The solution of Eq. (1) is correct according to Tikhonov if it is known that for the exact value f = f0 there is a 
unique solution to the equation Au0 = f0, which belongs to the given compact DA. In this case, the operator A–1 is continuous 
(outside these restrictions A–1 may not be continuous) on the set RA = ADA, and if instead of the element f0 the element f is 
known such that F( f0, f)   and f  RA, then as an approximate solution of Eq. (1) with the right side f = f we can take 
the element u = A–1f. As   0, u tends to u0. The set U1  U, on which the solution of Eq. (1) is correct, is called the 
correctness class. So, if the operator A is continuous and performs a one-to-one mapping, then the compact DA, to which u0 
belongs, is the correctness class for Eq. (1) [2].

In practical problems, due to the errors in the initial data, instead of the exact value of the right side f0, its approximate 
value f is known, which may belong to the set RA = ADA, which is not compact. In these cases, it is impossible to construct 
an approximate solution of Eq. (1) using the formula u = A–1f, since the symbol A–1f may not make sense. For this reason, 
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the concept of a quasi-solution u  U is introduced and the selection method under the condition of the compactness of the 
set U allows one to fi nd approximation to the quasi-solution [2]:

 ( , ) inf ( , ) .F F
u U

Au f Au f


     (3)

If U is a compact, then the quasi-solution exists for any f  F, and if, moreover, f  AU, then u = u0. There may be more 
than one quasi-solution. In this case, a quasi-solution is understood as any element from a set of quasi-solutions. The quasi-
solution is not correct according to Tikhonov.

Solution (3) is similar to the solution of Eq. (1) by the direct variational method of least squares with the only 
diff erence that it was obtained without taking into account the correctness of the problem formulation, determined by the 
linearity of the operator A, as well as by the uniqueness and stability of the solution [1].

The computational practice makes a wide use of the quasi-solution subset method, in which for the elements u of 
some predetermined subset of possible solutions M  U the operator Au is calculated, i.e., the direct problem is solved. As 
an approximate solution, such element u is taken from the set M, on which the residual minimum (3) is reached. Selection 
of a quasi-solution can be carried out iteratively [2]:

 
( 1) ( ) ( ) , 0 , 1 , .l l lw w w l        (4)

In the case of functional (pointwise) identifi cation of the operator equation (1), the desired function w is discretized 
on the time grid  as a vector w:

T T
0 2 0 2( , , , ) , ( , , , ) .M Mw w w    w 

Then expression (4) is written for each coordinate of the vector w:

( 1) ( ) ( ) , 0 , 1 , ; 1 , , .l l l
m m mw w w l m M      

In the case of parametric identifi cation, the function w is represented as a series, which is built using the basis 
k(x, ), k = 1, 2, ... :

1
( , ) ,k k

k
w x a




  

with x conditionally denoting the required number of spatial coordinates x1, x2, ... . In numerical implementation of 
algorithms, they are limited to the partial sum of the series that includes K fi rst terms of the series. Then the following 
vector becomes the desired one:

T
1 2( , , , ) ,Ka a aa 

and the increment is calculated for each coordinate of this vector:

( 1) ( ) ( ) , 0 , 1 , ; 1 , 2 , , .l l l
k k ka a a l k K      

Variational Method for Regularizing an Unstable Solution of the Equation Au = fδ with an Approximately 
Given Right-Hand Side. Equation (1) with an approximately given right side f that belongs to the range of the values of 
RA of operator A, which is not compact, describes an essentially ill-posed problem whose quasi-solution is conditionally 
correct according to Tikhonov. Signifi cantly ill-posed problems exclude the last of the four conditions for the applicability 
of the least squares method — the condition for the uniqueness of the solution, but leave the possibility of minimizing the 
norm of the diff erence between the left and right sides of the equation

 ,Au f   (5)

and, consequently, a quadratic functional of the form of (3), which ensures the convergence of the elements f of the space F. 
For simultaneous convergence of elements u of space U we will add a stabilizing term (stabilizer) [2]:

 
2 2|| || ( ) ( , ) ( ) .FMu Au f u Au f u           (6)
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Here  > 0 is the regularization parameter determined uniquely by the known discrepancy :

2|| ( ) || .Au f   

The pseudo-solution of the system of equations (5) is the element u, which minimizes the norm ||Au – f || over the 
entire space F. The system of equations (5) may have more than one pseudo-solution. Let DA be a set of all pseudo-solutions 
of system (5) and u be a certain fi xed element from RN, which is usually determined by the statement of the problem. 
The normal solution for the element u (normal solution) of system (5) is the pseudo-solution u0 with the minimum norm
||u – u|| [2]:

0 inf .
Au D

u u u u 


  

For any system of the form (1) a normal solution exists, and it is unique. Since the normal solution is a pseudo-solution, the 
sequence of elements converging to the normal solution in the space U (DA  U) converges simultaneously also in the space 
F (as, for example, in the method of least squares for a linear operator A):

0 0 0,u u Au Au f   .

Therefore, it is logical to choose the stabilizer  in the form of the square of the distance between the elements u and 
u0  DA  U:

 
22

0 0( )ñ ( , ) .Uu u u u u      (7)

Then the quadratic functional (6) can be written in the form

 

2 22 2
0 0 0 0

0 0 0 0

0 0 0 0 0 0

ñ ( , ) ñ ( , )

( , ) ( , )

( , ) 2( , ) ( , ) ( , ) 2 ( , ) ( , ) .

F UMu Au f u u Au f u u

Au f Au f u u u u

Au Au Au f f f u u u u u u

       

      

        

  (8)

The regularization method is applicable for both functional and parametric identifi cation of the function w included 
in the right side of the operator equation of the fi rst kind Au = f(w). As shown above, such problems are inverse in nature and 
often have an unstable solution for the function w, since the function u, necessary to calculate the right side of f = Au, is 
determined experimentally or is set approximately, which leads to large fl uctuations of the diff erential operator Au for small 
fl uctuations of the function u. Therefore, it is expedient to lead the solution of inverse problems to the sequence of solutions 
of direct problems, avoiding direct diff erentiation of the experimental function and using it as a normal solution of the direct 
problem u0. Then the approximate solution of the direct problem minimizes the functional (8):

 

 

0 0

0 0

0 0 0 0

0 0 0 0 0

0 0

0

( , ) ( , ) ( , ) ( , )2 2 0;

( , ) 2( , ) ( , ) 2 ( , ) 0;

( , ) ( , ) const;

0, const ( , ) ( , );

( , ) 2( , ) ( , ) 2 ( , ) const;

2 ( , ) ( ,

dMu d Au Au d Au f d u u d u u
du du du du du

d Au Au Au f u u u u
du

Mu f f u u

Mu f f u u

Au Au Au f u u u u

u u u

      

     

   

     

     

   0

0 0 0

0 0 0 0 0 0

) ( , ) 2( , ) const;

( , 2 ) ( , 2 ) const = ( , 2 ) const;

( , 2 ) ( , 2 ) ( , ) ( , );

u Au Au Au f

u u u Au Au f f f f

u u u f f f f f u u

  

      

      

    (9)
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0 0 0 0 0 0

0 0 0 0 0 0

0 0

( , 2 ) ( , 2 ) ( , ) ( , );

( , ) ( , 2 ) ( , 2 ) ( , );

( , ) 2(

u u u f f f f f u u

u u u u u f f f f f

u u u

       

      

  

   
0 0 0 0

0 0 0 0 0 0

0 0 0 0

2 2
0 0

2 2
0 0

, ) ( , ) ( , ) 2( , ) ( , );

( , ) 2( , ) ( , ) ( , ) 2( , ) ( , ) ;

( , ) ( , );

;

( , ) ( , ) .F U

u u u f f f f f f

u u u u u u f f f f f f

u u u u f f f f

u u f f

f f u u

    

      

      

    

  

To avoid complex values, we choose the stabilizer (7) with the opposite sign:

2 2 22
0 0 0 0( ) ( , ) .Uu u u u u Mu Au f u u           

The same result is obtained if we consider the metric space U imaginary:

22
0 0 0 0( ) ( , ) ( , ) ,U Uu u u u u u u i u u         

where i is an imaginary unit. Then 
2 2

0 0( , ) ( , ) .F Uf f u u  

For an iterative process, assuming at each iteration that f (l+1) = f0, we have

   

   

( 1) ( ) ( 1) ( ) ( ) ( )
0 0

2 2 2( ) ( 1) ( ) ( )
0

( ) ( )2 ( 1) 2
0

, , ;

; 0, 1, 2, ... ,

, , ,

l l l l l l

l l l l

l ll
F U

f f f f u u u u

f f f u u l

f f u u

 





     

      

  

i.e., the square of the increment norm of the right side of the equation Au = f(w) (in the metric space F) is equal to the 
square of the norm of the diff erence of the solution of this equation (in the metric space U) for an approximate value of u(l) 
known at the current iteration l = 0, 1, 2, ... , and the normal solution (found experimentally) multiplied by the regularization 
parameter  > 0. Then we have the equation

( 1) ( ) ( )( ) ( ) ( ); 0, 1, 2, ... .l l lf w f w f w l    

The regularization parameter has the meaning of a dimensional factor that matches the units of the left and right sides of this 
equation and speeds up or slows down the iterative process depending on the convergence of the solution, actually being in 
the interval  > 0.

If the metric spaces U and F are linear, then by virtue of the existence of their norm they are Banach. Since 
the norm is introduced on the basis of the scalar product, these Banach spaces are pre-Hilbert spaces and, if they have 
the completeness property, then they are also Hilbert spaces. Calculating the norm in the Hilbert space, we linearize the 
solution, subjecting its convergence to the regularities of the complete linear (Hilbert) space.

We write Eq. (9) in the Hilbert space L2 = U = F on the time interval 0    M in the spatial area G:

 

   

   

2 2
2 2

2 2( 1) ( ) ( )2 2 ( ) ( )
0 0

2 2( ) ( )
0

0 0

, , ; ;

( , ) ( , ) ( , ) , (0, ),
M M

l l l l l
L L L L

l l
M

G G

f f u u f u u

d f x dx d u x u x dx Q G



 

      

              
 

 (10)



1121

where x denotes, as usual, the required number of spatial coordinates. Relation (10) is an integral equation of the fi rst kind 
with an unknown integrand f on the left side. The right-hand side of the equation is known approximately, since the value 
of the function u on iteration l is found from the solution of the problem Au = f(w) using the approximately calculated 
function w.

The function of one independent variable, which is conveniently chosen to be the time , is unknown in integral 
equations. For simplicity, we restrict ourselves to the one-dimensional region G = (0, l), introduce a uniform grid

, 0, 1, 2, ... , , ,n
lx n x n N x
N

    

and write the diff erence analogues of the space integrals on the left- and right-hand sides of the indicated equations:

   

   

2 2( ) ( )
0

1 10 0

2 2( ) ( )
0

1 10 0

( , ) ( , ) ( , ) ,

( , ) ( , ) ( , ) .

M M

M M

N N
l l

n n n
n n

N N
l l

n n n
n n

f x d x u x u x d x

f x d u x u x d

 

 

 

 

        

        

  

  

Equating the terms with the same values of n on the left and right sides of these equations, we obtain a system of linear 
integral equations for each coordinate xn:

   2 2( ) ( )
0

0 0

( , ) ( , ) ( , ) .
M M

l l
n n nf x d u x u x d

 

         

The square of the increment of the desired function is determined by the relation

  2( )( ) ( , ) ( , ) ,l
n n nz z x f x     

 
 (11)

with account for which we obtain the equation

 2( )
0

0 0

( ) ( , ) ( , ) .
M M

l
n n nz d u x u x d

 

        

and an integral equation of the fi rst kind

 0

( , ) ( ) ( ) , [0, ] ,
M

n n n nBz K x z d y x x l


     
 

 (12)

with the kernel K(xn, ) = 1.
There may exist three main, not equivalent to each other, approaches to the discretization of the problem of fi nding 

approximate (regularized) solutions of Eq. (12) at Bz = y [2].
1. The initial equation (12) is discretized at Bz = y by replacing the integral by the integral sum using some 

quadrature formula. As a result, a degenerate or ill-conditioned system of linear algebraic equations is obtained, an 
approximate solution of which, stable to small changes in the right-hand side of the equations, must be found. This can be 
done by the regularization method. If we use the variational principle, then, taking the discrete analogue of the stabilizer 
 [z], it is possible to form a discrete analogue of the smoothing functional. Then a transition is made to the Euler equation that 
describes it, which is a regularized system of linear algebraic equations. The solutions of this system with the corresponding 
values of the regularization parameter  will be approximate solutions of Eq. (12) [2].

2. The smoothing functional is discretized, and the problem of minimization of the function of many variables with 
subsequent determination of the regularization parameter  is solved [2].
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3. Discretization of the boundary-value problem for the Euler equation (12) is carried out, and then the resulting 
system of linear algebraic equations is solved.

Let us consider in more detail the third approach. We will carry out discretization on a uniform time grid, assuming 
that the kernel K(x, ) in Eq. (12) is a real function continuous in the domain {0    M, 0  x  l} at Bz = y. Let us take 
a stabilizing functional of the form [2]

 2 2

0

[ ] ( ) ,
M

z qz p z d


   

where q, p > 0 are positive numbers.
Let the exact solution zex() belong to the correctness class F1 and satisfy one of the boundary conditions 

zex(0) = 0, zex(M) = 0, exz (0) = 0, and exz (M) = 0. Physically, the choice of such conditions is explained by the fact that 
both the initial and fi nal states of the nonstationary regime are quasistationary. Therefore, during a certain period of time at 
the beginning and end of the regime, while the values of the derivatives are set, the desired functions cannot be determined 
or will be singular. In the singularity region, the identifi able functions are assumed to be constant and equal to the fi rst (for 
the beginning of the interval) or the last (for the end of the interval) non-singular value. Then, as regularized solutions 
z() of Eq. (12) at Bz = y one can take functions that are solutions of the following boundary-value problem for the Euler 
equation [1]:

 

 

   

0 0

2 2( ) ( )
ä 0 0

0 0 0 0

( , ) ( ) ( ) ( ) ( ) , ( , ) ( , ) ( , ) ;

( ) ( , ) ( ) ( , ) ( , ) ( , ) ( , )

M

M M

x

x x
l l

n n n n

K t z t dt qz pz g K t K x K x t dx x

g K x y x dx dx u x u x d x u x u x d

 

   

            

              

 

   

  (13)

with boundary conditions z′(a) = 0 and z′(b) = 0.
Let us write the diff erence analogue of Eq. (13) on a uniform grid with a step h. Let us split the segment [0, M] into 

M equal parts and take as nodal points the ends of the resulting segments [2] i = ih, i = 1, 2, ... , M, and h = M/M. Replacing 
the integral on the left side of Eq. (13) with the integral sum corresponding to it, for example, according to the formula of 
rectangles, and z′′(s) with the corresponding diff erence relation, we obtain [2]

 
 

1 1
2

1

2( )
0 1

1

2 , 1, 2, ... , ,

( ) ( , ) ( , ) ( ) .

M
i i i

j i i
j

M
l

i n m n m m m
m

z z zx hz q z p g i M
h

g x u x u x

 






 
      

        




 

 (14)

The values of ( , )i jK t  and gi are either calculated analytically, or using the corresponding quadrature formulas. 
In this case, the numbers of the grid points along the coordinates x and  are not interrelated. At i = 1 and i = M, the system 
of linear algebraic equations (14) relative to the vector z = (z1, z2, ..., zM) includes the undefi ned values of z0 and zM+1. To 
satisfy the boundary conditions, we set that z0 = z1 and zM+1 = zM taking into account the remark on the singularity of values 
at the beginning and end of the interval.

Thus, the problem of fi nding approximate (regularized) solutions to Eq. (12) at Bz = y is reduced to solving a system 
of linear algebraic equations in the vector z = (z1, z2, …, zM) for each point xn (n = 1, 2, …, N). The considered problem 
can easily be generalized to the multidimensional domain G, as well as to a system of ordinary diff erential equations (in 
this case, each coordinate xn corresponds to a point of the system with lumped parameters.) Since the right-hand side f of 
the original equation formally includes the boundary and initial conditions, then the presented method is also applicable to 
determination of boundary (diagnostics) and initial  (retrospective problem) conditions.

Calculation of Functions on the Right Side of the Nonstationary Wave Equation. During identifi cation of the 
functions E(T ) = E(x) and (T ) = (x) or the function P = P (x, ) we have a nonstationary wave equation
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 
2

2
1, ( , ), , ( ) ( ) ( , ) .uAu f u u x A f E x x T P x

x x x
                      

Assuming that the functions E(x) and (x) depend weakly on the coordinate for a small calculated volume, in the absence 
of their time dependence, we will obtain the constant functions E and . However, since the right side of this equation is a 
function of time, we will assume that E = E() and  = ():

 
2

2
1 ( ) ( ) ( , ) .u dTf E P x

dxx

 
       
  

  (15)

The increment of the right side of this equation depends on the increments of the desired and wave functions:

 

 

 

1 1

2 2

3 3

( , ) ( , ), ( , ) ,

( , ) ( , ), ( , ) ,

( , ) ( , ), ( , ) ,

n n n

n n n

n n n

f x f E x u x

f x f x u x
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where, according to (11), f (l)(xn, ) = ( , )nz x  .
According to the theorem of optimal planning a thermophysical experiment [5, 6], for each of the desired functions 

such a regime is necessary that all modes taken together could be linearly independent and their Gram determinant be 
diff erent from zero. Diff erentiating Eq. (15) with respect to temperature and multiplying by the temperature diff erential, we 
obtain expressions for the increments of the desired functions:

2 2 2 2
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1 1 1, , ( , ) ,u u u dT uf E E f E f E P x

dxx x x x

           
                 
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where u = u(0) – u. Then
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  (16)

or
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Writing the temperature derivatives in fi nite diff erences, we obtain the relations
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  (17)

Then
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  (18)

For constant functions E = const and  = const calculations can be performed for one of the values n = 1, 2, …, N – 1.
In expressions (16) for the increment of the right side of the equations f, only one desired function varies each 

time. When calculating the increment (17) of this function, the rest of the desired functions are taken from the previous 
iteration and are conditionally considered known. Therefore, in the iterative selection of the quasi-solution according to the 
proposed algorithm to determine several functions, one mode may be suffi  cient: f1 = f2 = f3 = f.

Computational Experiment for the Wave Equation with Regularization. The results of identifi cation of the 
known functions E(T ) and (T ) for the temperature TM obtained as a result of cooling the sample with liquid nitrogen, 
according to the presented algorithm of the iterative-variational method are presented in Figs. 1–4. The wave equation is 
solved with the boundary conditions

 0 1 2 0 1 2
0

| ( ) 0 , ( ) 0 , | ( ) 0 , | ( ) 0 .x x l
uu x x u f u f  



              
  (19)

To calculate the increment f the parameters of the regularization of the iterative process  = 1010 and  = 1 are 
used, as well as the coeffi  cients in the general functions that control the shape of the profi le of the increment f at each 
iteration, q = 1010 and p = 1.

The regularization parameters tE and t in expressions (18) together with the values of the functional depending 
on the iteration number are presented in Table 1. Usually, these regularizing parameters are equal to unity at the 
beginning of the iteration process and decrease as the desidered solution is approached. When automating the iterative 
process by software, it is possible, for simplicity, not to optimize the values of these parameters, but to set their minimum 
values at once, which will only lead to an increase in the number of iterations and will practically not aff ect the results 
of calculations.

As a result of identifi cation, distributions of the desired functions in time are obtained. Since for the given 
temperature value the functions E(T ) and (T ) are constant, at each iteration the average value of the obtained distribution 
of the function is chosen. The computational experiment showed that to identify the functions E(T ) and (T ) by the iterative-
variational method, one mode is suffi  cient, which determines the increment of the right side of the wave equation  f at the 
current iteration. Then, using this increment, the increments E and  are calculated by formulas (1), (3), and (7) which 
use the distributions of the elasticity modulus and the function  from the previous iteration.
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Fig. 1. Distribution of the functional J depending on the number of iteration l during identifi ca-
tion of the functions E and .

Fig. 2. Solution of the wave equation with boundary-value conditions (19) for the mode 
with a constant pressure P(x, ) = 109 Pa/m of duration 10–2 s for the initial approximations 
E (0) = 104 Pa and (0) = 10–3 Pa/m (a) and at the target iteration l = 6 (b): 0) x = 0 m; 1) 0.4∙10–2; 
2) 0.8∙10–2; 3) 1.2∙10–2; 4) 1.6∙10–2; e) solution for known functions E () = 7.866∙104 Pa and 
() = 13∙10–3 Pa/m with dispersion 10–5 K; t) solutions obtained at the iteration l.

TABLE 1. Values of the Functional in the Iterative Process when Identifying the Modulus of Elasticity Modulus E and 
Function 

Iteration J tE tβ
0 0.021000 1.00 1.00
1 0.007907 1.00 1.00
2 0.001286 1.00 0.10
3 0.000225 0.50 0.10
4 0.000098 0.10 0.01
5 0.000021 0.10 0.01
6 0.000001 0.10 0.01
7 0.000039 0.10 0.01
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CONCLUSIONS

1. The regularization method [2] and the method of iterative regularization [3] have smoothing properties with 
respect to inverse problems with partial diff erential equations.

2. In the method of iterative regularization, the solution of the inverse problem of determining the functions of 
the right-hand side of equation Au = f (which includes the boundary and initial conditions) is carried out by the variational 
method of minimization of the quadratic functional ||u – u0||2. At every iteration l the boundary-value problem is solved 
for determining u(l) on the right side f (l), which is found by iterative-gradient methods. The norm in the expression of the 
functional is calculated in the Hilbert space U, which ensures the linearization of the solution.

3. In the regularization method, the quadratic functional has two terms. The fi rst term has the form ||Au – f0||2 and 
the second term is ||u – u0||2, where  > 0 is the regularization parameter formally required to match the units of the fi rst 
and second terms, but actually calculated from the condition ||Au – f0|| = . The second term is a stabilizer and can take 
diff erent forms. Minimization of the smoothing functional ensures simultaneous convergence in the spaces of the parameters 
U (u  U ) and F( f  F). Thus, the functional of the regularization method is constructed similarly to the functional of 
the Courant method, in which the functional of the least squares method (the fi rst term responsible for the convergence in 
the space F) is supplemented with a second term, which is responsible for convergence in the space U. In this case, in the 
regularization method the conditions for the correct formulation of the problem are eliminated (except for the existence of 
a solution), which are characteristic of direct variational methods — the linearity of the operator A, the uniqueness of the 
solution and its stability.

4. In the iterative-variational regularization method, the smoothing functional is written in the form 
|| f – f0||2 + ||u – u0||2 and is used to connect the increment of the solution of the boundary-value problem u(l) = u(l) – u0 
and the increment of the solution of the inverse problem  f (l). The norm is also computed in the Hilbert space, which 
provides linearization of the solution. For partial diff erential equations, it is convenient to choose L2 as such a space. Then 

Fig. 3. Time dependences of functions E(0) = 104 Pa (a) and (0) = 10–3 Pa/m (b): dashed 
lines, initial approximations; solid lines, set values.

Fig. 4. Time dependences of functions E() (a) and () (b): dashed lines, identifi ed 
values; solid lines, set values.
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the minimization of the smoothing functional leads to an integral equation of the fi rst kind with respect to f, whose solution 
is well studied and constructed in the regularization method. As a result, at each iteration l it is necessary to solve an integral 
equation.

5. According to the optimal planning theorem [4, 5], the number of linearly independent modes T(x, ) of 
a thermophysical experiment conducted to identify a mathematical model should be equal to the number of unknown 
parameters or functions, if they are determined by direct calculations using these modes.

6. For simultaneous identifi cation of several functions of the wave equation (modulus of elasticity, function ) by 
the iterative method of selecting a quasi-solution, one mode is suffi  cient, since for a specifi c desired function at the current 
iteration, the remaining unknown functions are taken from the previous iteration and are conditionally considered known. 
In particular, in this case the second function is always considered to be known at the current iteration.

7. For simultaneous identifi cation of the elasticity modulus and function  by one wave mode several iterations by 
the iterative-variational method are suffi  cient if the order of the initial approximation coincides with the order of the desired 
function. Since the temperature regime is quasi-stationary with respect to the process of propagation of elastic waves, the 
functions E = E(T) and  = (T) for a particular temperature value are constant. To obtain the temperature dependence of 
these functions, it is necessary to identify them several times for diff erent temperatures.

8. The number of regularization parameters in the iterative-variational method doubles: the parameter of the 
smoothing functional for the increments of solutions of the direct and inverse problems  is chosen from the condition of 
ensuring the required order of the identifi ed function, and the parameter of the smoothing functional for regularizing the 
solution of the integral equation  is usually equal to one. The functions p and q (in a particular case, constant), allowing 
one to adjust the profi le of the solution of the integral equation.
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