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HYDROGASDYNAMICS IN TECHNOLOGICAL PROCESSES

ON STRATIFIED FLOWS CAUSED BY SPATIAL INHOMOGENEITIES 
OF TRANSFER COEFFICIENTS

L. Kh. Ingel  UDC 532.5:536.25:551.511

The previously unstudied mechanism of the emergence of stratifi ed fl ows caused by spatial inhomogeneities of 
exchange coeffi  cients is investigated analytically. In the calculations, a linear approximation is used with specifi ed 
horizontally harmonic variations of the thermal conductivity coeffi  cient of a relatively small amplitude. Explicit 
analytical expressions are obtained for temperature perturbations of the environment and velocity of fl ows in it. The 
possibility of intensifying such perturbations for some values of the medium parameters is shown.
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Introduction. In a recent work [1], attention was drawn to the previously unstudied mechanism of the occurrence 
of convection in a stratifi ed liquid/gaseous medium in a gravity fi eld. In a stably stratifi ed medium, a downward diff usion 
of heat (buoyancy) obviously takes place. If the thermal conductivity coeffi  cient is spatially inhomogeneous (depends 
on horizontal coordinates), this leads to the appearance of horizontal inhomogeneities in the distributions of buoyancy 
and hydrostatic pressure (the weight of the medium column) and, consequently, to the occurrence of horizontal fl ows. 
Spatial inhomogeneities of eff ective transfer coeffi  cients are especially typical of turbulent exchange, which is refl ected, for 
example, in [1–3]. Therefore, such density fl ows should exist, for example, in the atmosphere [1].

As an example of possible applications, we can cite one of the familiar methods for combating frost in the ground 
layer of the atmosphere [4, 5]. The ground layer of air is artifi cially turbulized above the protected area of soil with the help 
of special fans. It is assumed that this makes it possible to mix the cooled air layer near the soil surface with a warmer layer, 
which under certain conditions can be located higher. But with such an artifi cial intensifi cation of vertical heat transfer in a 
limited horizontal area, heat exchange with a cold surface is enhanced and ordered fl ows arise that infl uence heat transfer. 
Thus, there are meaningful problems at hand, which have been little studied so far.

The corresponding mathematical problems with variable transfer coeffi  cients are, generally speaking, quite 
complex. Work [1] considers only the simplest case of fl ows over an infi nite inclined surface. In the present work, a more 
general case is considered that allows an analytical study and, consequently, the identifi cation of fairly general trends. If 
the amplitude of spatial variations of the thermal conductivity coeffi  cient of a medium is relatively small, the amplitudes of 
the fl ows arising in it are also small, which gives grounds to consider the problem linearized in perturbations, which is the 
subject of this work. 

Formulation of the Problem. The paper considers a semibounded stably temperature-stratifi ed (in the atmosphere, 
in terms of potential temperature [3]) medium bounded from below by a horizontal surface. For simplicity, the consideration 
is limited to a two-dimensional problem with exchange coeffi  cients dependent on the horizontal coordinate x and vertical 
coordinate z (the z axis is directed upwards). The thermal diff usivity coeffi  cient is assigned as K = K0 + K1(x, z), where 
K0 = const, with the second term being much smaller than the fi rst in absolute value. If one neglects the second term, there 
is a static solution with a constant vertical temperature gradient (with a potential temperature): γ > 0 (stable background 
stratifi cation). The presence of the second term leads to the appearance of horizontal thermal inhomogeneities and to 
perturbations of this background state. The relative smallness of |K1(x, z)| gives grounds to consider linear perturbations.
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For simplicity, let us assume that the exchange coeffi  cients coincide for all substances: Pr = 1. This hypothesis is 
widely used in describing turbulent exchange. Generalization to the case Pr ≠ 1 presents no fundamental diffi  culty. The 
corresponding linearized system of equations for the two-dimensional stationary problem of hydrothermodynamics in the 
Boussinesq approximation has the form
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On the lower horizontal boundary (on the surface z = 0) the impermeability and no-slip conditions are assumed, as 
well as the constancy of temperature (absence of temperature disturbances):

 0 , 0 .u w       (3)

It is assumed that the variants of the exchange coeffi  cient are nonzero in the region of the fi nite thickness near the lower 
boundary. Accordingly, at z → ∞ damping of perturbations is assumed.

From the heat transfer equation [the last equation (2)] it can be seen that the variability of the thermal diff usivity 
coeffi  cient leads to the appearance of an eff ective horizontally inhomogeneous heat source/sink γ(∂K1(x, z)/∂z) in the 
problem.

Solution of the Problem. Excluding all unknowns, except for one, from the system of equations (1), (2), we obtain
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where N = (gγ)1/2. It is convenient to analyze the model with a harmonic dependence of the exchange coeffi  cients on the 
horizontal coordinate:

 1( , ) ( ) cos .K x z z kx     (5)

In this case, the solution is also sought in the form of a horizontal harmonic:
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As a result, the following equation is obtained:
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Here, the dimensionless variables Z = kz are introduced, as well as the dimensionless parameter R, which is some analogue 
of the Rayleigh number [3, 6].

The solution of the last equation is sought in the standard way as the sum of the general solution of the homogeneous 
equation and of the particular solution of the inhomogeneous equation. The general solution can be represented as a linear 
combination of exponents of the type exp (σjkz), where σj are the roots of the characteristic equation

 
2 3( 1) 0 .R       (7)

With regard to the damping of perturbations at z → ∞, of the six roots σj three with negative real parts are selected (it is 
assumed here that these roots are diff erent):
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where Cj are integration constants.
It will be assumed that variations of the exchange coeffi  cient decreases with height according to the exponential 

law:

 0 exp ( / ) ,z h      (9)

where κ0 > 0. In this case, it is easy to fi nd a particular solution of the inhomogeneous equation (6):
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Subject to Eq. (1) and the continuity equation, the solution of the problem can be presented as
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Using boundary-value conditions (3), a system of equations is obtained for determining the integration constants Cj:
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As can be seen from Eq. (7), the quantity 2 1j    can take the values R1/3 and R1/3 exp (±2πi/3). Expressions for 
the roots σj in the general case are somewhat cumbersome. It makes sense to dwell on the limiting case of large values of the 
parameter R. For example, if in the surface layer of the atmosphere N = 10–2 s and K0 = 3 m2/s (quite characteristic values), 
then at k = 10–2 m–1 (half-wave length about 300 m) R = 103. In the indicated limit |σj| >> 1, and the roots with negative 
real parts are equal to

 

1/6 1/6 1/6
1 2

1/6 1/6
3

1 3, exp ( 2 /3) ,
2 2

1 3 exp (2 /3) .
2 2

R R i R i

R i R i

 
           

 

 
       

 

   (13)

The approximate solution of the system of equations (12) has the form
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where 2 20
1 4 (1 )WW

b
     and W2 = W0/b are the scales of the velocity and b = δR1/6.

It is also convenient to use the height scale H = 1/kR1/6. Subject to (14), the solution of the problem has the form
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Solution Analysis. For defi niteness, let us dwell on the solution near the vertical x = 0. In this region, K1 > 0 
(exchange is intensifi ed), and the eff ective "heat source" γ(∂K1(x, z)/∂z) in the last equation (2) is negative. This is explained 
as follows. Since in the background state the medium is cooled form below, the intensifi cation of exchange in this region 
leads to additional cooling of the medium. Consequently, in this region negative temperature deviations, downward motions, 
and horizontal spreading of the medium can be observed, which is demonstrated by graphs in Fig. 1 plotted according to 
the solution obtained.

Conclusions. An example of an analytical solution of a previously unstudied type of stratifi ed fl ows is given. It 
has been established that horizontal inhomogeneities of transfer coeffi  cients lead to inhomogeneities in the distributions 
of buoyancy and pressure and, consequently, to the appearance of fl ows. In the given specifi c numerical example, the 
perturbation amplitude is very small: the order of the vertical velocity amplitude is 10–3 m/s, while in the atmosphere, 
several times greater vertical velocities are considered to be noticeable, which are determined depending on the horizontal 
scale of movements. However, it should be kept in mind that the linear approximation used in the present calculations 

Fig. 1. Profi les of the velocity components u (1) and w (2) on the verticals kx = π/2 and 
x = 0, respectively, and of temperature deviation θ on the vertical x = 0 (normalized to 
K0k2R2/3/2g) (3) at N = 10–2 s, K0 = 3 m2/s, κ0 = 0.3 m2/s, h = 50 m, and k = 2∙10–3 m–1.
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does not allow us to correctly consider the eff ects of a larger amplitude. Therefore, rather weak variations of the transfer 
coeffi  cients are taken as the source of perturbations. In the surface layer of the atmosphere, these variations may well be 
much larger, which corresponds to a much stronger response. Moreover, even with the considered small variations of 
the exchange coeffi  cients, the perturbations, in principle, can be much more intense. The fact is that the denominator in 
expression (10) can vanish at a certain ratio of parameters, which corresponds to a strong intensifi cation of perturbations. 
This happens when δ = (1 + R1/3)–1/2. Calculations have shown that such a ratio of parameters can actually be achieved even 
on a relatively small change in the accepted value of the parameter h (the thickness of the layer in which transfer coeffi  cients 
vary), and the amplitude of perturbations can increase many times over.

NOTATION

g, free fall acceleration, m/s2; h, vertical scale of exchange coeffi  cient variations, m; i, imaginary unit; K, exchange 
coeffi  cient, m2/s; k, wave number, m–1; N, buoyancy frequency (Brunt–Väisälä frequency), s–1; p, pressure disturbance, Pa; 
P, amplitude of pressure perturbation normalized to the average density of the medium, m2/s2; Pr, Prandtl number; u and w, 
velocity components in the direction of the axes x and z, m/s; U and W, amplitudes of horizontal and vertical velocities, m/s; 
W0, vertical speed scale, m/s; x, z, horizontal and vertical coordinates, m; α, thermal coeffi  cient of expansion of the medium, 
K–1; γ, background vertical temperature gradient (of potential temperature), K/m; Δ2, symbol of the two-dimensional Lapla-
cian, m–2; θ, temperature perturbation, K; Θ, temperature perturbation amplitude, K; κ, amplitude of exchange coeffi  cient 
variations, m2/s; κ0, value of κ at the lower boundary, m2/s;  , average (reference) density of the medium, kg/m3.
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