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MISCELLANEA

THE EFFECT OF DIFFUSION AND MICROCONCENTRATION 
ON PLANE WAVES IN A GENERALIZED THERMOELASTIC MATERIAL

H. Singlaa and B. Singhb UDC 536.21

The governing equations for a linear, isotropic, homogeneous, thermoelastic material with diff usion and 
microconcentration in a plane have been stated in accordance with the Lord and Shulman theory of generalized 
thermoelasticity. The plane harmonic solutions of these equations have been obtained. It has been shown that there 
exist four dispersive coupled longitudinal waves and two uncoupled transverse waves. A half-space with thermally 
insulated surface has been taken for exploring the refl ection of these plane waves. For an incident plane wave, the 
coeffi  cients of refl ection and energy shares of the refl ected waves have been presented graphically. The numerical 
results have made possible to observe the eff ects of the diff usion and microconcentration parameters on the speeds, 
refl ection coeffi  cients, and the energy ratios.

Keywords: generalized thermoelasticity, diff usion, microconcentration, plane waves, refl ection coeffi  cients, energy 
ratios.

Introduction. Due to wide applications of thermoelastic problems in daily life, various thermoelastic 
theories with additional parameters have been developed. Starting from the Biot coupled thermoelastic theory [1],
the thermoelastic governing equations have been extended by many researchers. Lord and Shulman [2] have formulated the 
generalized thermoelasticity theory with one relaxation time to eliminate the shortcoming of the classical thermoelasticity. 
Green and Lindsay [3] have developed the theory of generalized thermoelasticity with two relaxation times. Green and 
Naghdi [4] have proposed another generalized thermoelasticity theory with energy dissipation. The problem of the plane 
wave propagation in a thermoelastic solid has been studied by Puri [5]. A. N. Sinha and S. B. Sinha [6] have studied the 
refl ection of plane waves at a solid half-space with a thermal relaxation time. Agarwal [7] investigated time-dependent 
thermoelastic plane waves in the context of the Green and Lindsay theory. Various other wave propagation and refl ection 
problems in the context of these theories have been studied in [8–13].

The phenomenon of themrodiff usion has many applications in integrated resistors, semiconductors, computer 
circuit fabrication, electronics, and geophysical sciences. Nowacki [14–16] has presented the classical thermoelastic 
diff usion theory, formulating the relationship between deformation and heat and mass diff usion. Sherief et al. [17] have 
derived the theory of a generalized thermoelastic diff usive medium with one relaxation time which allows a fi nite speed of 
waves. Aouadi [18] used equations of generalized thermoelastic diff usion in anisotropic media and derived the uniqueness 
and reciprocity theorem. Ezzat and Fayik [19] used the methodology of fractional calculus and proposed a new theory of 
thermodiff usion. Aouadi [20] has discussed the classical and generalized thermoelastic theories with the eff ect of diff usion. 
El-Karamany and Ezzat [21] have derived a new theory of thermodiff usion, using a kernel function. Singh [22] has studied 
the refl ection of plane waves in a thermoelastic diff usive material. Sharma [23] has investigated the propagation of plane 
diff usive waves in a heat conducting solid. Various other wave propagation problems in thermoelastic solids with diff usive 
and other parameters have been considered by many researchers, including Singh [24], Bijarnia and Singh [25], Kumar and 
Gupta [26], and Singh and Singla [27].

The study of continuum theories with microstructure and various other physical fi elds is crucial in several actual 
applications, namely, in aviation, nanomaterials, biology, and chemical industry. Grot [28] has studied thermodynamics of 
a continuum with microstructure, adding the fi rst-order moment of the energy equation to the balance laws of a continuum 
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with microtemperature. Riha [29] has also developed a theory of thermoelastic material with microtemperature. Eringen 
[30] has introduced the concept of microdeformation in his theory of micromorphic continua. Various thermoelastic theories 
[31–37] with microstructure, microtemperature, and microconcentration have been developed, where microelements were 
assumed to have diff erent temperatures or mass concentrations.

Aouadi et al. [38] have derived a consistent theory of a thermoelastic diff usive material with microtemperature and 
microconcentration. Bazarra et al. [39] have revisited the Aouadi theory and numerically analyzed the dynamic thermoelastic 
problem with microtemperatures and microconcentrations. Deswal et al. [40] and Gunghas et al. [41] have studied the 
refl ection of plane waves in a thermodiff usive material with microtemperature or microconcentration in the context of 
the coupled theory of thermoelasticity. Motivated by the works of Aouadi et al. [38] and Bazarra et al. [39], we consider 
the plane wave propagation in a generalized thermoelastic material with diff usion and microconcentration. In the present 
paper, the governing equations of a thermoelastic medium with diff usion and microconcentration are reduced with the help 
of the Lord–Shulman theory of generalized thermoelasticity; the plane harmonic solutions of these equations are obtained 
and discussed for some special cases; the problem on the refl ection of plane waves at a thermally insulated surface of a 
half-space is solved in terms of the refl ection coeffi  cients and energy ratios; a quantitative example is taken for numerical 
simulations. The eff ects of the diff usion and microconcentration parameters on the wave characteristics are analyzed, and 
the conclusions are summarized. 

Two-Dimensional Formulation. According to [2, 38], the fi eld equations for an isotropic and homogeneous 
thermoelastic diff usive material with microconcentration in the absence of the body forces and heat sources are the following:
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We consider a thermoelastic half-space with diff usion and microconcentration in rectangular Cartesian coordinate system 
(x1, x2, x3) with the surface bounding the half-space as the plane x3 = 0 (see Fig. 1). The present analysis is restricted to 
x1x3 plane. We take the displacement and microconcentration vectors as u = (u1, 0, u3) and C = (C1, 0, C3), respectively. 
Using the Helmholtz decomposition theorem on vectors, the components of these vectors are written in terms of the scalar 
potential components 1, 3, 1, and 3 as 
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Substituting Eqs. (5) and (6) into Eqs. (1)–(4), we obtain
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Equations (11) and (12) are uncoupled, whereas Eqs. (7)–(10) are coupled in 1, T, P, and 1.

Plane Harmonic Solutions. We consider the following plane wave solutions:

 1 3 1 3 1 3 1 3 1 3{ , , , , , } { , , , , , } exp { ( sin cos )} ,T P T P ik x x vt              (13)

where 1 3 1, , , ,  ,T P    and 3  are arbitrary constants,  k is the wave number, v is the complex wave speed, and sin  
and cos  relate to the normal wave projections on the x1x3 plane. Inserting Eq. (13) into Eqs. (7)–(12), we get
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Fig. 1. Geometry of the incident and refl ected waves.
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Equations (14)–(17) admit a nontrivial solution if 
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attenuation coeffi  cient of the coupled longitudinal waves P1, P2, P3, and P4 are written as 
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It follows from the numerical results that V1 > V2 > V3 > V4. The solutions of Eqs. (18) and (19) show that two transverse 
waves S1 and S2 propagate with the velocities 5 /V     and 6 2 4/ ,V H H  respectively.

Case of limited frequencies. We discuss the behav ior of the speeds of diff erent waves when frequency approaches 
zero. The eff ect of a limited frequency is signifi cant only for coupled waves. As 0   (i.e., at very low frequency), 
Eq. (20) reduces to 
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which shows that three roots of Eq. (20) reduce to zero and hence the corresponding waves will not exist. Therefore, in the 
absence of the thermal and diff usion parameters, the speed in Eq. (22) reduces to the classical longitudinal wave speed. 
Hence, when frequency approaches zero, there exist only two waves, one of which is the classical longitudinal and the 
second is the classical shear wave.

Absence of microconcentration. In the absence of microconcentration, Eq. (20) reduces to the following cubic 
equation in 2:v

 

2 3 2 2 2 2
2 3 1 3 2 1 2 1 1 1 2 3 1 1 3 2 2 1

2 2 2 2
1 3 1 2 3 2 1 2 2 3 1 1 1 3 2

( 1)( ) ( )( )

( ) 0 .

d K v c d K d K c d K d K d K v

c d c K d K d K d K v c d K

            

         
 (23)



838

Therefore, the slowest wave P4 with the speed V4 will disappear. This fact has been verifi ed by the numerical results. 
Absence of microconcentration and diff usion. In the absence of microconcentration and diff usion, Eq. (20) reduces 

to the following quadratic equation in 2:v
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Therefore, two slower coupled longitudinal waves, i.e., P3 and P4, will not exist. This fact has been checked by the numerical 
results. 

Refl ection Coeffi  cients and Energy Ratios. The relevant boun dary conditions at the free surface x3 = 0 are taken 
as the following vanishing quantities: normal and shear components of the stress force, normal components of the heat fl ux 
and diff using mass vectors, and normal and shear components of the fl ux moment tensor of mass diff usion, i.e.,
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The appropriate potentials for the incident and refl ected waves in a half-space are
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 3 1 6 1 6 3 6 6 exp { ( sin cos )} .D ik x x V t       (31)

The expressions for the coupling coeffi  cients 2 2 2/ ,  / , / ( 1, , 4)p p p p p pk k k p      are given in Appendix. The 
amplitude ratios, namely, Ai/A0   (i = 1, … , 4), B1/A0, and D1/A0 are the refl ection coeffi  cients for the refl ected Pi, S1, and 
S2 waves, respectively. The potentials in Eqs. (26)–(31) satisfy boundary conditions (25) if the following Snell law holds: 
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According to [42], the rate of energy transmission per unit surface area is given as 
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Substituting Eqs. (5) and (6) into Eq. (34) and then using Eqs. (26)–(31), we obtain the following expression for the energy 
ratios of various refl ected waves: 
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Numerical Results and Discussion. According to [24], a quantitative example for a medium was con sidered to 
compute the phase speeds, refl ection coeffi  cients, and the energy ratios. The microconcentration coeffi  cients following from 
[38] have been taken as
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Figure 2 shows the variations of the phase speeds of the coupled longitudinal waves P1, P2, P3, and P4 against the 
frequency (0.01 Hz ≤  ≤ 50 Hz). The speed V1 of the P1 wave is 1.9883∙105 m∙s–1 at 0.01 Hz. It decreases very slowly 
with increase in to 1.9875∙105 m∙s–1 at  = 50 Hz. The speeds V2, V3, and V4 of other coupled longitudinal waves increase 
quadratically with frequency. It is seen that the speeds V1 and V2 become lower in the absence of microconcentration and the 
speed V3 increases for all frequencies. The eff ects of microconcentration on V2 and V3 increase with frequency. The wave 
P4 with the speed V4 does not appear in the absence of microconcentration. The eff ect of microconcentration on the speed 
V1 remains almost the same at all frequencies in the range considered.

Figure 3 shows the variations in the phase speeds of the coupled longitudinal waves P1, P2, P3, and P4 against the 
measure constant of thermodiff usion a for three diff erent frequencies. The speeds V1 and V4 decrease with increase in a, 
whereas V2 increases with a. However, the speed V3 changes with a only slightly. It is seen that increasing the frequency 
enhances the eff ect of the constant a on all speeds.

The speeds of the coupled longitudinal waves P1, P2, P3, and P4 are plotted against 1 (thermal relaxation time), 
2 (diff usion relaxation time), and 3 (microconcentration relaxation time) in Figs. 4, 5, and 6, respectively. Figure 4 shows 
that the speeds of almost all coupled longitudinal waves depend on the thermal relaxation time. It is seen from Fig. 5 
that the speeds of almost all coupled longitudinal waves depend on the diff usion relaxation time too. The speeds V2, V3, 
and V4 decrease with increase in 2, whereas V1 increases with 2. Figure 6 shows that the speed V3 depends on the 
microconcentration relaxation time 3 more signifi cantly as compared to the speeds of other waves.
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The refl ection coeffi  cients of all refl ected waves for the incident wave P1 against the angle of incidence are shown 
in Fig. 7. In the general case with diff usion and microconcentration, the refl ection coeffi  cient Z1 at 0 = 0o is unity and then it 
decreases monotonically to a minimum value of 0.7651 at  = 60o. Further it increasesmonotonically to unity at = 90o. The 
variations in the refl ection coeffi  cients Z2, Z3, and Z4  are similar. They decrease from their maxima at = 0o to minima at 

Fig. 2. Phase speeds V1 (a), V2 (b), V3 (c), and V4 (d) of the plane waves P1, P2, P3, and P4, 
respectively, against the frequency: with microconcentration and diff usion (1); without 
microconcentration (2); without microconcentration and diff usion (3).

Fig. 3. Phase speeds V1 (a), V2 (b), V3 (c), and V4 (d) of the plane waves P1, P2, P3, and P4 
against the measure of thermodiff usion at diff erent frequencies:  = 10 (1); 5 (2); 0.5 (3).
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= 90o. The refl ection coeffi  cient Z5 at = 0o is zero, and it increases monotonically to a maximum value of 0.1618 at 
= 42o. Then it decreases monotonically to zero at = 90o. The refl ection coeffi  cient Z6 at = 0o is 0.0119, and it decreases 
fi rst very sharply and then slowly to zero at  = 90o. Comparison of diff erent curves in Fig. 7 shows the eff ects of diff usion 
and microconcentration on the refl ection coeffi  cients. It is seen that the refl ection coeffi  cients Z4 and Z6 take place only due 

Fig. 4. Phase speeds V1 (a), V2 (b), V3 (c), and V4 (d) of the plane waves P1, P2, P3, and 
P4 against the thermal relaxation time 1 at diff erent frequencies: ω = 10 (1); 5 (2); 0.5 (3).

Fig. 5. Phase speeds V1 (a), V2 (b), V3 (c), and V4 (d) of the plane waves P1, P2, P3, 
and P4 against the diff usion relaxation time 2 at diff erent measures of thermodiff usion: 
a = 0.2 (1); 0.4 (2); 0.6 (3).
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to the presence of microconcentration. The maximum eff ect of microconcentration on the refl ection coeffi  cients Z1 and Z5 is 
observed at the angles near 60o and 42o, respectively, and for the coeffi  cients Z2 and Z3, at normal incidence.

To verify the refl ection coeffi  cients, the energy ratios |Ei| (i = 1, 2, ... , 6) of the refl ected waves P1, P2, P3, P4, 
S1, and S2 against the angle of incidence are given in Fig. 8. The sum of the energy ratios of all refl ected waves is seen to 

Fig. 6. Phase speeds V1 (a), V2 (b), V3 (c), and V4 (d) of the plane waves P1, P2, P3, and P4 
against the microconcentration relaxation time 2 at diff erent measures of thermodiff usion: 
a = 0.2 (1); 0.4 (2); 0.6 (3).

Fig. 7. Refl ection coeffi  cients of the refl ected waves P1 (a), P2 (b), P3 (c), P4 (d),
S1 (e) and S2 (f ) against the angle of incidence: with microconcentration and diff usion (1); 
without microconcentration (2); without microconcentration and diff usion (3).
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be less than or equal to unity at each angle of incidence. Comparison of the curves in this fi gure shows that the eff ects of 
microconcentration and diff usion on the energy ratios are similar to those for the refl ection coeffi  cients. 

Conclusions. Plane harmonic solutions of the two-dimensional governing equations for a linear, isotropic, and 
homogeneous generalized thermoelastic medium with diff usion and microconcentration suggest the possibility of four 
dispersive coupled longitudinal waves and two transverse waves. The expressions for the refl ection coeffi  cients and energy 
ratios have been derived at a thermally insulated surface of a half-space of the medium. The speeds of the plane waves, 
refl ection coeffi  cients, and the energy ratios of the refl ected waves have been computed for a quantitative example of 
the medium. The graphical illustration of the numerical results shows that the speeds, refl ection coeffi  cients, and the 
energy ratios depend on the microconcentration and diff usion eff ects, thermal relaxation time, diff usion relaxation time, 
microconcentration relaxation time, and the frequency. The following conclusions can be made from these numerical results:

1. The variations in the speeds of various coupled longitudinal waves with frequency in the absence of 
microconcentration are diff erent: the speeds V1 and V2 become lower V3 rises. The eff ect of microconcentration on V2 and 
V3 increases with frequency.

2. The waves with the speeds V4 and V6 do not appear in the absence of microconcentration.
3. The waves with the speeds V3, V4, and V6 do not exist in the absence of both microconcentration and diff usion. 

If the thermal eff ect is neglected, the wave with the speed V2 also disappears.
4. An increase in the diff usion relaxation time 2 decreases the speeds V2, V3, and V4 and increases V1.
5. The eff ect of the microconcentration relaxation time 3 on the speed V3 is more signifi cant as compared to those 

for the speeds of other coupled longitudinal waves.
6. The eff ect of microconcentration on the refl ection coeffi  cients and energy ratios depends on the angle of incidence. 

It becomes maximum or minimum at diff erent angles for each refl ected wave.
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NOTATION

a, measure of the thermodiff usion eff ect, m2∙s–2∙K–1; b, measure of the diff usive eff ect, m5∙s–2∙kg–1; cE, specifi c 
heat at constant strain, J∙kg–1∙K–1; C1, C3, components of the microconcentration vector; E, energy ratio; g1, g2, constitutive 

Fig. 8. Energy ratios of the refl ected waves P1 (a), P2 (b), P3 (c), P4 (d), S1 (e) and S2 (f) against 
the angle of incidence: with microconcentration and diff usion (1); without microconcentration 
(2); without microconcentration and diff usion (3).
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coeffi  cients of microconcentration, kg∙m–1∙s–1; g3, constitutive coeffi  cient of microconcentration, kg∙s∙m–3; g4, g5, g6, 
constitutive coeffi  cients of microconcentration, kg∙m∙s–1; m, constitutive coeffi  cient of microconcentration, kg∙m–1; 
m1, measure of microdiff usion conduction, kg∙m–1; T0, temperature of the medium in natural state, K; u1, u3, components 
of the displacement vector, m; V, phase speed, m/s; Z, refl ection coeffi  cient; c, coeffi  cient of linear diff usion expansion, 
m3∙kg–1; t, coeffi  cient of linear thermal expansion, K–1; 0, angle of incidence, deg; , , Lamé constants, N∙m–2; 
, density of the material, kg∙m–3. 
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APPENDIX

The expressions for Bi (i = 0, … , 4) in Eq. (20) take the form:
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The expressions for the coupling coeffi  cients 2 2 2/ , / , /p p p p p pk k k    (p = 1, ..., 4) obtained by substituting 
Eqs. (26)–(29) into Eqs. (7)–(9) take the form:
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