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MISCELLANEA

THE EFFECT OF DIFFUSION AND MICROCONCENTRATION
ON PLANE WAVES IN A GENERALIZED THERMOELASTIC MATERIAL

H. Singla® and B. Singh” UDC 536.21

The governing equations for a linear, isotropic, homogeneous, thermoelastic material with diffusion and
microconcentration in a plane have been stated in accordance with the Lord and Shulman theory of generalized
thermoelasticity. The plane harmonic solutions of these equations have been obtained. It has been shown that there
exist four dispersive coupled longitudinal waves and two uncoupled transverse waves. A half-space with thermally
insulated surface has been taken for exploring the reflection of these plane waves. For an incident plane wave, the
coefficients of reflection and energy shares of the reflected waves have been presented graphically. The numerical
results have made possible to observe the effects of the diffusion and microconcentration parameters on the speeds,
reflection coefficients, and the energy ratios.

Keywords: generalized thermoelasticity, diffusion, microconcentration, plane waves, reflection coefficients, energy
ratios.

Introduction. Due to wide applications of thermoelastic problems in daily life, various thermoelastic
theories with additional parameters have been developed. Starting from the Biot coupled thermoelastic theory [1],
the thermoelastic governing equations have been extended by many researchers. Lord and Shulman [2] have formulated the
generalized thermoelasticity theory with one relaxation time to eliminate the shortcoming of the classical thermoelasticity.
Green and Lindsay [3] have developed the theory of generalized thermoelasticity with two relaxation times. Green and
Naghdi [4] have proposed another generalized thermoelasticity theory with energy dissipation. The problem of the plane
wave propagation in a thermoelastic solid has been studied by Puri [5]. A. N. Sinha and S. B. Sinha [6] have studied the
reflection of plane waves at a solid half-space with a thermal relaxation time. Agarwal [7] investigated time-dependent
thermoelastic plane waves in the context of the Green and Lindsay theory. Various other wave propagation and reflection
problems in the context of these theories have been studied in [8—13].

The phenomenon of themrodiffusion has many applications in integrated resistors, semiconductors, computer
circuit fabrication, electronics, and geophysical sciences. Nowacki [14—-16] has presented the classical thermoelastic
diffusion theory, formulating the relationship between deformation and heat and mass diffusion. Sherief et al. [17] have
derived the theory of a generalized thermoelastic diffusive medium with one relaxation time which allows a finite speed of
waves. Aouadi [18] used equations of generalized thermoelastic diffusion in anisotropic media and derived the uniqueness
and reciprocity theorem. Ezzat and Fayik [19] used the methodology of fractional calculus and proposed a new theory of
thermodiffusion. Aouadi [20] has discussed the classical and generalized thermoelastic theories with the effect of diffusion.
El-Karamany and Ezzat [21] have derived a new theory of thermodiffusion, using a kernel function. Singh [22] has studied
the reflection of plane waves in a thermoelastic diffusive material. Sharma [23] has investigated the propagation of plane
diffusive waves in a heat conducting solid. Various other wave propagation problems in thermoelastic solids with diffusive
and other parameters have been considered by many researchers, including Singh [24], Bijarnia and Singh [25], Kumar and
Gupta [26], and Singh and Singla [27].

The study of continuum theories with microstructure and various other physical fields is crucial in several actual
applications, namely, in aviation, nanomaterials, biology, and chemical industry. Grot [28] has studied thermodynamics of
a continuum with microstructure, adding the first-order moment of the energy equation to the balance laws of a continuum
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with microtemperature. Riha [29] has also developed a theory of thermoelastic material with microtemperature. Eringen
[30] has introduced the concept of microdeformation in his theory of micromorphic continua. Various thermoelastic theories
[31-37] with microstructure, microtemperature, and microconcentration have been developed, where microelements were
assumed to have different temperatures or mass concentrations.

Aouadi et al. [38] have derived a consistent theory of a thermoelastic diffusive material with microtemperature and
microconcentration. Bazarra et al. [39] have revisited the Aouadi theory and numerically analyzed the dynamic thermoelastic
problem with microtemperatures and microconcentrations. Deswal et al. [40] and Gunghas et al. [41] have studied the
reflection of plane waves in a thermodiffusive material with microtemperature or microconcentration in the context of
the coupled theory of thermoelasticity. Motivated by the works of Aouadi et al. [38] and Bazarra et al. [39], we consider
the plane wave propagation in a generalized thermoelastic material with diffusion and microconcentration. In the present
paper, the governing equations of a thermoelastic medium with diffusion and microconcentration are reduced with the help
of the Lord—Shulman theory of generalized thermoelasticity; the plane harmonic solutions of these equations are obtained
and discussed for some special cases; the problem on the reflection of plane waves at a thermally insulated surface of a
half-space is solved in terms of the reflection coefficients and energy ratios; a quantitative example is taken for numerical
simulations. The effects of the diffusion and microconcentration parameters on the wave characteristics are analyzed, and
the conclusions are summarized.

Two-Dimensional Formulation. According to [2, 38], the field equations for an isotropic and homogeneous
thermoelastic diffusive material with microconcentration in the absence of the body forces and heat sources are the following:
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We consider a thermoelastic half-space with diffusion and microconcentration in rectangular Cartesian coordinate system
(x1, xp, x3) with the surface bounding the half-space as the plane x3 = 0 (see Fig. 1). The present analysis is restricted to
x1x3 plane. We take the displacement and microconcentration vectors as u = (g, 0, u3) and C = (Cy, 0, C3), respectively.
Using the Helmholtz decomposition theorem on vectors, the components of these vectors are written in terms of the scalar
potential components ¢, ¢3, Vi, and y3 as
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Fig. 1. Geometry of the incident and reflected waves.

Substituting Egs. (5) and (6) into Egs. (1)—(4), we obtain
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where V? = 6_2 + 8_2 Equations (11) and (12) are uncoupled, whereas Eqgs. (7)—(10) are coupled in ¢, 7, P, and ;.

X1 X3

Plane Harmonic Solutions. We consider the following plane wave solutions:

{(I)la (I)S, T: Pa Vi, W3} = {51: 63) T: 1_)7 \lea \TI3} eXp {lk(xl sin O + X3 COS 0 - Vt)} 5 (13)

where ¢, ¢3, T, P, ;, and V3 are arbitrary constants, k is the wave number, v is the complex wave speed, and sin 0
and cos 0 relate to the normal wave projections on the x;x3 plane. Inserting Eq. (13) into Eqgs. (7)—(12), we get

(cf —vE*0 + T + TP =0, (14)
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Kik*v2 + (Ky —vHT — K3v*P =0, (15)

dik*v2 o — dv*T + (dy — v?)P + dayy = 0, (16)
H\*P +[(Hy + H3) = Hp*g; = 0, (17)
(3 =v)h3 = 0, (18)
(Hy - Hp*)y3 = 0, (19)
where
Ao +2u i o= _ Y p Y K g g
=20 =4, 3=2 3=, 4 =22, d,= —, dy=-2-, dy= 1*,
p p Y p m mty mty mT,
K K ] 2 2
K= K= . K3 =—, H1=g(T2—&j, Hy = gerso” , Hj = (g4 + g5)T30° ,
Ce CeTOTI Ce wg
H4——g1£T2+1g—2)+m1, TI—TI+L’ T§=T2+L, T§=T3—L
wg ) ® ®

Equations (14)—(17) admit a nontrivial solution if
Bo(vH)* + B(v*)? + B,(v?)* + Bp? + B, =0, (20)

where B; (i =0, 1, ... , 4) are given in Appendix. We present vj_'1 as v}l = Vj_l + im_le, where the phase velocity and

attenuation coefficient of the coupled longitudinal waves Py, P,, P3, and P, are written as

1

V.:—l
Re (v;7)

j L Qj=om (5, =14 @h

It follows from the numerical results that V'; > V, > V3 > V4. The solutions of Egs. (18) and (19) show that two transverse
waves S| and S, propagate with the velocities V5 = m and Vg = JH,/H4, respectively.

Case of limited frequencies. We discuss the behavior of the speeds of different waves when frequency approaches
zero. The effect of a limited frequency is significant only for coupled waves. As ® — 0 (i.e., at very low frequency),
Eq. (20) reduces to

(dyKs3 — ) + [cf (1 - dyK3) = 71 (=K; + diK3) + Ta(-Kydy + d))] = 0, (22)

which shows that three roots of Eq. (20) reduce to zero and hence the corresponding waves will not exist. Therefore, in the
absence of the thermal and diffusion parameters, the speed in Eq. (22) reduces to the classical longitudinal wave speed.
Hence, when frequency approaches zero, there exist only two waves, one of which is the classical longitudinal and the
second is the classical shear wave.
Absence of microconcentration. In the absence of microconcentration, Eq. (20) reduces to the following cubic
equation in v
253 2 = = 2 = = 252
(daK3 = D) + (ef +d3 + Ky +diyp + 1Ky — cidaKs — diniKs — daaK)(v)
(23)
2 2 = = 2 2
+ (—cidy — i Ky — d3Ky — d\12Ky — dsiKy)v™ + ¢id3Ky = 0.
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Therefore, the slowest wave P4 with the speed V4 will disappear. This fact has been verified by the numerical results.
Absence of microconcentration and diffusion. In the absence of microconcentration and diffusion, Eq. (20) reduces
to the following quadratic equation in v2:

V) = (Ky + 2 + K2 + ciKy = 0. (24)

Therefore, two slower coupled longitudinal waves, i.e., P3 and P4, will not exist. This fact has been checked by the numerical
results.

Reflection Coefficients and Energy Ratios. The relevant boundary conditions at the free surface x3 = 0 are taken
as the following vanishing quantities: normal and shear components of the stress force, normal components of the heat flux
and diffusing mass vectors, and normal and shear components of the flux moment tensor of mass diffusion, i.e.,

133=0, 133=0, ¢3=0, m3=0, m33=0, m3=0, (25)

where
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The appropriate potentials for the incident and reflected waves in a half-space are

4
O = Agexp {ikj(x; sin 8y — x3 cos 6y — Vit)} + z A; exp {ik;(x; sin 0; + x3 cos 6; — V;t)} , (26)
i=1

4
T = &4y exp {iky(x; sin By — x3 cos Oy — Vlt)}+z &;4; exp {ik;(x; sin ©; + x5 cos 6; — V;1)} , (27)
i=1

4
P = C14y exp {ik;(x; sin By — x5 cos Oy — Vj1)} + z C;A; exp {ik;(x; sin 0; + x3 cos 0, —V;t)}, (28)
i=1

4
Y1 = x14o exp {ik;(x; sin B¢ — x3 cos 0g — Vt)} + Z ¥ 4; exp {ik;(x; sin ©; + x3 cos 6; = V;t)} , (29)

i=1

03 = Byexp {iks(x; sin 05 + x3 cos B5 — Vst)} , (30)
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vz = Dy exp {ikg(x; sin B4 + x3 cos 05 — Vgt)} . 3D

The expressions for the coupling coefficients &, /klz,, Cp /k;, Ap /kf7 (p =1, ..., 4) are given in Appendix. The

amplitude ratios, namely, 4,/4¢ (i =1, ... , 4), Bi/Ay, and D/A are the reflection coefficients for the reflected P;, S}, and
S, waves, respectively. The potentials in Egs. (26)—(31) satisfy boundary conditions (25) if the following Snell law holds:

ko sin Oy = k; sin0;,, i=12,...,6. (32)

We obtain the following nonhomogeneous system of six equations:

6
D aiZ; = b, (33)
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According to [42], the rate of energy transmission per unit surface area is given as
ou ou oC oC
p* =1 _3 + T _1 + _3 + —1 . 34
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Substituting Egs. (5) and (6) into Eq. (34) and then using Egs. (26)—(31), we obtain the following expression for the energy
ratios of various reflected waves:

B ) (pmay, gag= a) o i) 69
p * EERR b * b * b
<Pinc,P| > <Pinc,B > <Pinc,Pl >
where
* 2 .2 40
(Pne,p) = V1 cos 6; {7»0 +2p cos” By + 7y l% + 72 ]f—; + 2 sin” 6y + {g4 + (g5 + g6) Z—;}} ki 4g
i i i

. g g , 4
<Pref’Pp> =V, cos 0, {Ao +2u cos? 0, +1 k—g + 72 k_g +2u sin? 0, +|gs+(g5+ &) k—g k;AIZ, s
P P p

(Pgs,) = — Vs sin 05 (i sin 205 + cos 205)B7kS |

(Pugs,) = Ve cos 0 [~(g5 + g6) sin® Og + cos O sin O (g6 sin 05 — gs)lke Df .

Numerical Results and Discussion. According to [24], a quantitative example for a medium was considered to
compute the phase speeds, reflection coefficients, and the energy ratios. The microconcentration coefficients following from
[38] have been taken as

A=317-10'N-m?, p=1639-10°N-m?, T,=300K, o =005K",
o, =0.05m> kg!, p=1740kg-m™, cp =2361J-kg' - K,
m =004kg-m', a=005m>-s2-K', »=005m -s? kg,
1, =005s, 1, =005s, t3=005s, g =00028kg -m "' s,
gy =0.0038kg -m~' s, g3=00048kg-s-m>, g4 =00058kg -m-s",
g5 =0.0068kg -m-s', g=00038kg - m-s', m=045-10" kg -m .

Figure 2 shows the variations of the phase speeds of the coupled longitudinal waves Py, P,, P3, and P4 against the
frequency (0.01 Hz < ® <50 Hz). The speed V; of the P| wave is 1.9883-10° m's ! at w = 0.01 Hz. It decreases very slowly
with increase in @ to 1.9875-10° m's ' at ® = 50 Hz. The speeds V>, V3, and V4 of other coupled longitudinal waves increase
quadratically with frequency. It is seen that the speeds V| and ;, become lower in the absence of microconcentration and the
speed V3 increases for all frequencies. The effects of microconcentration on ¥, and V3 increase with frequency. The wave
P, with the speed V4 does not appear in the absence of microconcentration. The effect of microconcentration on the speed
V1 remains almost the same at all frequencies in the range considered.

Figure 3 shows the variations in the phase speeds of the coupled longitudinal waves P;, P,, P3, and P4 against the
measure constant of thermodiffusion « for three different frequencies. The speeds V| and V4 decrease with increase in a,
whereas V), increases with a. However, the speed V3 changes with a only slightly. It is seen that increasing the frequency
enhances the effect of the constant « on all speeds.

The speeds of the coupled longitudinal waves Py, P,, P3, and P, are plotted against T (thermal relaxation time),
1, (diffusion relaxation time), and t3 (microconcentration relaxation time) in Figs. 4, 5, and 6, respectively. Figure 4 shows
that the speeds of almost all coupled longitudinal waves depend on the thermal relaxation time. It is seen from Fig. 5
that the speeds of almost all coupled longitudinal waves depend on the diffusion relaxation time too. The speeds V>, V73,
and V4 decrease with increase in tp, whereas V| increases with 1. Figure 6 shows that the speed V3 depends on the
microconcentration relaxation time t3 more significantly as compared to the speeds of other waves.
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Fig. 2. Phase speeds V; (a), V5 (b), V5 (¢), and V4 (d) of the plane waves P, P;, P3, and Py,
respectively, against the frequency: with microconcentration and diffusion (1); without
microconcentration (2); without microconcentration and diffusion (3).
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Fig. 3. Phase speeds V| (a), V> (b), V3 (c), and V4 (d) of the plane waves Py, P, P3, and P4
against the measure of thermodiffusion at different frequencies: ® = 10 (1); 5 (2); 0.5 (3).

The reflection coefficients of all reflected waves for the incident wave P against the angle of incidence are shown
in Fig. 7. In the general case with diffusion and microconcentration, the reflection coefficient Z; at 8y = 0° is unity and then it
decreases monotonically to a minimum value of 0.7651 at 0 = 60°. Further it increasesmonotonically to unity at @ = 90°. The
variations in the reflection coefficients Z,, Z3, and Z, are similar. They decrease from their maxima at 0 = 0° to minima at
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Fig. 4. Phase speeds V| (a), V5, (b), V3 (c), and V4 (d) of the plane waves Py, P,, P3, and
P, against the thermal relaxation time 7t at different frequencies: @ =10 (1); 5 (2); 0.5 (3).
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Fig. 5. Phase speeds V| (a), V> (b), V3 (c), and V4 (d) of the plane waves P;, P,, P3,
and P, against the diffusion relaxation time t, at different measures of thermodiffusion:
a=0.2(1); 0.4 (2); 0.6 (3).

0 = 90°. The reflection coefficient Zs at @ = 0° is zero, and it increases monotonically to a maximum value of 0.1618 at
0 =42°. Then it decreases monotonically to zero at @ = 90°. The reflection coefficient Zg at 6 = 0° is 0.0119, and it decreases
first very sharply and then slowly to zero at © = 90°. Comparison of different curves in Fig. 7 shows the effects of diffusion
and microconcentration on the reflection coefficients. It is seen that the reflection coefficients Z4 and Z4 take place only due
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Fig. 6. Phase speeds V; (a), V5 (b), V5 (c), and V4 (d) of the plane waves P, P,, P3, and Py
against the microconcentration relaxation time 1, at different measures of thermodiffusion:
a=0.2(1); 0.4 (2); 0.6 (3).
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Fig. 7. Reflection coefficients of the reflected waves P; (a), P, (b), P3 (c), P4 (d),
S (e) and S, () against the angle of incidence: with microconcentration and diffusion (1);
without microconcentration (2); without microconcentration and diffusion (3).

to the presence of microconcentration. The maximum effect of microconcentration on the reflection coefficients Z; and Zs is
observed at the angles near 60° and 42°, respectively, and for the coefficients Z, and Z3, at normal incidence.

To verify the reflection coefficients, the energy ratios |E;| (i = 1, 2, ... , 6) of the reflected waves Py, P, P3, P4,
S1, and S, against the angle of incidence are given in Fig. 8. The sum of the energy ratios of all reflected waves is seen to
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Fig. 8. Energy ratios of the reflected waves P (a), P (b), P53 (c), P4(d), S (e) and S, (f) against
the angle of incidence: with microconcentration and diffusion (1); without microconcentration
(2); without microconcentration and diffusion (3).

be less than or equal to unity at each angle of incidence. Comparison of the curves in this figure shows that the effects of
microconcentration and diffusion on the energy ratios are similar to those for the reflection coefficients.

Conclusions. Plane harmonic solutions of the two-dimensional governing equations for a linear, isotropic, and
homogeneous generalized thermoelastic medium with diffusion and microconcentration suggest the possibility of four
dispersive coupled longitudinal waves and two transverse waves. The expressions for the reflection coefficients and energy
ratios have been derived at a thermally insulated surface of a half-space of the medium. The speeds of the plane waves,
reflection coefficients, and the energy ratios of the reflected waves have been computed for a quantitative example of
the medium. The graphical illustration of the numerical results shows that the speeds, reflection coefficients, and the
energy ratios depend on the microconcentration and diffusion effects, thermal relaxation time, diffusion relaxation time,
microconcentration relaxation time, and the frequency. The following conclusions can be made from these numerical results:

1. The variations in the speeds of various coupled longitudinal waves with frequency in the absence of
microconcentration are different: the speeds 7} and ¥, become lower V5 rises. The effect of microconcentration on 7, and
V3 increases with frequency.

2. The waves with the speeds V4 and V7 do not appear in the absence of microconcentration.

3. The waves with the speeds V3, V4, and Vg do not exist in the absence of both microconcentration and diffusion.
If the thermal effect is neglected, the wave with the speed V; also disappears.

4. An increase in the diffusion relaxation time 1, decreases the speeds V5, V3, and V4 and increases V.

5. The effect of the microconcentration relaxation time t3 on the speed V3 is more significant as compared to those
for the speeds of other coupled longitudinal waves.

6. The effect of microconcentration on the reflection coefficients and energy ratios depends on the angle of incidence.
It becomes maximum or minimum at different angles for each reflected wave.
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NOTATION

a, measure of the thermodiffusion effect, mz-s’z-K’l; b, measure of the diffusive effect, m5~sfz~kg’1; cg, specific

heat at constant strain, J ~kg71 -Kﬁl; Cy, C3, components of the microconcentration vector; £, energy ratio; g, g», constitutive
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coefficients of microconcentration, kg~m71~sfl; g3, constitutive coefficient of microconcentration, kg-s-mﬁ3; 24, 25, 26
constitutive coefficients of microconcentration, kg-m-sfl; m, constitutive coefficient of microconcentration, kgm ;
mp, measure of microdiffusion conduction, kg-mfl; Ty, temperature of the medium in natural state, K; u;, u3, components
of the displacement vector, m; V, phase speed, m/s; Z, reflection coefficient; a.,, coefficient of linear diffusion expansion,
m’ -kg’l; o, coefficient of linear thermal expansion, Kﬁl; 0y, angle of incidence, deg; A, u, Lamé constants, N-mfz;
p, density of the material, kg-m_3 .
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APPENDIX

The expressions for B; (i =0, ... , 4) in Eq. (20) take the form:
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By = Hy — dyH4K3
By = dyHy)Ks — Hy — cfHy — d3Hy — HiKy — di7aHy — Hy + dyH3K;
~ TiH 4K + cfdyHyKy + diTiHAKs + doTyHaK)
By = ¢fHy + cfHs + d3H, + d3Hs + HyKy + H3K, + cfdsHy + diiaHy + diTaHs + i HyK>
+ dyH4Ky + LKy + 1H3K) — cfdy oKy — cfdyH3Ky — dijiHo Ky

— dyyoHo Ky — diyiH3K3 — dyyo H3Ky + divaHaKy + d3y HyKy



B3 = —Clzd3H2 - 012d3H3 - Clesz - 012H3K2 - d3H2K2 - d3H3K2 - Clzd3H4K2
— d\2H) Ky — dsy Ho Ky — diaH3K, — dyyiH3K

B4 = 012d3K2(H2 + H3) .

The expressions for the coupling coefficients E_,p/kf,, C p/klzj, X p/k]z, (»p = 1, ..., 4) obtained by substituting
Egs. (26)—(29) into Egs. (7)—(9) take the form:

_ &
~(cf —=vp) -7 =&

& KV V) Ky, k;
kp  —Kpm -TaKy vy kp 72
~dv} + dyv;, ‘%—g ~(dy - v}) C—Iz’
Lp _ K kp
kf, dy
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