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A COMPARATIVE ANALYSIS OF TWO APPROACHES 
TO NONLOCAL DUCTILE DAMAGE MODELING

V. S. Klyuchantsev and A. V. Shutov UDC 539.37

A new nonlocal version of Gurson–Tvergaard–Needleman model is presented, which includes a new scheme of 
delocalization of constitutive relations. The delocalization scheme has the eff ect of trapping the damage, which 
makes it possible to increase the accuracy of modeling the processes of destruction and to avoid excessive 
diff usion of material damage. As an alternative approach, a nonlocal thermodynamically consistent model 
of damage accumulation developed earlier is considered. For both models, effi  cient schemes of integrating 
constitutive relations are presented. Using the problem of the destruction of a strip with a hole as an example, the 
results obtained by both models are compared. Despite the fact that the models under consideration are based 
on fundamentally diff erent hypotheses, the predicted integral characteristics and distributions of plastic strains 
coincide with high accuracy. The coincidence of the predictions by two diff erent models greatly complicates the 
choice of model hypotheses based on integral characteristics. It is established, however, that for the two models 
there is a signifi cant discrepancy in the predictions of the local evolution of the porosity of the material. Thus, in 
the presence of reliable experimental data on local material damage, this eff ect can be used as the basis for new 
protocols for selecting and calibrating models.

Keywords: nonlocal damage mechanics, large deformations, Gurson–Tvergaard–Needleman model, fi nite element 
method.

Introduction. Accumulation of damage and fracture of metallic structures in the regime of plastic deformations is 
the dominant factor that limits the strength of a wide range of technical products. The most accurate modeling of damage 
accumulation and strain localization is necessary for the rational application of the strength reserves of structural alloys used. 
In the present work, damage accumulation in a material is modeled using continuum damage mechanics, the foundations 
of which were laid by L. M. Kachanov [1, 2]. Within the framework of this continuum approach, internal variables are 
introduced that describe the degree of damage of the material for each material particle, and the corresponding evolution 
equations are postulated.

It is known that when performing calculations by the fi nite element method, the strain-softening behavior leads to a 
pathological mesh sensitivity of the fi nite element solution [3, 4]. Namely, when the mesh is refi ned, the deformation tends 
to be localized on the null set, which, in turn, leads to an underestimation of the crack resistance of the material. Similar 
problems with the pathological dependence of the numerical solution on discretization are also observed when working 
with meshless methods. Thus, within the smoothed particle hydrodynamics the fracture toughness of the material tends to 
zero on a decrease in the spatial discretization parameter [4, 5]. A pragmatic approach to solving this problem is to work 
only with fi nite elements of certain size [6]. In this case, the fi xed size of the element becomes an additional parameter 
of the material [7]. The disadvantage of this technique is the impossibility of mesh refi nement, as well as the signifi cant 
dependence of the solution on the chosen discretization method. A scientifi cally based method for solving the problem of 
pathological dependence is to introduce nonlocal constitutive relations [3]. In the case of nonlocal modeling, stresses at a 
considered point in space depend on the strain history not only at this point, but also on strains in a certain neighborhood. 
In this work, we apply the so-called integral-based approach to the construction of nonlocal relations, which is based on the 
integral averaging operator. The averaging operator contains at least one scalar parameter, which is often identifi ed with the 
characteristic size of the microstructure. It is the presence of a characteristic linear parameter in the model that limits the 
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localization of deformations and makes it possible to obtain physically meaningful solutions [3, 4, 8, 9]. The choice in favor 
of the integral-based approach was made because of its suitability for embedding information about the microstructure of 
the material, in particular, about the presence of pronounced anisotropy [4]. In this case, the needed detailed information 
about the evolution of the microstructure can be obtained by the methods of high-resolution x-ray tomography [10–13].

In the fi eld of plastic metal forming, as well as in simulating emergency scenarios, the most popular is the Gurson–
Tvergaard–Needleman (GTN) model [14, 15]. In the present article, its nonlocal analogue is presented. The large strain 
kinematics is described using a set of multiplicative decompositions of the deformation gradient tensor. As shown in 
[16], working with multiplicative decompositions has a number of advantages over alternative methods of geometrically 
nonlinear description of the kinematics of inelastic strain. As an alternative to the Gurson–Tvergaard–Needleman model, the 
thermodynamically consistent (TDC) model proposed earlier in [4] is also considered. The thermodynamically consistent 
model is also based on multiplicative decompositions and on the integral approach to delocalization, but it contains a 
number of fundamentally diff erent hypotheses.

Continuum Description of Damage and Fracture of Material. Thermodynamically consistent model on the 
reference confi guration. Within the continuum damage mechanics the damage is taken to mean the appearance, growth, and 
integration of microscopic defects in a material. Work [4] presents a nonlocal thermodynamically consistent model, which 
is a generalization of the model described in [17]. To take into account the increase in the porosity of the material caused 
by plastic strain we divide the deformation gradient tensor F into an elasto-plastic part por

epF  and volume expansion Fpor. 
According to the classical work of Bammann and Aifantis, the part por

epF  is considered to be purely volumetric. A change in 
the volume associated with porosity is equal to Φpor ≥ 1. Thus,

 
por 1/3
ep por por por por por, 1 , det .    F F F F F   (1)

Next, we use the classical multiplicative decomposition of the elasto-plastic part into an inelastic part por
iF  and 

elastic part Fe:

 
por por, porpor

ep e ii i i: , : , : .T T  F F C F F C F FF   (2)

For the simplicity of presentation, the equations of the model will be written on the reference confi guration. The 
local state of the material is described by internal variables, such as the inelastic right Cauchy–Green tensor Ci, accumulated 
plastic arc length s, and the porosity of the material Φ. The limiting cases Φ = 1 and Φ → ∞ correspond to an intact state and 
to a completely destroyed state, respectively. The right Cauchy–Green tensor C = FTF and its inelastic counterpart Ci are 
symmetric and positive defi nite. Inelastic fl ow is incompressible: det (Ci) = 1. The relationships between stresses and elastic 
strains are assigned by the law of hyperelasticity [18]. Following Richter [19], we assume that the Helmholtz free energy 
function is additively decomposed into volumetric and isochoric parts. Let us assume that the isochoric part corresponds to 
the neo-Hookean material, and the volumetric part is described by the Hartmann–Neff  hypothesis [20]:
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Here T  is the second Piola–Kirchhoff  tensor, k(Φ) and μ(Φ) are the bulk and shear moduli depending on porosity, 
1/3(det )A A A  is the unimodular part of the tensor, 1 tr ( )

3
D  A A A 1 is the deviatoric part of the tensor. The norm 

of the driving force of plastic fl ow is equal to

 
1 2tr [( ) ] .D  CTF   (4)

Inelastic (plastic) fl ow is described by equation [4]

 
1i
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d 2 ( ) .
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D
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 (5)

With account taken of formula (3), the plastic fl ow rule is written in a simplifi ed form as
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The scalar intensity of plastic fl ow is calculated in accordance with the viscoplasticity law:
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Here, η and m are the material constants, K(Φ) is the yield stress dependent on the actual porosity, R(s, Φ) is the isotropic 
hardening, x   = max (0, x) is the positive part of the number x, f0 = 1 MPa is the unit of stress used to obtain a non-
dimensional expression in the angle brackets. The plastic arc length s controls the Voce isotropic hardening:
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where γ(Φ) is the material function and β > 0 is the fi xed parameter of the material.
It is often assumed in the damage mechanics that all components of the elasticity tensor decrease synchronously 

[21]. However, in this work, calculations are performed taking into account that the rates of deterioration in individual 
strength characteristics of the material with damage accumulation are diff erent [4]:

 0 0( ) exp ( BRR( 1)) ,  ( ) exp ( SRR( 1)) ,k k             (9)

 1
0 0( ) exp ( IRR( 1)) , ( ) exp ( IRR( 1)) ,K K               (10)

where BRR, SRR, and IRR are material constants that determine the rates of deterioration of its strength characteristics; k0, 
μ0, γ0, and K0 are the constants that determine the characteristics of an undamaged material.

Within the local model, the increase in the porosity Φ of the material occurs as a result of the nucleation of new 
pores and the growth of the already existing ones:
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 (11)

where Anucl ≥ 0, dgrowth ≥ 0, and Φ0 are the constants of the material. Note that the growth of the existing pores depends on the 
stress triaxiality. The system of constitutive relations is closed by specifying the initial conditions and by the delocalization 
procedure.

While using nonlocal models for the modeling of fracture, excessive diff usion of damage is often observed. Works 
[22, 23] are devoted to the solution of this problem with the aid of ad hoc hypotheses. Following work [4], to reduce the 
unrealistic diff usion in the model the damage trapping eff ect is applied. For this, an additional parameter of continuity Ψ is 
introduced. The continuity and porosity of the material are dual:

 exp ( PCR ( 1)) , 1 log ( )/PCR ,           (12)

where PCR > 0 is the parameter of the material that specifi es the ratio between the porosity and continuity. To produce the 
desired damage trapping eff ect, the material model is delocalized by applying an averaging operator to the continuity rate 
  [4].

In this work, attention is mainly paid to nonlocal damage models of integral type. Let Body be the global confi guration 
of the body under consideration. Depending on the delocalization procedure, Body can correspond to the global reference or 
global current confi gurations [8, 4]. Having a fi eld of local values qlocal(x), x  Body, its nonlocal counterpart is obtained 
using the delocalization operation, also known as spatial averaging [24]:

 

nl local deloc local
deloc

Body

( ) , d , Bod( ) ( ) ( ) ( y ,)q q q    x y y xx x y  (13)
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where deloc is the delocalization kernel. According to (13), the local value in the source y  Body goes over into the 
receiver x  Body with the weight deloc(x, y). In order that any nonlocal quantity could surely coincide with its local 
counterpart for any homogeneous process, the kernel must satisfy the normalization condition:

 
deloc

Body

, d 1 ,  ( Body .)   x y y x
 

 (14)

In this work, we use the delocalization kernel

 

4 2
deloc

Body

( , )( , ) , ( , ) ( 1 , ) .
( , ) d

( ) ( ) ( )
( )
r r r
r







      


x yx y x y x y
x z z

 

 (15)

In the isotropic case, we assume that

 
2 2 2

nl, || ||( ) /( ) ,r h x y x y   (16)

where hn1 is the parameter of the material that indirectly carries information about the characteristic size of the microstructure. 
In the case of polycrystalline metals, this parameter can be indirectly related to the average size of the grain.* In 
heterogeneous materials hn1 is a function of x. In the nonlocal damage model for all x  Body the continuity evolution law is 
postulated:

 
nl deloc local deloc( ) ( ) ( PCR ) ,    x  

  (17)

where the porosity evolution rate local
  corresponds to the local damage model (11). In terms of   the delocalization rule 

(17) takes the form
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x
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Thus, instead of the delocalization kernel deloc(x, y), the kernel proportional to Ψ(y)deloc(x, y) is used. The desired 
damage trapping eff ect is due to the fact that heavily damaged sources y emanate damage only over a short distance. Finally, 
the following local post-processing is required to ensure the thermodynamic consistency:

 

por por
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por
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*

1 10 , :
3 ,

    

      
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
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 (19)

where 0



 is the partial derivative of free energy ψ with respect to porosity Φ at fi xed elastic strains, por por

ep ep:T C  is the 

trace of the stress tensor. In other words, post-processing (19) forbids the growth of porosity in the state of strong hydrostatic 
compression [4]. For the model under consideration, the second law of thermodynamics is satisfi ed, therefore this model is 
called thermodynamically consistent.

The Gurson–Tvergaard–Needleman model on the reference confi guration. The geometrically nonlinear kinematics 
of the Gurson–Tvergaard–Needleman model, just as in the previous case, is based on hypotheses (1). Thus, the model uses 
the multiplicative decomposition of the deformation gradient tensor F into the elasto-plastic part Fep and the part caused 
by porosity Fpor. In this case, the determinant det (Fpor) = Φ has exactly the same meaning as for the thermodynamically 
consistent model. As a consequence, the second Piola–Kirchhoff  stress tensor is calculated by a formula similar to (3):

 
5 5 1 1 1

i(( det / ) ( det / ) ( ) .
10

) Dk         T C C C C CC
 

 (20)

__________________________
*Strictly speaking the delocalization radius hn1 depends on the combination of the characteristic size of the microstructure and the 
  elasto-plastic characteristics of the material [25].
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Let us note that the bulk and shear moduli are now independent of the damage accumulated in the material. The following 
yield function ΦGTN was obtained by Gurson on the basis of the problem of deformation of a perfectly plastic medium with 
spherical voids:

 

1
2 2 2 22

GTN 3 m 1 m
m
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Here, q1, q2, and q3 are constants, σm = K + R, where R is the isotropic hardening determined by the Voce law, K is the 
initial yield stress in a uniaxial tension test, and f * is the modifi ed porosity. The behavior of the material is elastic at 
ΦGTN ≤ 0. Viscoplastic fl ow starts when ΦGTN > 0. Along with the porosity Φ, responsible for the inelastic change in the 
volume, an additional porosity f determining deterioration of material strength is introduced in the Gurson–Tvergaard–
Needleman model. The modifi ed porosity f *( f ), which determines the eff ects of accelerated coalescence of voids at the 
fi nal stage of damage that precedes the formation of a macrocrack is calculated by the formula proposed by Tvergaard and 
Needleman:
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where u c

f c
f

f f
K

f f

 



 is the factor accelerating the growth of damage, u

1

1f
q

   is the ultimate porosity f at the moment 

of formation of a macrocrack, fc is the critical porosity at the moment of acceleration of damage growth, and ff is the value 
of porosity corresponding to the completely destroyed material.

The evolution equation for porosity f has the form

 
nucl i 2

m
6 (1 ) .f A f   


 F

 
 (23)

Remark. In the canonical version of the Gurson–Tvergaard–Needleman model the function of the frequency of 
occurrence of new pores is used:
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where fnucl, snucl, and εnucl are material constants. However, for correct comparison with the thermodynamically consistent 
model we assume that Anucl = const.

In the classical models of plasticity, the plastic fl ow is assumed to be incompressible, which corresponds to 
conservative fl ow. However, in the Gurson–Tvergaard–Needleman model the yield condition depends explicitly on the 
hydrostatic stress component determined by Eq. (21). Thus, the normality rule (associated fl ow rule) leads to a nonconservative 
fl ow. In the present work, the plastic fl ow is divided into conservative and volumetric parts. The conservative part of the 
plastic fl ow is described by the expression
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 (25)

The rate of change in the volume of a material particle caused by nonconservative plastic fl ow is calculated by the formula
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Note that the classical conservative theory of plasticity is included as a particular case. Namely, in an undamaged material, 
the condition f * = 0 is satisfi ed, which leads to incompressibility of plastic fl ow: Φ = const. The scalar intensity of plastic 
fl ow is calculated in accordance with the viscoplasticity rule:
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The inelastic arc length s determines the evolution of Voce-type isotropic hardening:
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Similarly to the thermodynamically consistent model, a dual variable of continuity is introduced to create the 
damage trapping eff ect. Thus, for the Gurson–Tvergaard–Needleman model we have

 exp ( PCR ) , log /PCR .f f        (29)

The rate of porosity evolution localf  corresponds to the local damage model (23). After algebraic transformations, the 
delocalization rule for the Gurson–Tvergaard–Needleman model takes the form
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(1( ) ( ) , ( ) d .
(

)
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 
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As in the case of thermodynamically consistent model, in the presented version of the Gurson–Tvergaard–Needleman 
model there is a damage trapping eff ect.

Qualitative comparison of models. The considered damage accumulation models are based on multiplicative 
decomposition of the deformation gradient tensor and on the application of hyperelastic constitutive relations. Both models 
contain the classical Simo and Miehe model [18] as a particular case. Because of this, they are w-invariant when the 
reference confi guration is changed [4]. Despite the use of multiplicative decomposition, these models have a number of 
fundamental diff erences listed below.

1. For the thermodynamically consistent model, there is a rigorous mathematical proof of its thermodynamic 
compatibility [4], and this guarantees the nonnegativity of mechanical energy dissipation under any loading scenarios. 
At the same time, in a state of strong hydrostatic compression, the Gurson–Tvergaard–Needleman model can violate the 
second law of thermodynamics, which is associated with the theoretical possibility of the appearance of negative dissipation 
on increase in porosity under hydrostatic compression [26]. However, there are no examples of cyclic loading under which 
the material described by the Gurson–Tvergaard–Needleman model could turn into a perpetual motion machine of the 
second kind.*

2. The thermodynamically consistent model takes into account the gradual deterioration of the elastic properties of 
the material k and μ depending on the accumulated damage. In the Gurson–Tvergaard–Needleman model, on the contrary, 
the bulk and shear moduli are constant.

3. In the Gurson–Tvergaard–Needleman model, the yield condition depends on the hydrostatic component of the 
stress tensor, whereas in the basic version of the thermodynamically consistent model such a dependence is not provided.

4. In the thermodynamically consistent model, only one value of porosity Φ is responsible for both the change in the 
volume and for the damage accumulation. In the Gurson–Tvergaard–Needleman model, on the contrary, two porosity values 
appear: the porosity Φ responsible for the change in the volume and the porosity f that describes the damage accumulation. 
In this sense, the thermodynamically consistent model compares favorably with the Gurson–Tvergaard–Needleman model, 
since the damage measure appearing in it has a clear physical meaning.

5. In the thermodynamically consistent model, the evolution of porosity is monotonic. Thus, the eff ect of pore 
curing is excluded from consideration. In the case of high hydrostatic compression and with f > 0 the Gurson–Tvergaard–
Needleman model, according to Eq. (26), can predict a decrease in the value of Φ. Such a decrease means partial curing 
(closure) of the pores. As a consequence, with a certain choice of material parameters according to Eqs. (23) and (26), a 
decrease in the porosity f is possible.

___________________ 
*It is the possibility of creating a perpetual motion machine of the second kind that is the criterion by which thermodynamically 
  inconsistent models of the material are rejected [27].
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Numerical Schemes. In the present study, a hybrid time stepping procedure for the integration of the system of 
evolution equations is used. We will consider in detail the implementation of a single time step for the plastic fl ow rule and 
the procedure for delocalizing the equations on the current confi guration. The remaining evolution equations are integrated 
using the explicit Euler method.

For the thermodynamically consistent model, the plastic fl ow is governed by formula (5) for the material derivative 
of the right Cauchy–Green tensor. Based on this formula, we obtain the rule for calculating inelastic strains in the current 
time stepping procedure [4]:

 

1 1 1i
i i trial

2 ,( )n n n nt    
  C C C

F  
 (31)

where trialF  is the trial driving force.
For the Gurson–Tvergaard–Needleman model, the plastic fl ow is assigned by formula (25). Based on the explicit 

solution for the implicit time-stepping procedure [28] the plastic fl ow is determined by the formula
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As in [4], the material continuity Ψ was taken as the delocalized quantity, which is dual to the porosity Φ for the 
thermodynamically consistent model and is dual to the porosity f for the Gurson–Tvergaard–Needleman model. The 
delocalization procedure is carried out on the current confi guration and is the same for both models:
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 (33)

where i, j are the numbers of Gauss integration points, x is the position vector in the current confi guration, and Vj det (Fj) is 
a scalar that specifi es the volume of the element at the current time.

The averaging on the current confi gurations is computationally expensive as it requires a greater amount of 
calculations. However, as shown in [4, 29], this approach gives physically reasonable solutions. Moreover, the delocalization 
scheme on the current confi guration ensures the objectivity and w-invariance of the resulting model [4].

Numerical Results. Let us consider the destruction of a plate made of steel of grade 20 with a hole [30]. The 
fi nite-element modeling of deformation and destruction of the plate was carried out only for its quarter with imposition of 
spatial symmetry conditions (Fig. 1a). In the calculations, we used four-node isoparametric fi nite elements with reduced 
stress integration and with a linear approximation of the displacements and geometry [31]. The global equations of motion 
are integrated using the explicit time stepping. The symmetry conditions represent mixed boundary conditions: zero 
displacement is prescribed for one of the components, which corresponds to the Dirichlet condition, and zero traction is 
specifi ed for the other component, which corresponds to the Neumann condition. On the top end of the plate, displacements 

are given as time functions: disp = 0 1 cos
2

td
T

     
  

. The total displacement of the upper and lower ends of the plate 

is equal to totaldisp = 2 × disp. The plane stress is assumed in the calculations. The fi nite-element discretization in space 
is presented in Fig. 1b–d for three diff erent fi nenesses. In working with nonlocal models, the delocalization kernel αdeloc 
explicitly takes into account the presence of spatial symmetries.

Model parameters were identifi ed on the basis of an integral force–displacement curve determined in an experiment. 
In this case, the constants were chosen so that the calculated curve could be close to the experimental one presented in [30]. 
The material constants for the nonlocal thermodynamically consistent model and Gurson–Tvergaard–Needleman model are 
presented in Table 1.

The considered nonlocal models are reduced to local ones, if instead of the identifi ed parameter hn1 a zero value 
is taken. The results of simulation by local approaches are presented in Fig. 2. Local relationships predict underestimated 
strength and crack resistance compared to the experimental data of work [30]. Structural strength here is understood as 
the maximum axial load leading to the formation of a macrocrack. The underestimation of the strength of the material 
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observed in the calculations in the case of inhomogeneous deformation of the structure is a well-known shortcoming of local 
models [3].

The distribution of the accumulated plastic strains of the material at the moment shortly after the formation 
of a macrocrack is shown in Fig. 3. It is noteworthy that already at the stage of subcritical deformation, the scheme of 
delocalization of constitutive relations signifi cantly aff ects the simulation results. Thus, there is a signifi cant diff erence 
between the fi elds of plastic strains obtained from local models (Fig. 3a and c) and the fi elds predicted by nonlocal models 
(Fig. 3b and d). Moreover, the diff erence between the local and nonlocal approaches is much larger than the diff erence 
between simulations by the Gurson–Tvergaard–Needleman and thermodynamically consistent models. This result is 
especially noteworthy with account for the fact that the Gurson–Tvergaard–Needleman and thermodynamically consistent 
models are based on a number of signifi cantly diff erent hypotheses.

Fig. 1. Geometry of the plate with a hole (a) and its fi nite element discretization with 310 
(b), 1240 (c), and 4960 elements (d).

TABLE 1. Constants of the TDC and GTN Models

TDC GTN

Elasticity parameters
k0 175.000 MPa k0 175.000 MPa

0 80.760 MPa 0 80.760 MPa

Plasticity parameters

K0 280.0 MPa K0 280.0 MPa

0 1.850 MPa 0 1.850 MPa

 5.05  5.05

Viscocity parameters
 1.0 s  1.0 s

m 1.0 m 1.0

Damage parameters

0 1.0 f0 0.0

Anucl 0.01 Anucl 0.05

dgrowth 1.0 q1 1.5

BRR 20.0 q2 1.0

SRR 20.0 q3 2.25

IRR 30.0 fc 0.005

ff 0.105

Nonlocality 
parameters

PCR 1.0

hnl 2.5 mm PCR 1.0

hnl 2.5 mm
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Fig. 2. Dependences of the axial force in the plate on the total displacement in it obtained 
with the use of local (a, c) and nonlocal (b, d) GTN (a, b) and TDC models (c, d) in the 
case of fi nite element discretization of the plate with 310 (1), 1240 (2), and 4960 elements 
(3); 4) experimental data [30].

Fig. 3. Distributions of plastic strain s accumulated in the plate shortly after the ini-
tiation of a macrocrack in it (on total displacement of crack in the plate by 7.64 mm) 
obtained using local (a, c) and nonlocal (b, d) GTN (a, b) and TDC (c, d) models.
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The fi elds of plastic strains within samples were investigated at the stage of their complete destruction. In Fig. 4a 
and c one can see the localization of accumulated plastic deformations on one layer of fi nite elements for local simulation. 
In calculations using local models, a contrasting transition from the plasticized zone to the elastic one is observed, as well 
as relatively low energy expenditures for the initiation and propagation of a macrocrack. For the nonlocal approach, the 
fi elds of plastic strains are depicted in Fig. 4b and d. In nonlocal solutions, more energy is expended on crack initiation. 
Indirectly, this can be seen as a larger area of plasticization in the vicinity of the hole. In nonlocal calculations, one can also 
observe a smooth transition from the plasticized zone to the elastic one. As before, the diff erence between local and nonlocal 
simulation results is much larger than the diff erence between the Gurson–Tvergaard–Needleman and thermodynamically 
consistent models.

Fig. 4. Distributions of plastic strain s accumulated in the plate at the moment of its 
complete destruction when the axial load reaches zero, obtained using the local (a, c) 
and nonlocal (b, d) GTN (a, b) and TDC (c, d) models. 

Fig. 5. Distribution of porosity Φ–1 in the plate shortly after the initiation of a macrocrack 
in it (on total displacement of crack in the plate by 7.64 mm) obtained using local (a, c) 
and nonlocal (b, d) GTN (a, b) and TDC (c, d) models. Only a part of the sample with 
developed damage of the material is shown.
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Next, we will consider the distribution of porosity in the plate for starting macrocrack. The porosity here refers to 
the loosening of the material Φ. The trend of similarity of nonlocal calculations by the Gurson–Tvergaard–Needleman and 
thermodynamically consistent models that appeared earlier is violated now (Fig. 5b and d). Thus, for the nonlocal Gurson–
Tvergaard–Needleman model the porosity of the material is distributed more contrastingly along the main direction of the 
crack than in the calculation with the use of the nonlocal thermodynamically consistent model. This result means that the 
coincidence of the force–displacement curves and the fi elds of accumulated plastic strains does not imply the coincidence 
of the damage fi elds of the sample. In order to accurately identify the model parameters and determine the most appropriate 
constitutive hypotheses, additional knowledge about the local evolution of material porosity is needed.

Conclusions. A new version of the nonlocal Gurson–Tvergaard–Needleman model is proposed. Novelty compared 
to alternative versions [32, 33] consists in the use of a multiplicative decomposition of the deformation gradient tensor in 
combination with hyperplasic relations between stresses and strains, as well as in the exploitation of the damage trapping 
eff ect. Along with the new version of the Gurson–Tvergaard–Needleman model, the thermodynamically consistent model 
proposed in [4] is considered.

To determine the possibility of using an eff ective and stable computational formula (32), the equations of the 
Gurson–Tvergaard–Needleman model were transformed: inelastic strains were divided into a conservative (incompressible) 
and volumetric, and the corresponding evolution equation was proposed for each component of inelastic fl ow. Such a 
representation of the Gurson–Tvergaard–Needleman equations makes it possible to reveal the porosity parameter Φ, hidden 
in the conventional description, since it does not appear in the canonical equations of the Gurson–Tvergaard–Needleman 
model, in which the porosity f is responsible for the deterioration of strength.

The key point in this work is the conclusion about the similarity of the results of fi nite element calculations by 
two signifi cantly diff erent Gurson–Tvergaard–Needleman and thermodynamically consistent models. For both models, 
close force–displacement curves and accumulated plastic strain fi elds are obtained. In this case, the similarity between the 
Gurson–Tvergaard–Needleman and thermodynamically consistent models was observed both in the local and nonlocal 
approaches, which is of fundamental importance for the choice of strategies for identifying and validating these models. 
At the present time, the literature is dominated by methods for identifying the constants of nonlocal damage models based 
on integral curves [33]. Even refi ned methods of conducting an inhomogeneous experiment give only integral curves and 
strain fi elds [34]. However, due to the similarity of results for the Gurson–Tvergaard–Needleman and thermodynamically 
consistent models similar integral experimental data do not allow one to make an unambiguous conclusion in favor of one 
of these models.

The solution of this problem is seen by the authors in the exploitation of the property that the porosity fi elds Φ 
predicted by the Gurson–Tvergaard–Needleman and thermodynamically consistent models are signifi cantly diff erent. Thus, 
for reliable identifi cation of parameters and validation of models, it is necessary to have detailed experimental data on the 
local evolution of material damage.

In the current version of nonlocal models, the integral averaging operator is based on a heuristically selected 
averaging kernel deloc. A more physical choice of the averaging operator is possible only if the evolution of microdefects is 
explicitly taken into account. Detailed information about the collective evolution of relevant microdefects can be obtained 
by high-resolution x-ray thermography [10–13]. Thus, the integral approach is especially promising for creating new 
microstructurally enriched models of damage accumulation.
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