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CONJUGATE NONSTATIONARY HEAT TRANSFER 
IN THE COURSE OF SUPERSONIC SPATIAL FLOW 
PAST A SPHERICALLY BLUNTED CONE MADE 
FROM A COMBINED MATERIAL

V. I. Zinchenko and V. D. Gol'din UDC 536.245

The fl ow at diff erent angles of attack past a spherically blunted cone, the spherical and conical parts of which 
are made of diff erent materials is considered. It is shown theoretically that the manufacture of the side surface 
of such a body from a highly thermally conductive material provides heat removal from its spherical part, which 
experiences maximum thermal loads and, accordingly, a decrease in the maximum body temperatures in this 
area. Dimensionless expressions are obtained for estimating the decrease in the maximum temperatures of a 
conical body in the area of its spherical bluntness, when the body is immersed in a fl ow at diff erent angles of 
attack, by choosing the geometry of the body and materials that have the necessary thermophysical characteristics 
to cover it.

Keywords: supersonic fl ow, aerodynamic heating, conjugate heat transfer, angle of attack, heat-shielding materials, 
laminar boundary layer.

Introduction. This work is a continuation of works [1, 2], in which the effi  ciency of thermal protection of a 
spherically blunted cone immersed in a gas fl ow moving with supersonic and hypersonic velocities was investigated. To 
create such protection the most promising is the manufacture of coating from a high-temperature material on the frontal part 
of a body, which is immersed in a fl ow and which is subjected to maximum thermal loads, with the lateral surface of the 
body being made of a highly thermally conductive material that provides heat removal from the frontal part of the body to 
the area where its heat fl uxes qw(, ) are relatively low. When a body moves at an angle of attack, the fl ow of heat in its 
coating material in the longitudinal and circumferential directions, as well as heat reradiation by the body surface can lead 
to a noticeable decrease in the maximum temperatures of the frontal part of the body.

Combinations of materials for the front and side parts of the body immersed in a fl ow were investigated 
experimentally and theoretically in many works. In [3–7], the behavior of ultrahigh-temperature materials was studied 
when they were passed over by supersonic axisymmetric jets generated by a plasmatron. In the general case of fl ow around 
a body at an angle of attack, it is necessary to consider three-dimensional conjugate heat exchange between the body and 
gas in the boundary layer and heat propagation in the combined material of the body with the corresponding boundary and 
initial conditions [8, 9].

In this paper, the term combined material of a conical spherically blunted body is used to denote the fact that the 
frontal and lateral parts of the body are made of diff erent materials. The aim of this work is to compare the eff ectiveness 
of using various materials, both simple and complex, to provide thermal protection for such a body, as well as to obtain 
dimensionless relations for engineering estimates of the maximum temperatures of its frontal part.

Formulation of the Problem. As in [1], the fl ow past a spherically blunted cone with half-angle (3, spherical 
bluntness radius Rn, and length zc = 10 at the angle of attack  is considered. In contrast to [1], the frontal part of the conical 
body is made of material 1, and there is a conical shell of constant thickness L = 0.5 made of material 2 on its lateral part 
(z > z0) (all linear dimensions are related to Rn). The scheme of the computational domain is shown in Fig. 1.

Under the assumptions made, the spatial boundary layer on the surface of a conical body is described by the system 
of equations in Dorodnitsyn-Lees variables presented in [1], The thermal fi eld inside the heat-shielding shell of the body, the 
thermal conductivity of which materials is assumed to be constant, is described by the following system of heat conduction 
equations in a dimensionless form:  
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As boundary conditions for Eqs. (1) and (2) on the symmetry axis of the body, as well as on the inner and back 
surfaces of its shell, the thermal insulation conditions are assigned:

 / 0 ,i n     (4)

where diff erentiation is carried out along the normal to the corresponding surface. At the boundary of regions 1 and 2 the 
conjugation conditions are used. Boundary conditions of the 4th kind are set at the interface between the gaseous and solid 
phases, i.e., the equality of temperatures and heat fl uxes in the boundary layer and in the solid body is assumed:
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Fig. 1. Scheme of the computational domain.
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 and Pr is the Prandtl number equal to 0.72 for air.

The solution of the heat conduction equations for the body is determined for the most part by the parameters of the 
conjugacy of its parts Si and by the parameter  characterizing the radiation of heat by the body surface. In the limiting case 
of Si = 0, the solution of the system of equations for hydrodynamic boundary layer with the boundary condition (5) gives 
the distribution of the radiation-equilibrium temperature on the body surface w,r(, ). The case Si → ∞ co corresponds 
to materials with infi nite thermal conductivity, with the body temperature being dependent only on time [10]. Studying the 
motion of a body at an angle of attack in these two limiting cases makes it possible to estimate the possible decrease in the 
maximum temperature of the body due to the choice of a material for covering it with certain thermophysical characteristics 
(the thermal conductivity of the material is especially important).

Technique of Solving the Problem and Initial Data. The technique of solving the boundary-value problem of 
conjugate heat transfer between a spherically blunted cone and a spatial gas fl ow past it was given in [1]. In the present 
work, we determine the temperature fi eld in the body at diff erent values of the coeffi  cients λsi  in regions 1 and 2.

In the calculations, by analogy with [1], we used the following input data: M = 6.1, pe0 = 2.2 bar, Tw,in = 293 K, 
 = 0.8, L = 0.5, z0 = 1.5, and  = 10o. We investigated the eff ect of the geometric parameters of a conical body and of the 
surface gas stagnation temperature on the temperature inside the body. Calculations were carried out for Rn ~ 0.004 m, 
Te0 = 1500 and 2000 K. The thermophysical characteristics of the investigated materials of the body are given in Table 1. In 
general, for diff erent conditions of solving the problem in the conjugate formulation, the evolution of the three-dimensional 
temperature fi eld inside the body depending on the time of heating the body and its materials was observed.

An Example of Solving the Problem in a Conjugate Formulation. Figures 2–5 present the results of solving 
the problem of conjugate nonstationary heat exchange between a spherically blunted conical body and a supersonic gas 
fl ow past it at an angle of attack, depending on the properties of the body material at Te0 = 1500 K and Rn = 0.004 m. 
Figure 2 shows the temperature distributions over the body surface in the plane of symmetry of the fl ow at diff erent angles 
of attack. The point of intersection of the surface of the frontal part of the body with the axis of its symmetry was chosen 
as the origin of the coordinate system. It follows from Fig. 2 that during the fl ow past the body at zero angle of attack the 
selected combined materials provide equalization of the temperature fi elds Tw() on the surface of the conical part of the 
body in almost the entire range of the time of the body fl ight. In the case of a stationary fl ow past the body, due to the 
fl ow of heat from its spherical part to the conical one, the use of combined highly heat-conductive materials reduces the 
maximum temperature of the body surface in the vicinity of the fl ow stagnation point by about 50 K in comparison with a 
homogeneous material (steel). The maximum temperature on the side surface of the windward part of the body decreases by 
approximately the same value at an angle of attack of 10o (Fig. 2c). In this case, the use of combined highly heat-conductive 
materials for fabricating the surface of the remote leeward part of the body leads to an increase in its temperature by 
100 K compared to steel (curve 2). Under stationary conditions, for all considered bodies with combined materials immersed 
in a fl ow at diff erent angles of attack the temperatures of the windward and leeward sides of their lateral conical surface 
are equalized. At the same time, the spherical part of the body is characterized by a decrease in maximum temperatures, as 
in the case of a zero angle of attack. As the same time, for a homogeneous material consisting of poorly conducting steel 
(curves 2), with an increase in the angle of attack, the diff erence in the temperatures of the windward and leeward surfaces 
of the conical part of the body increases, which is determined by the behavior of heat fl uxes qw(, ). This is especially 

TABLE 1. Thermophysical Characteristics of Materials

Material s, W/(m∙K) s, kg/m3 cs, J/(kg∙K)

Steel 20 7800 600

Aluminum alloy 240 2300 1000

Copper 386 8950 370

Aluminum–magnesium alloy 120 2300 1000
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pronounced in the region of nonstationary heating of the body, which confi rms the possibility of eff ective control of its 
temperature regime by respective selection of a combined material.

Typical behavior of the quantity Tw0 depending on time is shown in Fig. 3 for the angle of attack  = 10o. Note that 
at all angles of attack in the vicinity of the critical point, the stationary temperatures for a homogeneous material (steel) have 
close values, and, when using a combined material, Tw0 takes on lower values. The temperature dependences Tw(t) in the 
vicinity of the plane of symmetry on the windward and leeward sides of the body at  = 8.7 (dashed-dotted and dashed lines, 
respectively) illustrate close values of temperatures in using combined materials with some increase in the temperature on 
the windward side of the body over the entire range of the times of the process. In this case, for a conical surface the values 
of s determine the value of ∂Tw/∂t.  When the stationary mode of heat transfer is reached, the temperatures of the conical 
surface of the body in the planes of its symmetry are close for both combined materials, as was noted in the analysis of 
Fig. 2.

Figure 4 shows distributions of relative Stanton numbers w w0
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 on the spherical and 

conical parts of the body in a fl ow at an angle of attack  = 0o, as well as in the vicinity of the fl ow symmetry plane for 
 = 10o at the initial instant of time (curves 1) and when the heat transfer process reaches the stationary regime (curves 
2–4). As follows from this fi gure, in the peripheral area of the spherical part of the body the ratio St/St0 in the stationary 
case is smaller by 40–50% in comparison with the initial distribution of the relative Stanton numbers. At the same time, as 
  , the infl uence of the material of the body in a fl ow on this ratio is much weaker. In the case of a zero angle of attack, 
the values of the ratio St/St0 on the lateral conical surface of the body at  = 0 and    are close enough (Fig. 4a), and 
at  = 10o the values of the indicated ratio on the windward and leeward sides of the body in the vicinity of the plane of its 

Fig. 2. Temperature distribution over the surface of spherically blunted conical bodies 
made of steel (2), steel + aluminum alloy (3), steel + copper (4), and a material with 
infi nite thermal conductivity (5) immersed in a fl ow at angles of attack  = 0 (a), 
5 (b), and 10o (c): 1) radiation equilibrium temperature; solid lines, stationary values of 
parameters; dashed lines, the values of parameters at t = 20 s. 
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Fig. 3. Changes in time of the surface temperatures of bodies made of steel (2), steel + aluminum alloy 
(3), steel + copper (4), and a material with infi nite thermal conductivity (5) immersed in a fl ow at an 
angle of attack  = 10o, at the critical point (solid lines), the point  = 8.7 on the leeward side of the 
body (dashed lines), and at the point  = 8.7 on its windward side (dash-dotted lines). 

Fig. 4. Distribution of Stanton numbers on the spherical and conical parts of bodies made of steel (2), 
steel + aluminum alloy (3), and steel + copper (4) immersed in a fl ow at angles of attack  = 0 (a) and 
10o (b): 1) initial instant of time; 2–4) stationary distributions.
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symmetry can diff er by a factor of 10 in the stationary mode of heat transfer with a weak eff ect of the temperature of the 
body surface on this diff erence regardless of the body material. As shown in [1], the above estimates can increase noticeably 
at the nonstationary stage of heating the body, where the nonmonotonic behavior of the ratio St/St0 depending on time is 
observed. The calculations performed in this work showed that at  = 10o the maximum diff erence of the values of St/St0 
on the windward and leeward sides of the body reaches 20 and occurs at   8.

Figure 5 gives an idea of the distribution of temperatures and heat fl uxes along the circumferential coordinate on 
the body surface. It should be noted that at the accepted input data, the results obtained agree qualitatively, and some of 
them quantitatively, with the distributions of w and St/St0 presented in Fig. 7 in [1], Taking into account the equalization 
of w along the circumferential coordinate in the stationary case (curves 3 and 4 in Fig. 5a), the relative numbers St/St0() 
coincide on the conical part of the body for diff erent materials (lines 3 and 4 in Fig. 5b). This fact can be used for estimating 
the heat transfer coeffi  cients on the surface of the conical part of bodies made of combined materials in the stationary case, 
including the limiting case of an isothermal surface (lines 5 in Fig. 2).

Generalized Results of Solving the Problem in a Dimensionless Form. Stationary case. Comparing the 
development of thermal regimes of combined and homogeneous bodies, an important point is the possibility of replacing 
combined bodies with homogeneous ones made of materials with eff ective characteristics. Such an approach can provide 
technological advantages and optimization of the characteristics of a body immersed in a fl ow. Since the maximum heat 
fl uxes and temperatures on its surface are reached in the vicinity of the frontal critical point in laminar fl ow past a spherically 
blunted conical body, we will fi rst consider this region. As follows from [1], the maximum body temperature depends 
weakly on the angle of attack, so we fi rst consider the fl ow past the body at a zero angle of attack.

Figure 6a presents the dependences of the dimensionless temperature at the critical point Owo and of the quantity 
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on the number S for homogeneous materials. Next, calculations of combined bodies were carried out and the corresponding 
values of w0 were found. For these values we selected the eff ective values of the parameter Seff  of homogeneous bodies that 
provide the same values of w0. Thus, eff ective homogeneous bodies were selected instead of combined bodies (Fig. 6b). So, 
according to the solid curve 1, an eff ective homogeneous body corresponding to a combined steel + aluminum–magnesium 
(AMG) body has Seff  = 2.02 at parameters providing w0 = 0.850. For the steel + copper body Seff  = 2.37 at w0 = 0.843. 
According to dashed curve 1, at  = 0.09 and Te0 = 2000 K for the steel + AMG body Seff  = 1.77 at w0 = 0.808 and for the 
steel + copper body Seff  = 2.05 at w0 = 9.799. Note that the value of Seff  can be found from the calculated values of w0, as 
well as of st (6) calculated using the value of w0 for an eff ective homogeneous body with subsequent determination of the 

Fig. 5. Distributions of dimensionless temperature (a) and of relative Stanton numbers (b) 
along the circumferential coordinate on the surface of bodies made of steel (2), steel + 
aluminum alloy (3), steel + copper (4), and a material with infi nite thermal conductivity 
(5) immersed in a fl ow at an angle of attack  = 10o at the points  = 1.42 (dashed lines) 
and 7 (solid lines); dash–dotted lines, data for the points  = 1.42 (I) and 7 (II) at the initial 
instant of time.
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conjugation parameter S = Seff  with account for the dependences presented in Fig. 6. Thus, the dependences presented in 
Fig. 6 make it possible to determine the maximum temperature of both homogeneous bodies and combined bodies reduced 
to eff ective homogeneous bodies.

Nonstationary case. Let us generalize the problem considered above for stationary conditions in the vicinity of the 
frontal critical point of a spherically blunted conical body immersed in a fl ow at a zero angle of attack in the nonstationary 
case (Fig. 7). To this end, we replace the combined body by a homogeneous body made of a material with eff ective 
characteristics.

Using the expression for dimensionless time e0
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conditions for matching the temperature curves in Fig. 7, for combined and homogeneous bodies we obtain eff  = k. From 
this it follows that at πσ = 0.04, Te0 = 1500 K for the conditions represented by dashed curves 1 and 2 and at πσ = 0.09, 
Te0 = 2000 K for the conditions represented by dashed curves 3 and 4 in the case where eff  = 0.7 and eff  = 0.9.

Thus, the relations obtained make it possible to estimate the nonstationary nature of the formation of the maximum 
temperature in the vicinity of the critical point on the surface of a spherically blunted conical body at a zero angle of attack, 
and also make it possible to replace such a combined body by corresponding eff ective homogeneous bodies.

The distributions of temperature along the surface of combined spherically blunted conical bodies and corresponding 
homogeneous bodies with eff ective characteristics are presented in Fig. 8. As expected, in the region where the materials 
are joined, the temperature of the combined body diff ers signifi cantly from the temperature in the corresponding region 
of the homogeneous body. This diff erence becomes multidirectional in character with time. For stationary conditions, the 
temperature of the surface of a homogeneous body in this region exceeds the corresponding temperature of the combined 
body by 100 K. At t  = 20, this temperature is lower than the surface temperature of the combined body steel + AMG by 
40–50 K. According to the dashed lines, for   11 this temperature on the periphery of the body is lower than Tw for a 
composite body by 200–250 K. Such is the role of heat transfer in composite and homogeneous materials. Note that in this 
case it is more convenient to use the dimensionless time t , rather than multiscale time , since the comparison was made 
at the dimensional time t = 20 s.

Let us consider the nonstationary case of fl ow past a spherically blunted conical body at a nonzero angle of attack. 
By analogy with work [1], we introduce a nonstationary analog
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Fig. 6. Dependences w0 (1) and st (2) on the parameter S for homogenous (a) and 
eff ective (b) bodies: solid lines, πσ = 0.04, Te0 = 1500 K; dashed lines, 0.09, 2000. 
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Fig. 7. Temperature at the critical point on the surface of bodies made of steel + AMG 
(1, 3) and steel + copper (3, 4) and of corresponding eff ective materials at  = 0o, 
 = 0.04 (1, 2), and 0.09 (3, 4), Seff  = 2.02 (1), 3.37 (2), 1.77 (3), and 2.05 (4); 
eff  = 0.7 (1, 3) and 0.9 (2, 4); solid lines, combined materials; dashed lines, eff ective 
materials.

Fig. 8. Temperature distributions along the bypass of bodies made of combined 
materials steel + AMG (1), steel + copper (2), and eff ective materials (3, 4) at  = 0o, 
Seff  = 2.02 (3) and 2.37 (4); solid lines, stationary values; dashed lines,  = t/t* = 20, 
t*= 1 s.

Fig. 9. Dependences of nst on time  for bodies made of combined materials steel + 
AMG (1) and steel + copper (2) at  = 0.04 and Te0 = 1500 K: solid lines,  = 0o; 
dashed lines; 10.

Fig. 10. Temporal dependences of temperature at the critical point of the bodies made 
of combined materials steel + AMG (1, 3) and steel + copper (2, 4), obtained by solving 
the problem in three-dimensional formulation (solid lines) and from approximate 
formula (9) (dashed lines) at  = 10o; 1, 2) = 0.04, Te0 = 1500 K; 3, 4) 0.09, 2000.
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where w1(, s) corresponds to one-dimensional calculations. Time dependences of nst for various combined bodies are 
presented in Fig. 9. In this fi gure, the dashed-dotted lines show the dependence
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which diff ers greatly from nst at the instants of time  < 2, but does not require the solution of the problem in a one-
dimensional formulation. When   2, the one-dimensional calculation reaches the values of w,r.

Works [1, 10] show the admissibility of equating nst and st obtained for diff erent angles of attack and diff erent 
values of πσ, Te0, and s over the entire range of times. For our case of combined bodies this assumption leads to the 
expression

 w0 s w1 s st w1 s w s( , ) ( , ) [ ( , ) ( , )] .                    (9)

Let us consider the results of comparing such a numerical solution with the proposed simplifi cation. Figure 10 
shows the temperature at the critical point of a spherically blunted conical body as a function of time, obtained as a result of 
solving the problem under consideration in a three-dimensional formulation and using approximate formula (9) at  = 10o. 
The dashed curves calculated by expression (9) demonstrate good agreement with the results of the exact solution. As for 
homogeneous bodies, in expression (9) st can be replaced by its value at  = 0o. In this case, the results of the exact and 
approximate solutions will be very close. At   2, as noted above, the solution w1(, s) can be replaced by w,r.

Thus, during the fl ow past a spherically blunted conical combined body at an angle of attack in nonstationary 
conditions, approximate methods of determining the maximum body temperatures can be used based on determining such 
temperatures in a stationary case and in the limiting cases of S = 0 and S  , as well as, if necessary, one-dimensional 
temperature calculation, w1(, s). As expected, these calculations are also valid for eff ective homogeneous bodies.

Conclusions. The possibility is shown of controlling nonstationary heat transfer in a spherically blunted conical 
body made of a combined material, when it is immersed in a supersonic gas fl ow at an angle of attack. For diff erent 
values of the fl ow stagnation parameters, the infl uence of the thermophysical characteristics of the combined material on 
the maximum temperatures in the region of spherical bluntness of the body is estimated. For the entire time range of the 
process of interaction of the gas fl ow with the body until the body reaches the stationary temperature regime, the time 
periods are estimated in which the use of the combined material is advantageous in relation to the maximum temperatures 
reached on the surface of the body. Based on calculated data on maximum temperatures on the surface of a combined body 
in the vicinity of its frontal critical point the technique is suggested for determining the thermophysical characteristics of 
the so-called eff ective homogeneous bodies with the same level of the values of Tw0. A comparison is made of the initial 
temperature fi elds on the surface of eff ective homogeneous and combined bodies immersed in a fl ow.

It is shown that the previously obtained dimensionless relations for calculating the maximum surface temperature 
of a homogeneous body using simplifi ed approaches can be used in the case of a fl ow past combined bodies. This allows 
a quick engineering assessment of the maximum body surface temperature at the current time depending on the angle of 
attack when choosing pairs of materials for the body. The possibilities of highly heat-conductive materials of the conical 
part of a spherically blunted body to equalize the temperatures of its windward and leeward sides are demonstrated. The 
results obtained can be used to predict the thermal regime of homogeneous and combined bodies immersed in a fl ow at 
diff erent angles of attack.
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NOTATION

cs, specifi c heat of a solid body, J/(kg∙K); h and H, static and total enthalpies of gas, J/kg; L, dimensionless thickness 
of the heat-shielding shell on the lateral surface of the body; M, Mach number of the oncoming fl ow; n, distance along 
the outer normal to the body surface, m; p, gas pressure in the boundary layer, N/m2; qw, heat fl ux from the boundary layer, 
W/m2; Rn, radius of blunting of the frontal part of the body, m; r, z, and , radial, axial, and circumferential cylindrical 
coordinates; rw, distance from a point on the body up to the axis of its symmetry, m; S, conjugation parameter; St, Stanton 
number; T, temperature, K; t, time, s; ue, x component of the velocity of inviscid gas fl ow on the outer edge of the boundary 
layer, m/s; Vmax, maximum velocity of the external gas fl ow, m/s; V, oncoming gas velocity, m/s; x, length of the arc of 
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the body generatrix, m; z0, dimensionless axial coordinate of the rear part of the heat-shielding material in the frontal part; 
zc, dimensionless length of the cone;  = 0o; , taper angle; eff , eff ective exponent of the gas adiabat; , emissivity of the 
body surface; , dimensionless temperature; s,  thermal conductivity of the body material, W/(m∙K); , gas viscosity, 
kg/(m∙s); , dimensionless longitudinal coordinate along the media interface, reckoned from the frontal point of the body; 
, parameter demonstrating the reradiation of heat from the body surface; , density, kg/m3, , Stefan–Boltzmann constant, 
W/(m2∙K4); , dimensionless time. Indices: e, external; eff , eff ective; i = 1 , 2 ,  parameters related to the frontal and lateral 
parts of the body, respectively; in, initial; max, maximum; n, nose; nst, nonstationary; r, radiative; s, solid; st, stationary;
w, wall; 0, value of the parameter at the stagnat ion point; , oncoming fl ow.
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