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HYDROGASDYNAMICS IN TECHNOLOGICAL PROCESSES

BENDING OF A VISCOUS JET EMANATING FROM A CAPILLARY

A. A. Safronov,a A. A. Koroteev,b A. L. Grigor′ev,a  UDC 532.522
and N. I. Filatova

The bending of the jet of a viscous fl uid, outfl owing from a capillary, under the joint action of the inertial, viscous, 
and surface tension forces of the fl uid in it, was investigated. A linear model of the bending of such a jet is proposed. 
The dispersion relations have been obtained for the rate of increasing the disturbances of this jet. It is shown 
that the jet bends spontaneously. A qualitative analysis of the infl uence of the viscosity of a fl uid and the velocity 
of its outfl ow from a capillary on the angle of deviation of the fl uid jet formed from the capillary axis has been 
performed.
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Introduction. Over the past decade, signifi cant progress has been achieved in the development of space technologies: 
networks of low-orbit satellites, space tugs, and systems of service in the outer space have been realized, and work has been 
carried out to create technologies for the assembling of large antennas in orbit, to use powerful nuclear installations in 
the outer space, and to organize a large-scale production in orbit. To completely realize the indicated and other important 
projects, it is necessary to substantially increase the power of the energy installations of spacecrafts. This problem is directly 
related to the problem on the removal of the low-potential heat from these installations which is usually solved with the use 
of panel refrigerators-emitters. An increase in the power of such an installation leads to an increase in its emitting surface 
area, mass, and vulnerability to meteorites. The use of drip refrigerators-emitters (DRE), whose operation is based on the 
radiative cooling of a droplet fl ow that is formed in a special way, propagates in the outer space, and is then caught [1], for 
overcoming the limitations imposed on the energy installations of spacecrafts, is the concern of the present work.

For a DRE of importance is the parallelism of the fl uid jets formed in a droplet sheet produced by a drip emitter, 
which was attained before  through the improvement of the technology of fabrication of the capillary holes in the die of the 
emitter [2–5]. However, experimental investigations have shown that the direction of propagation of the fl uid jets emanating 
from capillary channels is distorted not only by the unevenness of these channels but also by their bend (Fig. 1).

The phenomenon of bending of fl uid jets has been investigated over several decades because of its importance for 
many applications. At present there are methods of calculating the shape of fl uid jets in a number of cases, among which is 
the inertial outfl ow of a fl uid with no viscous, surface tension, and mass forces from a capillary [6], the outfl ow of a viscous 
fl uid with weak mass and inertial forces from a capillary [7], the multistable inertial-gravitational incidence of a fl uid jet on 
a surface [8], the outfl ow of a fl uid from a capillary with a predominant action of the surface-tension force on it [9], and the 
aerodynamic interaction of a fl uid with the surrounding medium [10].

The bending of the fl uid jet in a capillary of a drip refrigerator-emitter substantially infl uences the movement of the 
jet through the liquid fi lm formed on the outer surface of the die of the emitter (Fig. 1a and b), the removal of the capillary 
meniscus at the instant the emitter is put on, and the deviation of the jet from the direction of the fl uid outfl ow from the 
capillary channel. This deviation is mainly determined by the joint action of the inertial, dynamic pressure, viscous, and 
surface tension forces of the fl uid in the jet.

Formulation of the Problem. A bending outfl ow of a viscous fl uid from a capillary into a vacuum under conditions 
where the action of the mass forces on the fl uid jet formed can be disregarded is considered. It is known from the experimental 
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observations that the bend of such a fl uid jet is substantially dependent on its interaction with the meniscus formed near the 
capillary hole. 

In [6], the problem on the bending outfl ow of a viscous fl uid from a capillary was solved for the case where the 
direction of propagation of the fl uid jet formed is mainly determined by the quasi-stationary dynamic pressure and inertial 
forces of the fl uid, and the model equations involve only the derivatives of the deviation of the jet from the capillary axis 
δ with respect to its coordinate. The solution of this problem for the case where the direction of propagation of the fl uid jet 
is determined mainly by the nonstationary viscous force of the fl uid and the model equations are local and involve none of 
the indicated derivatives are presented in [7]. We have obtained quasi-one-dimensional nonlocal nonstationary solutions 
of the problem on the outfl ow of a viscous fl uid from a capillary, defi ning the bending of the fl uid jet formed in the linear 
approximation.

Fig. 1. Bending of VM1-S jets at a temperature of 60oC: a) instant an emitter with a 
plane die in which holes of diameter 0.35 mm are made is put on: b) interaction of jets of 
diameter 0.27 mm, moving with a velocity of 8 m/s, with a fi lm; c) removal of the cap-
illary meniscus on the milled protrusions in an emitter with capillary holes of diameter 
0.5 mm at a liquid outfl ow velocity of 2 m/s; d) interaction of the liquid jets, emanating 
from a capillary tube of radius 0.7 mm with a velocity of 0.4 m/s, with the meniscus on 
the tube.
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Figure 2a shows a diagram of the bending outfl ow of a viscous fl uid from a capillary needle. The bend of the fl uid 
jet formed is planar, and the axes of needle 1 and jet 2 pass through the plane of the pattern. The center of the capillary 
hole 3 is at the axis of rotation of the jet. The bend of the fl uid jet is due to the action, on it, of the moment M of the viscous, 
inertial, surface tension, and dynamic pressure forces of the fl uid. It is assumed that near the capillary hole there arises a 
meniscus of radius larger by p times than the jet radius r.

If the axis of the jet is shifted from the axis of the needle through distance δ, the moment of the dynamic pressure 
forces Mb.d.p is determined as the product of the jet shift and the force equivalent to the rate of change in the momentum of 
the jet [6]:

         2 2 2
b.d.p .V S V rM   (1)

The viscous force bending the jet can be estimated by the relation

   v 2 .F r V

The bending moment of the viscous forces Mb.v is equal to

     b.v 2 .r VM   (2)

The bending moment of the capillary forces Mb.c is determined as the product of the capillary pressure in the jet into its 
cross-sectional area and arm:

    b.c .rM   (3)

The inertial, surface tension, and viscous forces acting in the fl uid jet prevent its bending. If the jet is bended, its 
velocity fi eld changes so that the particles on the outer side of the bend move with a velocity higher than the velocity of 
movement of the particles on its inner side. The velocity fi eld of the fl uid jet changes with change in the pressure in it, and 
this change can be determined by the Bernoulli equation

    2 2
0

1 1 ( ) ( ) .
2 2

V P u z P z

The movement of the fl uid in the jet under the action of the centrifugal force is defi ned by the relation



 
 



2( ) .V z P
R z

In the case where R∞ is much larger than the radius of the jet r (Fig. 2b), we have the relations

Fig. 2. Diagram (a) and photograph (b) of a bending outfl ow of a viscous fl uid from a 
capillary needle: 1) axis of the needle; 2) axis of the fl uid jet; 3) center of the capillary 
hole.
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where P0 = σ/r is the capillary pressure in the internal space of the jet. In this case, the moment of the inertial force 
preventing the bending of the jet will be equal to [6]


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Since at a small deviation of the jet from the axis of the capillary, 1/R∞ = –d2δ/dx2, we may write the equation

 
        2 2 2 4

pr.b .1  
2S

V z dS V rM
 

 (4)

The surface tension force of the fl uid in the jet also prevents its bending. In the case of bending of the jet, the pressure in it 
changes by the value




     .P

R

Under the action of the pressure in the jet, in it there arises the moment
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The infl uence of the viscous force acting in the jet on its bending can be determined by the rate of deformation of the jet 
edges [6]



   

 22  ,dv rx
dt x

where the expression diff erentiated with respect to the time represents the local radius of the curvature of the particle 
paths in the core of the fl uid fl ow. Of practical interests is the bend of the jet in the region of relaxation of its velocity of 
characteristic length x* determined from the theory of the boundary layer near the capillary hole:

       

2

b
b 0.7

.x V p r
r

In view of this relation, the viscous force preventing the bending of the jet can be represented in the following form:

 
     2 3

2
2  .vF r r

x x
The moment of this force Mpr.v is equal to

 

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x

M
 

 (6)

In the fi nal analysis we write the moment equation defi ning the bending of the jet near the capillary hole
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We introduce into consideration the dimensionless variables δ = rδ′, x = rx′, and t = rt′/V as well as the following 
dimensionless similarity criteria: the parameter M and the Ohnesorge number determined by the relation
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The parameter M represents the ratio between the velocity of the jet and the minimum attainable velocity of a stable outfl ow 
of the fl uid from the capillary hole Vmin:
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Equation (7) expressed in new variables takes the following form at p = 1:

 
       3 2 22Oh (1 3 ) (1 4 4 Oh) .

3
M M M

 
 (8)

Stationary Bending of a Jet. The stationary approximation of Eq. (8) has the form
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 (9)

If dδ/dx = 0 at the outlet of a capillary, the axis of the fl uid jet emanating from it will deviate from the capillary axis by the 
law
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It follows from this relation that the length of the bend wave of the jet is equal to


  

 

2

2
1 32 .

1 4 4 Oh
M
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The dependence of this length on the parameter M at diff erent values of the Ohnesorge number is presented in Fig. 3a. It 
is seen from this fi gure that the higher the viscosity of the fl uid in the jet, the smaller the length of its bend wave and the 
larger the possible angular deviation of the jet from the capillary axis. The quantity D is determined by the parameters of the 
capillary meniscus and it can be estimated by two ways, in particular, on the supposition that the initial curvature of the jet 
is equal in order of magnitude to the curvature of the capillary-meniscus surface: d2δ/dx2  ~ 1/p. In this case,
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Graphs of dependence (11) at p = 1 and diff erent values of Oh are presented in Fig. 3b. It is seen from this fi gure that an 
increase in the viscosity of the fl uid in the jet leads to an increase in its deviation from the axis of the capillary.

It can be also assumed that the maximum deviation of the jet from the axis of the capillary comprises
δmax = (p – 1). In this case, the curvature of the jet will be equal in order of magnitude to  2

max /x . With the use of (10), 
the following relation can be obtained:

 

 
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 
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 (12)

If the deviation of the jet from the capillary axis, determined by (12), is attained at a distance λ/2, one can estimate 
the angle of the jet deviation φ. The dependence of this angle on the parameter M at diff erent Ohnesorge numbers is 
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presented in Fig. 3c. The value of the parameter p was taken to be equal to 2 because, at this value of p, the angle φ reaches 
a maximum value. It is seen from the indicated fi gure that an increase in Oh leads to a large increase in the angle φ which 
can reach several degrees.

Nonstationary Bending of a Jet. The rate of increasing the disturbances of the fl uid jet emanating from a capillary 
was determined from the solution of Eq. (8) on the condition that δ ~ exp (ikx + ωt). Substitution of this expression into (8) 
gives the relation

 

   
     

2 2
2

2 2
2 1 3 3 1 4 4 Oh .
3 2Oh 1 3
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 (13)

It follows from the dispersion relation that the shear deformations of the jet, which cause no bends in it, increase with a 
maximum rate. The factor of increasing the shear of the jet is determined from the relation

   2
max 2

1 (1 4 4 Oh) .
Oh

M M

The minimum possible value of M for a DRE can be estimated at 1.5. In this case, the limiting value of ωmax is equal to

Fig. 3. Dependence of the bend length of a fl uid jet emanating from a capillary (a), the 
amplitude of the deviation of the jet from the capillary axis (b), the angle of this devi-
ation (c), and the maximum wave number of the jet (d) on the parameter M at p = 2: 
1) Oh = 0.1; 2) 0.25; 3) 0.5; 4) 1.
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  max 2
1 (10 6 Oh) .

Oh

Of practical interest is the maximum Ohnesorge number equal to 0.5. In this case, ωmax > 50. Because of the thermal 
fl uctuations in the jet, its axis can displace for a distance of the order of (kBT /σ)1/2 ~ 1 nm. The characteristic radius of the jet 
is equal to r ~ 0.1 mm, i.e., δ0 ~ 10–5. This initial disturbance of the jet could increase to a macroscale for the dimensionless 
time equal to ~12. In the case where r = 100 μm and V = 2 m/s, the thermal fl uctuations in the jet could increase for the 
time equal to ~5∙10–3 s. For this time, the axis of the jet shifts from the center of the capillary channel to a new stationary 
position determined by the geometry of the capillary meniscus. According to (13), the maximum wave number of the jet 
bend is equal to
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The dependence of kmax for diff erent values of Oh is presented in Fig. 3d. It is seen from this fi gure that the higher the 
viscosity of the fl uid in the jet, the smaller the radius of its bend and the larger the deviation of the jet from the direction of 
outfl ow of the fl uid from the capillary determined by its axis. However, as M increases, the maximum wave number of the 
jet bend rapidly approaches its asymptotic value equal to kmax = 20.5.

Eff ect of Mass Forces. The bending moment of the gravity force of the fl uid in the jet emanating from a capillary 
in the horizontal direction is determined by the relation

  2 2
b.g

1
2

.r glM

Comparing this moment with the moment of the dynamic pressure forces in the jet (1) at δ equal to the jet radius, we obtain 
the ratio between these moments gl2/(2V 2r). In the case where the radius of the jet is equal to 0.1 mm and the velocity of the 
fl uid outfl ow from the capillary is 2 m/s, the infl uence of the gravity on the jet becomes signifi cant at l > 1 cm (~100 radii 
of the jet), which is larger by an order of magnitude than the characteristic length of the bend wave of the jet. Therefore, the 
direct infl uence of the gravity on the bending of the jet can be disregarded. However, the gravity indirectly infl uences the jet 
bending through the change in the shape of the capillary meniscus.

Interaction of Bending Jets. In the case where a fl uid outfl ows from the capillaries positioned in N parallel rows 
in the die of a dip emitter, near the capillary holes there arises a fi lm that determines the interaction of the fl uid jets (Fig. 4). 
If the jets are bended only in the plane of disposition of the axes of the capillaries, the system of equations for the N values 
of δi has the form

 
        3 2 '' 22Oh (1 3 ) (1 4 4 Oh)

3
,i i i iM M M St
 

 (15)

where Sti accounts for the interaction of the ith jet with the other jets and is a function of all the values of δi and the deriv-
atives dδi/dt, dδ/dx, and d2δ/dx2. The interaction of bending fl uid jets can be due to the action of the viscous and capillary 
forces in them as well as due to the change in the pressure fi eld in the capillary meniscus on the surface of the die caused by 
the change in the dynamic pressure of the fl uid in the jets. Moreover, in the system of fl uid jets there takes place a long-range 
interaction: if jets intersect at a considerable distance from the surface of the die, the point of linkage of two jets can "fall," 
due to the action of the capillary forces, on the surface of the capillary meniscus.

Frames of a video recording of the fl uid jets emanating from the capillary holes in the die of a drip emitter in the 
gravity fi eld are presented in Fig. 4. Figure 4a shows the process of "disposal–fl oating" of a capillary meniscus on the 
surface of the die, realized due to the outfl ow of the fl uid in the form of a knee. It is seen from Fig. 4b that at the site of the 
knee removed there arises a new overlap and not a new jet. We call the reader′s attention to the presence of several "knees" 
in the jets formed (in the leftmost jet in Fig 4a and in the third jet from the right in Fig. 4b). The characteristic time period 
of a "knee" in a jet, representing the ratio between the length of the knee and the velocity of the jet, comprises ~10–3 s. The 
development of the fl uid jets emanating from the capillary holes in the die is shown in Fig. 4e and d. These jets can break 
down as a result of their nonlinear interactions and change the direction of their propagation.

Comparison of Calculation and Experimental Data. The results of our investigations can be used for the expla-
nation of experimental data on the bending of the water jets emanating slowly from a capillary tube under the microgravity 
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conditions. In calculating the parameter M, the radius of a water jet was assumed to be equal to the radius of the capillary 
tube. Photographs of such jets emanating from the capillary holes in the die of a drip emitter with diff erent velocities are 
presented in [11]. Droplets were formed in the emitter only at M = 0.85, 1.25, and 2.2. The formation of droplets was mainly 
determined by the bending vibrations of the jets. At M = 0.85, the droplets formed fl ew away within a cone with an angular 
opening φ ≈ 5o. The angle of such a cone was 1.5o at M = 1.25 and was smaller than 1o at M = 2.2. A decrease in the angle 
of fl ying away of droplets with increase in the velocity of the water outfl ow from the capillary tube corresponds to the 
theoretical model presented in Fig. 3c. The angle of fl ying away of droplets observed in an experiment was larger than that 
determined in the realization of the corresponding theoretical model constructed in the linear quasi-stationary approxima-
tion. The vibrations of the fl uid jet in the experiment were nonlinear, with a complex dynamics determined by the processes 
of thinning and rupture of the jet. Moreover, in the experiment, droplets moved under the action of the aerodynamic eff ects. 
A good agreement has been obtained between the calculation and experimental data on the length of the bend wave of a 
fl uid jet. It follows from (10) that the minimum length of the bend wave of a fl uid jet with M → 0 and Oh → 0 comprises 
λmin ≈ 5.2r. This result agrees with the experimental data obtained in [10].

Conclusions. A model of calculating the characteristics of the bending and shift of the jet of a viscous fl uid 
outfl owing from a capillary hole in the die of a drip emitter has been developed. It was established that the bending of the 
jet is due to its interaction with the capillary meniscus formed on the surface of the die. The bending vibrations of such a 
jet arise spontaneously, and their amplitude increases rapidly with increase in the Ohnesorge number of the jet and decrease 
in the velocity of its propagation. A fl uid jet produced by a drip emitter with a plane die, in which the jet interacts with the 
fi lm formed on the surface of the die at the instant the emitter is put on, experiences the largest angular deviation from the 
direction of the fl uid outfl ow from a capillary in the emitter die. For the formation of a fl ow of droplets moving in the form 
of parallel jets, drip emitters with capillary tubes are best.

Acknowledgment. This work was carried out with fi nancial support from the Russia Science Foundation (Project 
No. 19-19-00045).

Fig. 4. Outfl ow of a fl uid with a velocity of 8 m/s from a drip emitter having a plane die 
with holes of radius 330 μm spaced 1.5 mm apart at the instants of time t = 0 (a), 0.114 (b), 
0.419 (c), and 0.425 (d).
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NOTATION

D, amplitude of deviation of a fl uid jet from the axis of a capillary; g, free fall acceleration; k, wave number; 
kB, Boltzmann constant; l, length of a jet region; M, dimensionless velocity of the fl uid outfl ow from the capillary; p, ratio 
between the radius of the meniscus near the capillary hole and the jet radius r; P, pressure; R, radius of the meniscus at the 
outlet of the capillary channel; R∞, radius of the jet-axis curvature; r, steady radius of the fl uid jet; rout, outer radius of a 
capillary needle; S, cross-sectional area of the jet; T, temperature; t, time; u, local velocity of movement of the fl uid in the 
jet; V, mean mass velocity of propagation of the jet; x, coordinate axis coincident with the  jet axis; z, transverse coordinate; 
δ, distance between the axes of the needle and the jet; λ, length of the bend wave of the jet; μ, dynamic viscosity of the fl uid; 
ρ, density of the fl uid; σ, surface tension of the fl uid; φ, angle of deviation of the droplet path from the axis of the capillary; 
ω, factor of increasing the disturbance of the jet. Subscripts: v, viscous; out, outer; g, gravity; d.p, dynamic pressure; b, bend; 
c, capillary; pr, prevention.
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