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MISCELLANEA

MAGNETOTHERMOELASTIC WAVES IN A ROTATING
ORTHOTROPIC MEDIUM WITH DIFFUSION

A. K. Yadav UDC 536.21

In this paper, the governing partial differential equations for a rotating orthotropic magnetothermoelastic medium
with diffusion are proposed on the basis of the Lord—Shulman theory of generalized thermoelasticity and the velocity
equation is obtained. The plane wave solution of this equation is indicative of the existence of four quasi-plane
waves, namely, quasi-longitudinal displacement (qLD), quasi-thermal (qT), quasi-mass diffusion (gMD), and quasi-
transverse displacement (qTD) waves. The real values of the wave speeds are calculated for a particular material,
and the effects of anisotropy, as well as of the diffusion, magnetic, and rotation parameters and the angle of incidence
on the speeds are shown graphically.
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Introduction. Biot [1] developed the classical theory of dynamical coupled thermoelasticity. To remove the paradox
of an infinite speed of thermal waves following from [1], Lord and Shulman [2] and Green and Lindsay [3] extended the
classical dynamical coupled theory of thermoelasticity to the theory of generalized thermoelasticity. The details of these
generalized theories can be found in the works of Hetnarski and Ignaczak [4] and Ignaczak and Ostoja-Starzewski [5].
Dhaliwal and Sherief [6] extended the Lord and Shulman generalization of the thermoelasticity theory to an anisotropic
case given in [2]. Jeffreys [7] studied thermodynamics of an elastic solid. Gutenberg [8] invesigated the energy relation
of reflected and refracted seismic waves. A. N. Sinha and S. B. Sinha [9] studied the reflection of thermoelastic waves
in a solid half-space with thermal relaxation. Schoenberg and Censor [10] considered the plane wave propagation in a
rotating isotropic medium and revealed three plane waves in it. Singh and Yadav [11, 12] analyzed the wave propagation
in an anisotropic medium and concluded that the effect of rotation does not increase the number of waves in a transversely
isotropic medium, but significantly affects their speeds. Chandrasekharajah and Srinath [13] studied thermoelastic plane
waves in a rotating isotropic solid. The problems on the propagation of waves in rotating isotropic and anisotropic bodies
with electric, magnetic, and thermal effects have been studied in [14—16]. Singh and Yadav [17] investigated the effect of
rotation on the wave propagation in a magnetized monoclinic anisotropic medium. Abo-Dahab and Biswas [18] studied
the effects of rotation and the thermal relaxation times on the Rayleigh waves in an anisotropic medium subjected to a
magnetic field. Shaw and Othman [19] considered the propagation of the magnetoelastic Rayleigh waves in an orthotropic
thermoelastic medium. Biswas and Mukhopadhyay [20] analyzed the thermal shock behavior and thermoelastic wave
propagation in an orthotropic medium, subjected to a magnetic field, on the basis of three theories.

Diffusion is the movement of particles from a region with a greater number of particles per unit volume to a region
with their smaller number. Thermodiffusion process plays an important role in many fields and objects, like satellites,
returning space vehicles, geophysics, chemical industry, and the fabrication of integrated circuits in MOS (metal-oxide—
silicon) transistors to prepare base, emitter, and dope polysilicon gates. Diffusion is also used to prepare a controlled amount
of "dopants" in a semiconductor substrate. In addition, thermodiffusion is applied for more efficient extraction of oil from
oil deposits. Using one relaxation time for a finite speed of the thermal waves propagation, Sherief et al. [21] developed
the theory of generalized thermoelastic diffusion on the basis of the theory developed by Nowacki [22] and Dudziak and
Kowalski [23]. Singh [24] investigated the problem of generalized thermodiffusion in the case of the reflection of P and SV
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waves from a free surface of an elastic solid. Aouadi [25] developed the micropolar theory of thermodiffusion and derived
constitutive equations, using the Lord—Shulman theory. Lotfy et al. [26] investigated the effect of photothermal diffusion in
the reflection of waves in a semiconductor medium. Mabrouk et al. [27] studied the effect of dual-phase-lag in photothermal
process for a magneto-rotating diffusive medium. However, so far the wave propagation in a rotating, perfectly conducting,
thermoelastic, orthotropic medium with diffusion in the presence of a magnetic field has not been studied in more detail.
Yadav [28] studied the reflection of plane waves from a free surface of a rotating, orthotropic, magnetothermoelastic solid
half-space with diffusion but have not calculated the wave speeds numerically. In this work, the governing equations for
a rotating, orthotropic, magnetothermoelastic, perfectly conducting medium with diffusion are formulated in the context
of the Lord—Shulman theory of generalized thermoelasticity. The velocity equation is obtained and solved and its solution
is indicative of the existence of four quasi-plane waves, namely, quasi-longitudinal displacement (qLD), quasi-thermal
(qT), quasi-mass diffusion (QMD), and quasi-transverse displacement (qTD) waves. The wave speeds are computed for a
particular material, and their dependences on the diffusion, magnetic, and rotation parameters, as well as on the angle of
incidence are shown graphically.

Basic Equations. We consider a homogeneous, thermoelastic, diffusive medium rotating with the angular rate
Q = On and subjected to a magnetic field with the induction B (here B = u H) at the initial temperature 7, where n is
the unit vector representing the direction of the axis of rotation and Q = (0, Q, 0). The basic governing equations for a
homogeneous, rotating, orthotropic, thermoelastic solid with diffusion in the absence of the body forces and heat and mass
diffusion sources in the generalized theory of thermoelasticiy [2] are the following:

equation of motion

Bijimeim,i + a;T; + b,-jC,i + (J x B); = plii; + (Q x (Q xu)); + (2Q x n);}, )
heat conduction equation
KT = —ByTo(é; + 1085) + pCr(T + 10T + aTy(C + 15C) , )
mass diffusion equation
—ajibgmerm.ij — 0iblC 51+ ofalT ;] = —(C + 16C) . 3)

The Maxwell equations describing the electromagnetic field effect without the charge density and displacement current are

curl H=1J, curlE:—%—B, B=pH, divB=0; 4)
t
and the Ohm law in a generalized form is
J =o[E + (u x B)]. %)

Here the magnetic field strength is taken as H = Hy + h, where Hy = (0, Hg, 0), the thermal gradient effect on the
conduction current J is neglected, and for a perfectly conducting medium G — 0. We linearize the basic equations,
neglecting the products of h, u, and their derivatives as the induced magnetic field strength h is very small.

The constitutive relations take the form:

Tji

i = Bimeim + 5T +b;C . pS = —a;(e; + théy) + pT—E (T + thT) + a(C + 15C) |

0

*

P* = bC = by —aT a5 = KgT;, g =pS, ;= -ajP,

igl.j»
Bijkm = Bimij = Bjikm = Bijmk » ay = aj, by =bj,

* * t c * *
Ky =Kji, oy =0y, a;j=-Pid;. by=-Pid;, Kj=Kib;, oy =0;d;,
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where P" is the chemical potential per unit mass and ), is the flow of a diffusing mass.

Formulation of the Problem. Let a uniform constant magnetic field of the strength H = Hy + h is applied to
a homogeneous, rotating, orthotropic, thermoelastic, diffusive medium. Due to the rotation and applied magnetic field, a
change in the basic magnetic field occurs, so that an induced magnetic field with the strength h = (0, 4, 0) and an induced
electric field with the strength E develop in the medium. Let the medium is rotating about the y axis with the rotational

rate Q = (0, Q, 0), centripetal acceleration (Q x (€ x u)), and the Coriolis acceleration (2(2 X z—l;j Here the dynamic
0
displacement vectoruis u = (u, 0, w) and 5 = 0. Using Egs. (4) and (5) and the relation (J x B); = p,(curl h x H),

we obtain the following equations:

o’u 0w
JxB), = uHZ | — +
( 1 = MeH [Oxz por

(6)

o’u  o*w
, JxB)y =0, (JxB);=puHf|— +—]|.
J ( )2 ( )3 = HeH( (axaz 622J

Using the constitutive relations and Eq. (6) and following Dhaliwal and Sherief [6], Lord and Shulman [2], and
Schoenberg and Censor [10], we can write the linear governing equations (1)— (3) in the xz plane as

o*u 62w 82u or 2 [%u  w u o ow
By — + (Bj3 + Bss) —— — - B — + Hy | — + = - Qu +2Q —
11 o (B3 55) 8x62 ﬁl 51 o 0 ok | ooz p o ot %)
o*w o%u o*w , oT oC , [ 0%u  *w o*w
Bss — + (B3 + Bss) —— + Byy —— — By — — B — + u H + = - %w —2(2 8
55 o (B3 55) oxoz 33 Py B3 o 3 o Hellg oz | o2 o , (8)

o’T o°’T or  , o°T oc , o°C
K —+K Cp|l—+19g — |+aly | — + 19 —
11 o2 33 75 02 =p E( 0 o 0 o 0

ot 2 or
©))
6 u o%u o%w o*w
+ BiTo + 10 —5— |+ B5T0 |+ T0 —5— |-
dtox Ot~ 0x Ot0z ot“0z
poe U o W o Du f e OOW . 0T
aiBf —5 + o1iP3 a33B] + o3B3 — + o
o ox*oz oxoz? oz 2
10
. 0T o%C o’c (oc . d8*C (10)
+(X33a—2—0.11b—— 33b —+‘C0—2 =0.
0z ox? oz? ot ot
Solution of the Problem. The solutions of Egs. (7)—(10) are sought in the following form:
(u,w, T, C) = (4, B, R, S) exp {ik(x sin 6 + z cos 6 — vt)} , (11)
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where 4, B, R, and S are constant, v is the phase speed, and & is the wavenumber. Using Eq. (11) in Egs. (7)—-(10), we get
four homogeneous equations for 4, B, R, and S:

(Y, —Q*Q)A+[Y2 —2i%§jB+éB{ sin 9R+é[3f sin S = 0, (12)
. Q * i I e

(YZ +216CJA+(Y3 —QC)B+EB3 cos 6R+;B3 cos 6S =0, (13)

£'C sin 04 + B'e'C cos OB + é Bi(Ds — )R — é £ =0, (14)

BSDg sin 04 + PSDg cos OB — é aDgR + é (bDg — T°C)S = 0, (15)

where Bf = (Bjj + Bia)aye + Bi3oze, P = 2Bysay, + Bizas,.
For the existence of a nontrivial solution of Egs. (12)—(15), the determinant of the coefficients at A, B, R, and S is
required to be equal to zero, i.c.,

2ot + 28 + 2,2 + 25+ Ay = 0, (16)

where

2
ZO=Q*2—4(9j ,
()]

Zy == QY] + Y5 + ¢ sin® 0+ (B2’ cos® 0) + (Ds + Dg + Dg) (Q*z —4 (9)2]]
2
Zy = (Y\Y5 = Y3) + Q* (Y, + Y3)(Ds + Dg + Dg) + DsDg [Q*z —4 (%j J
+ ¢’ sin? O(Y5 + Q"Dg) — 2B'e' Y, sin 0 cos 0 + 2£"Q" Dy % (sin2 0+ B'p* cos’ 0)
+ e/ (BH%(Y] + QDg) cos? 6 — QO Dg (Bl) (sin? 0 + (B%)? cos® 0),
Zy = (Y3 = Y,Y3)(Ds + Dg + Dg) — Q*DsDg(Y; + Y3) — B'DgY; cos? 0 (Btst + 2B %J

c\2
+ (B%)? (BIT) Dg cos” O(Y; + Q*Ds) — Y3Dg sin® 0 [a’ + 26 %J (G Dg sin® 6(Y5 + Q*Ds)

+ 2B’ DgD, [st +g" %] sin 0 cos 0 + 2B¢ % DY (e — Bf) sin 6 cos 6 +
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oo BT Blaly =1+(9J ,

c\2
+ B'e' Dg (BIT) (B' - B) sin® 0 cos” 0,

v —_ —_ ¢ 2 — —
Zy = (X1Y3 — Y3)DsDg — DsDg Br) ((B)* Y, cos® 0 + Y5 sin? 0 — 2B°Y, sin O cos 0) ,

b

Yl = Bll Sil’l2 0+ B55 COS2 0+ l,l,eH(% Sil’l2 9, Yz = (313 + 355 + },leH(%) sin O cos 0 ,

.2 2 2 2 ) 2 Dy
= Bss sin® O + B33 cos” 0 + u Hjy cos™ 0, Dy = Ky sin® 0+ K33 cos® 0, D5 = p ,
70 Cp
* .2 * 2 1% t i Cc* c 1 = bD6 = a2T0D6
= 0] SIn 9+a33cos 6, T9p =Top+—, Tgp =T9g+—, D6= . D6=—*,
® 03 T pCgt

p-Blop B gy,

pCp pCE w e Bf
Cc*
Do =k, ¢ =pv?
p

The four roots {, = pv? (s = 1-4) of Eq. (16) correspond to the complex phase speeds v, of quasi-plane waves,
namely, of the quasi-longitudinal displacement (qLD), quasi-thermal (qT), quasi-mass diffusion (qMD), and quasi-

. - - .- . ® .
transverse displacement (qTD) waves. We present v, as vs1 =) "Vio IQS, where k can be written as k = — + iQ
Vv

and 7" and Q are real. The real part Re (v) > 0, then the real parts of v{, v, v3, and v4 obtained from the four mentioned

roots represent the speeds of the wave propagation for the qLD, qT, gqMD, and qTD waves. The relation Im (v) = 0 refers to
undamped time harmonic waves and Im (v) < 0, to damped waves.

Particular Cases. Magnetothermoelastic waves in a rotating orthotopic medium. Neglecting the diffusion
parameters, we have B{ =p5 > 0,p =1, a =0,b =0, aj; =0,a33 =0, Dg =0, Ds =0, Dg =0, and
Eq. (16) reduces to

where
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Ry = Q7 -4 (—] , Ry =- [Q*(Yl + Y5 + ¢ sin® 0+ (B')’s" cos® 0) + Ds {Q*Z —4 (Ej J]

RC® + RE? + Ry + Ry =0, (17)

Q

Q) (O]

Ry = (Y1Y3 — Y3 + Q' (Y + Y3)Ds + €' Y5 sin® 6 — 2B'e'Y, sin O cos O + at(E’)ZYl cos® 0,
Ry = (Y3 = Y\Y3)Ds, Y, = By sin® 0 + Bss cos® 0 + p,Hg sin® 0,

Yz = (B]3 + 855 + MEH(%) sin 6 cos O 5

. . D
Y3 = Bss sm26+B33 cos29+;,teH§ cosze, Dy = Ky s1n26+K33 cosze, Ds = *4 ,
‘C6CE
. . 12 2 t
% * T % Q —
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Fig. 1. Speeds of the qLD (a), qT (b), gMD (c), and qTD (d) waves against the angle of
incidence at Hy = 5 A/m and different values of Q/w.
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Fig. 2. Speeds of the qLD (a), qT (b), gMD (c), and qTD (d) waves against the angle of
incidence at /w = 15 and different values of H,.
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Fig. 3. Speeds of the qLD (a), qT (b), gMD (c), and qTD (d) waves against the angle of
incidence at Hy =5 A/m and Q/w = 15 for orthotropic and isotropic cases.

Fig. 4. Speeds of the qLLD, qT, gMD, and qTD waves against the diffusion parameter at
Hy=5A/m, Q/o =15, and 6 = 60°.
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The three roots C*p = pv}? (p =1, 2, 3) of Eq. (17) correspond to the complex phase speeds v; ofthe qLLD, qT, and qTD
waves, respectively, and the real parts of these roots represent the speeds of the wave propagation.

Thermoelastic waves in a rotating isotropic medium. Neglecting the orthotropic and magnetic effects, we have
Bjy=A+2u, B3z=LA, Bss=pn, Q' =1, Q=0, o =ay=D",

Bi:Bg:Bt, BI:I’ B33=7¥+2M= H0=0’ Bf:Bg:ﬁC, BC_I’

\2 t
Hy=0, pf=p5=p. B =1, ¢ = ELTo Pl
pCr pCr

, K=Ky =K,
and Eq. (16) reduces to

Nol* + NiI° + Nyl? + N3l + Ny =0, (18)

where

No=1, Ny =—(D*+D;" +¢ +D¥ + D"+ D",

Ny = (DF*DY* — D) + (DI* + DY)D + D™ + D) + DI'D™ + ¢ sin® 0(D3* + D™)

c cy\2
—2¢'D3* sin O cos O + 26 D" % + &/ (D + D**) cos® 6 — D™ (Bb) ,

= I~ Rk 3k 3k I~ Kk 3k * ¢
Ny = (D5 = DI*DY YD + D™ + D*) — D¥*D™(D{* + Di*) — D**D;* cos” 0 [g’ + 2¢ B—J

()
b

+

N E* 2 *ok sk kk Rkk . D t * Bc (Bc)z NEk . D sk *ok
D" cos” 0Dy + D5 )— D3 D sin” 0 8+28?+TD sin” (D3 + D5 )
_ Bc Bc —
+2D"D5" sin O cos 0 | & + & il 2 " D™ D3" sin 0 cos 8(g" — B°),

cy\2
N, = (DD - Dy’ D™ - Dy D (BT) (Dy* cos® O + D} sin> © — 2D5" sin 0 cos 0) ,

D =(h+2u)sin® 0+ pcos> 0, D5 =(h+p)sin0cos 0,

. K
D;*=u51n29+(K+2u)cos29, Dy =K, Di = " , D¢ =D, 16*=r6+i,
‘C6 CE Y
. *% 2 EES 2 5%
TS* _ T(C) + z ’ D** — bD* , 5** _ga T()D* ’ o = Bt Ty , &t = BtaTO , i = 7
© T pCgt pPCE pCE P

The four roots /; = pv:*2 (s = 1-4) of Eq. (18) correspond to the complex phase speeds v; of the P, T, MD, and

SV plane waves, respectively, and the real parts v, v5, and v3 of these roots represent the speeds of the wave propagation.

Numerical Results and Discussion. For numerical illustration, the following relevant elastic and thermal constants
of cobalt at 27° are used [20]:
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p=74-100kg-m>, B =3071-10' N-m™?, B;3=1027-10"' N-m™>2,
By =3.581-10" N-m™2, Bss=1510-10"" N-m™2, B =1650-10"' N-m?,
Ki; =069-10* W-m™'- K, K33=0701-10"W-m' - K, Cr=03814-10J - kg ! - K,
Bl =704-10°N-m?-K', B, =69-10°N-m? -K ',

T = 0.005s, 15 =0.04s.
The values of the diffusion parameters are as follows:

a=024-10"kg™ -m?-s2, b=160-100kg' - m’-s2, af; =095-10%kg-s-m>,

a5 =090-10%kg-s-m>, ap,=21-10*m® kg™', o3 =25-10%m’ kg!.

With the help of a FORTRAN program we calculate the speeds vy, v», v3, and v4 of the qLD, qT, qMD, and qTD
waves from the solution of Eq. (16). These speeds are plotted against the angle of incidence for different values of the
rotational parameter €/® and the magnetic field parameter H in the orthotropic and isotropic cases (see Figs. 1-3).

The speeds vy, v,, v3, and v4 of the studied waves vs. the angle of incidence are shown for Hy =5 A/m and different
values of /@ in Fig. 1. It is seen that the speeds of all the waves increase with the angle (except for the qT waves where
they are almost constant) and with decrease in Q/m. For example, the velocity v (see Fig. la) of the qLD waves at
Q/w = 15 increases from 1.4389-10° m-s™! at 0 =0° to 1.464-10° m-s™' at © = 90°.

The speeds of the qLD, qT, gMD, and qTD waves are plotted vs. the angle of incidence for Q/m = 15 and different
values of Hy in Fig. 2. For the qLD waves (see Fig. 2a), v| increases with Hj (from 1.4701-10° m-s™" at Hy=5A/m to
3.7529-10° ms™! at Hy =15 A/m for 6 = 0°) and increases slowly with the angle. For the qTD waves, the speed increases
with the angle and is practically independent of H.

The speeds of the qLD, qT, qMD, and qTD waves are plotted vs. the angle of incidence for the orthotropic and
isotropic cases at Q/@ = 15 and Hy =5 A/m in Fig. 3. It is seen (see Fig. 3a) that v; for the orthotropic case increases from
4.8788:10° m-s ' at 0 = 0° to 5.0123-10° m-s™' at @ = 90°. For the isotropic case, v; is independent of the angle and equal
t0 3.9490-10° m-s ™.

The speeds of the qLD, qT, gMD, and qTD waves are plotted against the diffusion parameter b at Q/® = 15,
Hy =5 A/m, and 0 = 60° in Fig. 4. It is seen that the speeds of the qLD and qMD waves increase, respectively, from
1.8531:10° t0 2.1668:-10° m-s ™! and from 0.2609-10° to 1.7917-10° m-s~" as b increases from zero to 3. At the same time the
waves of the qT and qTD waves remain constant: 1.3092- 10° and 0.2610-10° m-sfl, respectively.

Conclusions. The solutions of the equations for plane waves in the xz plane are indicative of the existence of
four quasi-plane waves, namely quasi-longitudinal displacement (qLD), quasi-thermal (qT), quasi-mass diffusion (QMD),
and quasi-transverse displacement (qTD) waves. The numerical values of the speeds of these waves are shown to depend
significantly on the angle of propagation, anisotropy, and the rotation and magnetic field parameters. These values will be
helpful in estimating the correct arrival times.

NOTATION

a, diffusion constant, Kﬁl-mz-sfz; B, magnetic induction, N~A71-m71; Byj, elastic constants, N-mfz; b, diffusion

constant, kg_l-m5 -s_z; C, concentration; Cg, specific heat at constant strain, J-kg_l-K_l; E, clectric field strength, V-m_l;
H, magnetic field strength, A-m_l; h, perturbation of the magnetic field strength, A~m_1; J, current, A-m_z; K and K33,
thermal conductivities, W-m71~K71; n, unit vector; 7, temperature, K; ¢, time, s; u, displacement vector, m; u and w,

components of the displacement vector, m; v, wave speed, m/s; W, strain energy function, N-mfz; X, ¥, z, coordinates, m;

a1, and a3, coefficients of linear thermal expansion, K a. and a3, coefficients of linear diffusion expansion, m3~kg71;
of;, o3, diffusion constants, kg-sm~; B}, 5, thermal coefficients, N-m 2K '; BS, BS, diffusion coefficients, m>s %
0, angle of propagation measured from the normal to the half-space, deg; A and p, Lame's constants, N-m™;
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L., magnetic permeability, Hm ' p, density, kg-rn73 ; o, electric conductivity, S~m71; ‘56, thermal relaxation time, s;
15, diffusion relaxation time, s; Q, angular velocity, Hz; o, circular frequency, Hz.
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