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INFLUENCE OF THE HEAT OF PHASE TRANSITION 
ON THE ONSET OF FILTRATION CONVECTION IN MIXTURES
OF LIQUIDS WITH LIMITED MUTUAL SOLUBILITY

M. M. Ramazanova and N. S. Bulgakovaa,b  UDC 532.546:536.25:532.529

Consideration is given to the problem on the convective stability of mechanical equilibrium of a mixture of liquids 
with limited mutual solubility in a porous medium. It is assumed that in the initial state of mechanical equilibrium, 
the mixture fi lls the horizontal porous layer and is separated into two phases: the upper lighter phase and the lower 
heavy one. At the lower boundary of the layer, the higher temperature is maintained than that at the upper boundary. 
A study is made of the infl uence of the heat of phase transition and the ratio of phase densities on conditions for the 
onset of convection and on the structure of occurring fl ows.
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Introduction. A two-phase fl ow through permeable rock is an important mechanism of heat transfer and heat 
exchange in high-temperature geothermal systems. For example, we are well aware of the manifestations of thermomechanical 
activity in vapor-dominated Larderello systems in Italy, Geysers in California [1], etc. Despite the importance and practical 
signifi cance of the problem, relatively little is known about the nature of circulation of steam and water over geometrical 
regions where the vapor dominates.

One characteristic of multiphase fl ows is that then often show instability (stability) which is absent from a single-
phase fl ow. As investigations show, multiphase fl ows in porous media even with neglect of inertial forces may lose stability 
and pass to another stationary or even self-oscillating regime [2]. There can also be reverse situations where phase transition 
stabilizes equilibrium or the stationary regime [3].

On the basis of fi eld measurements, it was assumed in [1] that two-phase convection under vapor-dominated systems 
consists of the rising steam and the descending water (condensate and groundwater) over the deep reservoir of circulating 
brine. Sondergels et al. [4] studied two-phase convection in a laboratory sander; they observed the type of countercurrent 
convection of the ascending steam and the descending water, that was described in [1]. In [5], a theoretical model has been 
developed for a one-dimensional ascending fl ow of boiling water in a porous medium under the assumption that steam and 
water are always in thermodynamic equilibrium. Schubert et al. [6], to single out and study the basic physical processes 
associated with convection in a porous medium with phase transition, have developed a homogeneous (one-velocity) model 
of steam-water convection which allowed describing this phenomenon analytically. In [7, 8], the process of fi ltration cooling 
of a heat-releasing granular bed in the presence of phase transition of the fi rst kind has been modeled under the conditions 
of free convection of the heat-transfer agent. In [9], consideration has been given to the problem of mathematical modeling 
of fl ows of multicomponent mixtures with phase transitions. The free energy of the mixture was assigned in the form of a 
functional containing the gradients squared of the components' densities.

If we consider the confi guration where the layer of a liquid is above the layer that does not mix with the indicated 
liquid, a gas, or a lighter liquid, such a system is always unstable [10]. However, if we speak of a liquid and its vapor, 
the situation radically changes. Measurements of pressure in deep bore holes together with the measured temperature 
distributions through the depth have made it possible to uniquely establish that in geothermal systems, the layer of 
water may exist over the layer of its steam [1, 11]. This is due to the fact that when the equilibrium is upset there is 
a phase transition playing a stabilizing role in this case. Consequently, high-temperature geothermal reservoirs exist 
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where thermodynamic conditions of stabilization of the position of water over the steam are implemented. Mathematical 
substantiation of such a possibility was fi rst presented in [4] on the basis of solution of the problem on the stability of 
the water–steam boundary when the water layer is over the steam layer. Investigations have shown the presence of the 
critical value of the permeability coeffi cient separating the regions of stable and unstable states of a geothermal system. 
Thus, if the permeability coeffi cient does not exceed the critical value, the phase-transition surface may be stable despite 
the fact that water is over the steam. In [12–14], a more complex example of existence of the water layer over the steam 
layer in a geothermal system has been proposed, which allows the motion of phases and phase transition in an undisturbed 
state. Linear stability has been studied and the existence of stable stationary regimes of fl ow has been shown which are 
implemented at relatively high permeabilities. A solution to the problem on linear stability has been presented in [10], which 
takes account of the convective transfer of energy and is applicable for any values of permeability. It has been shown that 
the water layer may be present over the steam layer in geothermal reservoirs whose permeability is much higher than the 
critical values found earlier.

Almost all the above-noted works concern the system "water–steam." As noted, such works are few in number, 
there are still fewer works on convection dealing with the phase transition between two phases of mixtures because of 
the fi nite mutual solubility. A distinctive feature of such a case is the possibility of both the exothermal (analogously to 
the steam-water mixture) and endothermal phase transitions where the slope of the equilibrium curve (dp/dT) is negative. 
Furthermore, for mixtures of liquids in phase transition, the density and viscosity of the phases differ little compared to the 
system "water–steam."

We note study [15] which is similar, in essence, although this work does not concern a a porous medium. In it, a 
numerical study has been made of the infl uence of endogenic phase transition at the boundary between the earth's upper 
and lower mantles (at a depth of approximately 660 km) on the structure of nonlinear convection of the entire mantle. 
Upon dipping into the mantle, at the indicated boundary, we have the endothermal phase transition of the lighter phase 
of the mantle substance to a heavier modifi cation The indicated phase transition retards the convection, which way result 
in its full or partial stratifi cation. However, in this work, the authors neglect the thermal effect, restricting themselves 
to taking account of the infl uence of the slope of the equilibrium curve (dp/dT). In the cited paper, this corresponds to 
the heats of phase transition M that are small in modulus, but to great slopes of the equilibrium curves Γ, so that M Γ 
is fi nite.

In the present paper, we have investigated the convective stability of a mixture of liquids with limited mutual 
solubility in a porous medium where the light phase is over the heavy one. Consideration has been given to the infl uence, 
on the onset of convection of both the exogenic phase transition, i.e., when the slope of the curve of phase equilibrium is 
positive, and the endogenic phase transition when the indicated slope is negative. The obtained solutions are also applicable 
to the system "water–steam" through assigning relevant values of the physical and thermophysical parameters, however, 
this case is not discussed here.

Formulation of the Problem. Let there be a mixture of two liquids. In the range of temperatures and pressures in 
question, the indicated liquids mix in limited amounts so that the mixture stratifi es into two phases with different relations 
of the concentrations of the components. The heavy phase forms the lower layer, and the ligher phase, the upper one. On 
passage of the mixture's particle from the lower phase to the upper one or conversely, we have phase transition to release 
or absorb heat. The concentrations of the components in the layers will be assumed constant, so that the phases may be 
considered as homogeneous liquids with effective thermophysical properties and different densities. Use is made of the 
Oberbeck–Boussinesq–Darcy approximation. It is required that conditions for the onset of fi ltration convection in such a 
system be investigated at an assigned temperature gradient directed downward.

In what follows, the quantities referring to the upper light phase will conventionally be denoted by the subscript 
v, and to the heavier phase, by the subscript w. Under the assumptions made in the problem's formulation, the system of 
equations in the region of the upper phase will be written as

 

v mv mv

v v v0 v 0

v vv0

v
v

div 0 , grad ,

(grad ) , (1 ( )) .

div ( )pC T

P T T

T C T
t

k

= λ

− ρ ρ = ρ − β −

∂ + ρ ∇ =
∂

= −
μ

v

v

g

v

 

 (1)

Analogously, in the lower layer, we have the follows system:
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w mw mw

w w w w0 w 0
w

w ww0div 0 , grad ,

(grad ) , (1 ( )) .

div ( )pC T

k P T T

T C T
t

= λ

= − − ρ ρ = ρ − β −
μ

∂ + ρ ∇ =
∂

v

v g

v
  (2)

Boundary conditions will be written in the following manner:
the phase boundary

 

w v w v w wn v vn

w v
w w wn mw v v vn mv

: , , ( ) , ( ) ( ) ,

( ) ( ) ;

z T T T P P P P F T V v V v

T Th V v h V v
z z

∗ ∗ ∗ ∗= ξ = = = = = ρ − = ρ −

∂ ∂
ρ − + λ = ρ − + λ

∂ ∂  

 (3)

and the lower and upper boundaries

1 wn 2 vn0: , 0 ; : , 0 .z T T v z H T T v= = = = = =

Mechanical Equilibrium. We fi nd fi elds that describe mechanical equilibrium. For this purpose, the velocity fi elds 
in (1)–(3) are set equal to zero and all the fi elds are assumed to be dependent on just the vertical coordinate z. The obtained 
problem is easily integrated; as a result we obtain the following solution describing mechanical equilibrium:

in the region of the upper phase

 

s
s

s
vs s s 2 vs s v0 v0( ) , ( ) , const ;zT T T T P P g z

H∗ ∗ ∗ −
− ξ

= − − = ρ − ξ =
− ξ

ρ
 

 (4)

in the region of the lower phase

 
ws 1 1 s ws s w0 s w0

s
( ) , ( ) , const .zT T T T P P g z∗ ∗= − − = − ρ − ξ ρ =

ξ  
 (5)

Here, the conditions

 

s

mw 1 s mv s 2
s s

ws vs s ws vs s s s: , , ( ) ,

( ) ( ) .1 1

z F T

T T T T

T T T P P P P

H∗ ∗

∗ ∗ ∗ ∗= ξ = =

λ − = λ −

= = =

ξ − ξ
  (6)

are observed. Hence we obtain

1 2 1 2 1 2
s 1 s s 2

( ), , ,
1 1 1

T T T T T TT T T T T∗ ∗ ∗
+ α α − −

= − = − =
α + α + α +

where

s mv

s mw
, .

1
ξ λ

α ≡ γ γ =
− ξ λ

Stability of Mechanical Equilibrium. We linearize the sought fi elds near the position of mechanical equilibrium

 

v vs v s v v v

w ws w s w w v s

, , v v ,

, , v v , .

T T T P P P

T T T P P P

′ ′ ′= + = + =

′ ′ ′ ′= + = + = ξ = ξ + ξ  
 (7)

Here the primed quantities are small quantities. We substitute (4)–(7) into (1)–(3). Leaving just the linear terms and omitting 
the primes, we have:
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in the region of the upper phase

 

v mv v v v v mv

s 2
v v0 v v

v s

div 0 , div ( grad ) ,

(grad ) , ;

p z
TC C v A T
t

k T TP T A
H
∗

∂
= − ρ = λ

∂

−
= − + ρ β =

μ − ξ

v

v g
 

 (8)

and in the region of the lower phase

 

w mw w w w w mw

1 s
w w0 w w

w s

div 0 , div ( grad ) ,

(grad ) , .

p z
TC C v A T
t

k T TP T A ∗

∂
= − ρ = λ

∂

−
= − + ρ β =

μ ξ

v

v g
 

 (9)

Boundary conditions are taken to be as follows:

 

w w v s w ws v vs

w w0 v v0 w w0 w ws

w v
w0 w v0 v mw w0 w mv

0: 0 , 0 ; : 0 , 0 ; : ,

, ( ) ,

( v ) ( v ) , ( ) .

v

z z z

z T v z H T v z T A T A

dPP g P g P g T A
dT

T Tq v
z z

= = = = = = = ξ − ξ = − ξ

− ρ ξ = − ρ ξ − ρ ξ = − ξ

∂ ∂
ρ ξ − = ρ ξ − λ = ρ ξ − + λ

∂ ∂  

 (10)

Here the point denotes the time derivative.
Next, introducing the stream function ψ

 
v , vz xx z

∂ψ ∂ψ
= = −

∂ ∂  
 (11)

and the scale of the quantities H (length), λmw/(ρwCpwH) (velocity), ρwCpwH2/λmw (time), μwλmw/kρwCpw (pressure), 

T1 – T2 (temperature), and also the Rayleigh number 
2
w w w 1 2

w mw

( )
Ra pk C g T T Hρ β −

=
μ λ

, we write system (8)–(11) in dimen-

sionless form. We have:
in the region of the upper phase

 
v v v

v v v v v v, Ra ,T Tb c T d
t x x

∂ ∂ψ ∂
− γ = Δ Δψ =

∂ ∂ ∂  
 (12)

where

mv w w w mv w w wmv 1 2 mv mv
v v

v v v v v v mw v v v mw v v v mw

v v v
v v

w w 1 2 s

( ) , , ,

1, ;
1 (1 )

p p

p p p p

C A CC T T Cb c
C A H C C A C

A Hd
T T

λ ρ λ ρ γ− λ
= = = = γ =

ρ ρ γ λ ρ λ ρ γ λ

ρ β
= γ = =
ρ β − − − γ ξ

and in the region of the lower phase

 
w w w

w w w w, Ra ,T Tb T
t x x

∂ ∂ψ ∂
− γ = Δ Δψ =

∂ ∂ ∂  
 (13)

where
mw 1 2 w mv

w w
w w w 1 2 s mw

( ) , , .
1 (1 )p

C T T A Hb
C A H T T

− γ λ
= γ = = γ =

ρ − − − γ ξ λBoundary conditions are as follows:
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w w v

w w v v
v v w w v w

w

w w w w v
w w v

w w v

0: 0 , 0 ; 1: 0 , 0 ;

: , (1 / ) ,
Ra

, ,
Ra

.

v

s

z T z T

z T T
x z z

TM
z x x x x x

T TM
z x z

= = ψ = = = ψ =

⎛ ⎞∂ξ δ ∂ψ μ ∂ψ
= ξ − γ ξ = − γ ξ − ρ ρ = −⎜ ⎟∂ ∂ μ ∂⎝ ⎠

δ ∂ψ ∂ξ ∂ ∂ξ ∂ψ ∂ψ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = Γ − γ ρ ξ − = ρ ξ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂ ∂ψ ∂⎛ ⎞= ξ − + γ⎜ ⎟∂ ∂ ∂⎝ ⎠

  (14)

Here we have introduced the dimensionless quantities

2
w v

w w
w w

, , .p

p

C Tq T dPT M
C T M gH dT gHT

Δ ρΔ
δ = β Δ = Γ = =

Δ ρ Δρ

We seek the solution in the upper layer in the form

v vsinh (1 ) , sinh (1 ) .x xt ik x t ik xce z T de zλ + λ +ψ = γ − = λ −

We obtain the following system of equations for c and d:

2 2 2 2
v v v v[ ( )] 0 , ( ) Ra 0 ,x x x xik c b c k d k c ik d dγ − λ − γ − = γ − − =

whence
2 2 2 2

v v v v

2 2
2v v v v

1, 2 1,2 1,2
v v

Ra 0 , ,

Ra , .
2 2

x x

x
x

v

c b k d k

b b k d k
c c c

ω − λω − γ = ω = γ −

⎛ ⎞λ λ γ
ω = ± + γ = + ω⎜ ⎟

⎝ ⎠

The general solution in the upper layer will be obtained in the form

 

v 1 1 2 2

2 2 2 2
v 1 1 1 2 2 2

v

2 2
2v v v v

1,2 1,2 1, 2
v v v

[ sinh (1 ) sinh (1 )] ,

[( ) sinh (1 ) ( ) sinh (1 )] ,
Ra

Ra , .
2 2

x

x

t ik x

t ik x

x x
x

x
x

e c z c z

eT k c z k c z
ik d

b b k d k
c c c

λ +

λ +

ψ = γ − + γ −

= γ − γ − + γ − γ −

⎛ ⎞λ λ γ
ω = ± + γ = + ω⎜ ⎟

⎝ ⎠  

 (15)

An analogous general solution in the lower layer will be written as

 

w 3 3 4 4

2 2 2 2
w 3 3 3 4 4 4

2
2 2w w

3,4 w 3,4 3,4

[ sinh sinh ] ,

[( ) sinh ( ) sinh ] ,
Ra

Ra , .
2 2

x

x

t ik x

t ik x

x x
x

x x

e c z c z

eT k c z k c z
ik

b b k k

λ +

λ +

ψ = γ + γ

= γ − γ + γ − γ

λ λ⎛ ⎞ω = ± + γ γ = + ω⎜ ⎟
⎝ ⎠  

 (16)

We satisfy the boundary conditions at z = ξs, assuming that

 5 .xt ik xc eλ +ξ =   (17)
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Finally, we obtain the system of equations
5

1
0 , 1, ..., 5 ,ij j

j
c i

=
α = =∑

where the matrix αij has been assigned by the expressions

2 2 2 2
1 2

11 1 12 2 s
v v

2 2 2 2
3 4

13 3 s 14 4 s 15
s

2 2
w 3

21 22 23 3 s 3 s

w
24 4 s

sinh (1 ) , sinh (1 ) ,
Ra Ra

1sinh , sinh , ,
Ra Ra 1 (1 )

( )0 , 0 , cosh sinh ,
Ã Ra Ra
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x x
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x x

x x

x x

x

k k
ik d ik d

k k
ik ik

M k

γ − γ −
α = γ − ξ α = γ − ξ

γ − γ − γ −
α = − γ ξ α = − γ ξ α =

− − γ ξ

δ γ −
α = α = α = γ ξ − γ ξ

δ
α = γ ξ −

2 2
4

4 s 25
s

v 1 v 2
31 1 s 32 2 s 33 3 3 s

w w

34 4 4 s 35 w v w

v v
41 1 s 42 2 s 43

w w
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sinh (1 ) , sinh (1 ) ,

x
x

h

x

x x

M k Mik
N

ik a

ik ik

⎛ ⎞γ − γ
γ ξ α = − −⎜ ⎟− − γ ξ⎝ ⎠

μ γ μ γ
α = γ − ξ α = γ − ξ α = γ γ ξ

μ μ
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ρ ρ
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v
44 4 s 45

w

2 2 2 2
1 1 mv 2 2 mv

51 1 s 52 2 s
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2 2 2 2
3 3 4 4
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sinh , 1 ,
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x

x

x x
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x x x

x p x

ik

ik

k k
ik d ik d

k ik q k
ik C A H ik

= − γ ξ

⎛ ⎞ρ
α = − γ ξ α = λ −⎜ ⎟ρ⎝ ⎠

γ γ − λ γ γ − λ
α = γ − ξ α = γ − ξ

λ λ

γ γ − γ γ −
α = γ ξ + γ ξ α = 4 s 4 s

w w

55
w w w w 1 2

osh sinh ,

, .
( )

x

p

p p

ik q
C A H

q M qM
C A H C T T

γ ξ + γ ξ

λ λ
α = − = − =

γ −

Discussion of Results. The prime objective of this investigation was to study the infl uence of phase transition 
accompanied by the change in the density and viscosity of a liquid, and also of the value of specifi c heat of phase transition 
on the criterion of onset of convection and the structure of occurring motions. Consideration was given to both the case of 
absorption and the case of release of heat on passage of the heavier phase to a lighter one. In the work, a study was made 
mainly of the dependence of the critical Rayleigh number determining the threshold of the onset of convection on the value 
of specifi c heat of phase transition and on the ratio of the densities of the light and heavy phases. The basic features of the 
above dependences and of the structure of occurring fl ows were studied. We outline calculation results.

In the calculations, it was assumed for defi niteness that the thickness of the layer of the lower heavy phase is equal 
to 0.55, and of the upper one, to 0.45. To identify the infl uence of the thermal effect more clearly, all the thermophysical and 
physical properties of the phases except densities were assumed to be identical. Figure 1 shows the characteristic neutral 
curves of the critical Rayleigh number Racr as a function of the wave number kx at different values of the dimensionless 
heat of phase transition M. The fi gure corresponds to negative M values. This means that on passage of the light phase to a 
heavy phase, the heat is absorbed (endothermal phase transition). As can be seen from the fi gure, the neutral curves have a 
minimum of the wave number kx as in the classical Rayleigh problem for a single-phase one-component liquid. In this case 
the problem is to determine whether the onset of convection hinders or facilitates phase transition, and also to elucidate the 
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structure of occurring fl ows when stability is lost. As Fig. 1 shows, a growth in the heat of endogenic phase transition at the 
considered values of the remaining parameters hinders the onset of convection.

In the case of positive M values, i.e., exothermal phase transition from the light phase to a heavy one, the 
neutral Racr(k) curves on different segments of variation in M may differ qualitatively. Figure 2 shows the neutral curves 
corresponding to positive M values. We can see from the fi gure how the structure of the instability region shown dashed 
changes as M grows. On passage through a certain critical M number, another branch of the neutral curve appears at the 
bottom (Fig. 2c, 2), which corresponds to a shortwave hydrodynamic instability of the Rayleigh–Taylor type. With further 
growth in M, the right branch of curve 1 in Fig. 2c combines with curve 2 and the instability region takes the form shown 
in Fig. 2d, i.e., longwave convective disturbances become unstable, too. Finally, with further increase in M, the neutral 
curve acquires the form presented in Fig. 2d. Thus, when the parameter of the heat of exogenic phase transition M exceeds 
a certain critical value dependent on other fi xed parameters mechanical equilibrium becomes impossible even at small 
Rayleigh numbers.

The curves in Fig. 2 have been considered for the density ratio equal to 0.5; for smaller values of this ratio, the 
neutral curves are qualitatively analogous. The difference is mainly in the fact that the passage from the curves in Fig. 2b to 
the curves in Fig. 2c and from the curves in Fig. 2c to the curves in Fig. 2d occurs at smaller M values.

Of greatest interest is the threshold Rayleigh number which is the smallest as far as the wave number is concerned, 
i.e., the Racr(kx) minimum in kx. Here, it is required that the local indicated minimum, not the global one, be generally 
found as can be seen from Fig. 2. The indicated minimum threshold Rayleigh number will subsequently be called simply 
the critical Rayleigh number.

Fig. 1. Critical Rayleigh numbers vs. wave numbers at ρv/ρw = 0.9, Γ = 2, and different 
values of the heat of endogenic phase transition: M = –0.01 (1), –0.25 (2), and –3 (3).

Fig. 2. Critical Rayleigh numbers vs. wave numbers at ρv/ρw = 0.5, Γ = 2, and different 
values of the heat of endogenic phase transition: M = 0.1 (a), 0.4 (b), 0.418 (c), 0.43 (d), 
and 0.5 (e). Instability regions are shown dashed.
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Figure 3 shows the plots of the critical Rayleigh number versus the heat of phase transition M for a ratio of the 
phase densities of 0.9 and different values of the parameter Γ. The parameter Γ is proportional to the ratio of the slope of the 
phase-equilibrium curve (dP/dT) to the heat of phase transition. Therefore, larger Γ values at an assigned dP/dT correspond 
to small thermal effects. We consider fi rst the negative values of M, i.e., endogenic phase transitions. The region above 
the neutral curve in Fig. 3a corresponds to the instability of mechanical equilibrium. Below the neutral curve, conversely, 
mechanical equilibrium is stable, at least, for fairly small perturbations. If we are to abstract from the relatively small values 
of |M|, it can be seen from the fi gure that the increase in the heat of phase transition, i.e., in the modulus of M at other fi xed 
parameters, leads to an increase in the critical Rayleigh number, i.e., to a hindered onset of convection. It can be noted that 
at a fi xed negative M value, the growth in Γ also leads to a hindered onset of convection. However, it can be seen from the 
fi gure that at relatively small values of the heat of endogenic phase transition and relatively small values of Γ, the picture 
may depart from the described one. Thus, at Γ = 0.5, the critical Rayleigh number on the initial small portion decreases as 
|M| grows, i.e., the thermal effect on this small portion somewhat facilitates the onset of convection.

Fig. 3. Critical Rayleigh numbers (minimum in wave number) and critical wave numbers 
(yielding the minimum Rayleigh number) (b) vs. heat of phase transition at ρv/ρw = 0.9 
and Γ = 0.5 (1), 1 (2), and 2 (3).

Fig. 4. Critical Rayleigh numbers (minimum in wave number) and critical wave numbers 
(yielding the minimum Rayleigh number) (b) vs. heat of phase transition at ρv/ρw = 0.1 
and Γ = 2: 1) case of fi nite critical wave numbers; 2) short wave case.
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For positive M values in Fig. 3a, the picture is somewhat different. As can be seen from the fi gure, in addition 
to the upper curves, there are also the lower curves. The regions above the upper curves and below the lower curves 
are the regions of instability of mechanical equilibrium. Accordingly, the region between the lower and upper curves is 
the region of instability of mechanical equilibrium, at least for small perturbations. Figure 3b shows the critical wave 
numbers corresponding to the upper neutral curves in Fig. 3a. The lower curves in Fig. 3a correspond to shortwave unstable 
disturbances of the Rayleigh–Taylor type.

Figure 4 shows analogous dependences of the critical Rayleigh number and the corresponding wave number at 
small ratios of the phase densities. It can be seen that the picture remains constant qualitatively, as the ratio of the phase 
densities decreases, although quantitative changes may be considerable.

Finally, Figs. 5 and 6 give the characteristic streamlines for the endogenic and exogenic phase transitions 
respectively. At small values of the heat of phase transition, neutral fl ows are single-stage. With growth in |M|, the fl ow 
gives way to a partially two-stage one and, as |M| grows further, becomes fully two-stage where the cells in the upper and 
lower layers may be separated by an induced adjacent vortex (roller). Figures 5 and 6 show the position of an undisturbed 
phase boundary as a coarse dotted line and its disturbed position, as a fi ne dotted line. In constructing the disturbed phase 

Fig. 5. Streamlines at the ratio of the phase densities ρv/ρw = 0.9, Γ = 2, and different 
values of the heat of endogenic phase transition: M = 0.01 (a), –0.2 (b), and –1 (c); the 
coarse and fi ne dotted lines show the position of the phase boundary in undisturbed and 
disturbed states respectively.

Fig. 6. Streamlines at the ratio of the phase densities ρv/ρw = 0.9, Γ = 2, and different 
values of the heat of exogenic phase transition: M = –0.1 (a), –0.2 (b), and –10 (c); the 
coarse and fi ne dotted lines show the position of the phase boundary in undisturbed and 
disturbed states respectively.
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boundary, we have introduced the normalization factor for the sake of illustration. Note that for the considered parametric 
values in the case of endogenic phase transition, the phase boundary deviates toward the substance fl ow (Fig. 5). Generally 
speaking, this is a strict rule only for small heat-release effects, i.e., large Γ. In this case for the exogenic reaction in stable 
circulation of the liquid, the phase boundary must deviate to a side that is opposite to the liquid fl ow. In the general case, 
however, there can be two directions of deviation of the phase boundary as shown in Fig. 6 for the exothermal reaction, 
which is due to the competition of the infl uence of the parameters M and Γ, i.e., the values of the heat of phase transition 
and the slope of the phase-equilibrium curve.

Conclusions. For endogenic phase transition, the phase transition hinders, as a rule, the onset of convection, i.e., 
the Racr(–M) curve grows with argument. However, as can be seen from Fig. 3a, at small ratios of the phase densities and 
slopes of the equilibrium curves that are small in modulus, the Racr(M) curve may have a shallow local minimum in the 
region of small thermal effects.

For exogenic phase transition in the region of small thermal effects, the picture is asymmetric in a sense. At small 
Γ, the critical Rayleigh number grows with thermal effect, i.e., the thermal effect hinders the onset of convection. At large 
Γ, conversely, there is a shallow minimum of the Racr(M) curve. Signifi cantly, for exogenic phase transition, there is the 
critical value Mcr > 0 after which we have, at small Rayleigh numbers, the Rayleigh–Taylor shortwave instability having the 
hydrodynamic nature (lower curve in Fig. 3a). With growth in the Rayleigh number, the equilibrium is stabilized and, on 
intersecting the upper curve in Fig. 3, the mixture becomes unstable again, but the instability has the convective nature now. 
With further growth in M, as Fig. 2c shows, it is also longwave disturbances that become unstable beginning with a certain 
value, and mechanical equilibrium becomes impossible.

If we speak of convective instability, for both types of phase transition, at a small thermal effect, fl ow is single-layer 
and covers the entire layer thickness. As the value of the thermal effect grows, partial stratifi cation of the fl ow occurs, i.e., 
there are both convective cells covering the entire thickness of a porous layer and the cells located inside just the upper layer 
or just the lower layer. With further growth in the thermal effect, the fl ow tends to full stratifi cation.

NOTATION

Cm, effective heat of a unit volume of the porous medium, J/(m3 K); Cp, specifi c heat of the mixture at constant 
pressure, J/(kg K); F, phase-equilibrium function; g, free-fall acceleration, m/s2; h, specifi c enthalpy, J/kg; k, permeability, 
m2; kx, wave number; M, dimensionless heat of phase transition; P, pressure, Pa; q, specifi c heat of vaporization, J/kg; T, 
temperature, K; V, normal component of the velocity of motion of the phase boundary, m/s; vn, normal component of the 
fi ltration velocity, m/s; v, fi ltration-velocity vector, m/s; β, thermal expansion coeffi cient, K−1; Γ, dimensionless value of 
the slope of the equilibrium curve (dp/dT); λ, increment of disturbances; λm, effective thermal conductivity of the porous 
medium, W/(m·K); μ, viscosity, N·s/m2; ρ, density, kg/m³; ψ, stream function. Subscripts: 0, mean value; s, mechanical 
equilibrium; v, quantities referring to the upper light phase; w, quantities referring to the lower heavier phase; *, parametric 
values at the phase boundary.
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