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REYNOLDS ANALOGY BASED ON THE THEORY 
OF STOCHASTIC EQUATIONS AND EQUIVALENCE OF MEASURES*

A. V. Dmitrenko  UDC 537.3

A new dependence has been obtained to calculate the Reynolds analogy in a nonisothermal turbulent fl ow in a 
circular tube. The formula for the Reynolds analogy was obtained from stochastic turbulence theory, which is based 
on stochastic differential equations of the laws of conservation of mass, momentum, and energy, and also on the 
regularities of equivalence of measures between deterministic and random motions. A comparison has been made of 
the calculation results for the classical formula and for the new formula for various Prandtl numbers.
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Introduction. Issues associated with determining friction and heat-transfer coeffi cients are known to assume three 
approaches: experimental, theoretical, and numerical. Although the results of numerical investigations make it possible to 
determine these coeffi cients using various procedures, such as RANS, LES, and DNS, they call for subsequent verifi cation 
by experiment. At the same time, in experimental investigations of actual industrial machines, researchers often manage to 
obtain measurements of thermal characteristics, whereas friction has to be calculated from indirect dependences. One of these 
relations is the Reynolds analogy between momentum and heat transfer. The existing formulas to calculate the Reynolds 
analogy were obtained when criterion procedures were used. The use of these relations caused numerous questions since the 
dependences involved just the Prandtl number. In this connection, obtaining a dependence to calculate the Reynolds analogy 
from the new theories developed in recent years is of undoubted interest. In accordance with the results of analyzing the 
basic principles of turbulence theory [1–15], a physical regularity of equivalence of measures was determined in [16–29], 
which made it possible to create systems of stochastic equations to determine the onset of turbulence in isothermal and 
nonisothermal fl ows and to determine the basic characteristics of turbulent fl ows. On the basis of stochastic equations for 
continuous laws and equivalence of measures, analytical dependences have been obtained to calculate the critical point of 
the onset of turbulence and critical Reynolds and Taylor numbers for classical fl ows of a continuous medium. Relations have 
been derived that determine the classical distributions of velocity and temperature fi elds and of second-order correlations; 
dependences of the coeffi cients of friction and heat transfer on a plate and in tubes on the energy of perturbation and its scale 
and on the turbulent Reynolds number have been determined [21–31]. In [32–36], dependences have been determined and 
correlation dimensions of an attractor (number of the degrees of freedom) of the boundary layer have been calculated on a 
plane plate and in a circular tube and in the boundary layer of the earth′s atmosphere. This is a very important point, since 
the existing methods and the obtained relations to determine the dimensions of an attractor require, in essence, repeated 
multiple conduct of numerous thorough experimental and theoretical investigations of hydrodynamic turbulence that have 
been performed in the past 100 years. This new method of constructing a space-time portrait of the correlation dimension of 
an attractor for conditions in a tube, in the boundary layer on a plane plate, and in the boundary layer of the earth′s atmosphere 
enables us to check results of numerical calculations and direct numerical simulation DNS. Analytical dependences for the 
spectral function are presented in [37, 38].

System of Equations. The equations obtained in [16–21] are of the form:
the continuity equation
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and the energy equation
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Here τ, ρ, U, E, and T are the time, density, velocity vector, energy, and temperature. The stress tensor τi,j is determined from 
the following formula:
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where ν, μ, and ξ are the kinematic, dynamic, and second viscosity. The quantities ui, uj, ul, xi, xj, and xl are the velocities 
and coordinate corresponding to i, j, and l; δi,j = l at i = j and δi,j = 0 at i ≠ j; P is the pressure of the liquid or the gas; λ is the 
thermal conductivity; cp and cv are the specifi c heats at constant pressure and volume; F is the external force. The correlation 
time τcor = 0

corτ  [21–25] determines the lifetime of a perturbation existing in the fl ow at the beginning of interaction with the 
deterministic motion
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In these expressions, L is the linear measure of perturbation (turbulence scale) and LT = 
Pr
L , Pr = pcρν

λ
 is the 

Prandtl number. In what follows, L = LU,P = LU is the turbulence scale.  The subscripts U, P, and U refer to the velocity fi eld, 
and the subscript T, to the temperature fi eld. Then for the medium′s nonisothermal motion, using the defi nition of measures 
of equivalence between the deterministic and random process at the critical point, we determine the sets of stochastic energy, 
momentum, and mass equations for the following space-time domains: 1) onset of generation (subscript 1,0 or 1); 2) genera-
tion (subscript 1,1); 3) diffusion (1,1,1), and 4) dissipation of turbulent fi elds. These results make it possible to introduce the 
notion of a correlator, which has been determined for potential physical quantities and combinations (N, M). This correlator 
will structurally determine the possible range of motion in space depending on various combinations (M, N) and relevant 
values which determine the interval of the space–time correlation.

Analytical Solutions. For the domain of the onset of generation rc0(xc + Δx0, τc + Δτ0) – rc of the pair (N, M) = (1, 0), 
as defi ned in [16–31], we have a system of mass, motion, and energy equations. The system of mass, momentum, and energy 
equations (1)–(3) for domain 1, which refers to the (N, M) = (1, 0) pair, is equal to
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According to [39–43], deterministic motion in a tube is determined by the quadratic Poiseuille equation of the velocity 

profi le under the assumption of constancy of the medium′s thermophysical properties u1 = 
2

0 1 rU
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; U0 and u1 are the 
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velocities on the axis and along x1; x1 and x2 are the longitudinal and transverse coordinates; R and r are the tube radius and 
the running radius. In the case of substantial nonisothermicity, the character of distribution of the velocity and temperature 
profi les has been determined in [44–50]. As for the isothermal process, to fi nd expressions of the critical point (x2)cr, we use 

the relation of equivalence of measures d(Ecol,st)1,0 = –Est; then for 2

cr cr
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R R
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The expression is approximately 20% smaller than the expression written previously in boundary-layer approximations as 
far as the numerical coeffi cient is concerned [16–18]. Then the critical Reynolds number will be determined analogously 
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 or, with account of formula (5), we write, according to [21]
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. The system of mass, momentum, and energy equations (1)–(3) for domain 2, which refers to the 

(N, M) = (1, 1) pair, is written in the form
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Using systems (6) and (7), we have obtained formulas for the velocity and temperature fi eld [21]. Here, account should be 
taken of the fact that substantially nonisothermal fi elds are characterized by the non-self-similarity of distributions [39–41].

It is common knowledge [44–52] that in the region of developed turbulence, the profi les of the averaged characteristics 
of velocity and temperature have affi ne similarity
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Applying the mean-value theorem, we obtain
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Following [19–27] and taking account of 
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Here (Red)cr2 is the second critical Reynolds number. Equation (11) includes the exponent of the profi les nT and n; 
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Taking account of relations (10) and (11) and of formulas in [19–23], we have
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For the nonisothermal motion [20–23], the critical point will be defi ned as
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Then, according to [26], the friction factor is defi ned as
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Taking account of the estimates [21–29] of the exponents of the profi les nT = 8 and n = 7, we have
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Finally, we write
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Results. On the basis of the solution of stochastic equations, we have obtained dependence (18) to calculate the 
Reynolds analogy in a circular tube. A comparison of this dependence with the classical dependence is presented in Table 1, 
which also gives a calculation of the Reynolds analogy for a plane plate according to [51].
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Conclusions. Thus, the results show a satisfactory agreement between the classical experimental dependence and 
analytical formulas (18) and [51] obtained according to the stochastic theory of turbulence, which is based on stochastic 
differentials equations of the laws of conservation of mass, momentum, and energy, and also the regularity of the equivalence 
of measures between deterministic and random motions. It should be noted that the stochastic procedure fi nds increasing 
use in scientifi c investigations not only in motion of continuous media [7–10, 18–38, 53–55] but also in heat-conduction 
problems [56].
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