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MISCELLANEA

ON THE PROBLEM OF DESIGNING THE ANISOTROPIC 
MATERIAL OF SHELL SLEEVES WITH A FREE EDGE 
IN THE CORE OF A NUCLEAR ROCKET ENGINE

B. V. Nerubailo UDC 539.3

The author gives numerical results on taking account of the infl uence of  anisotropy of physicomechanical properties 
of free-edge cylindrical shell sleeves from orthotropic material on the stressed state in fuel assembles of the core of 
a nuclear rocket engine in their probable local radial interaction, which is important in designing.

Keywords: differential equation, boundary conditions, Fourier series, stressed state, local load, physically 
orthotropic, transversally isotropic.

One probable propulsion system to transport earth dwellers to distant planets, in particular, Mars, is, obviously, a 
nuclear rocket engine (NRE). In one of the most advanced design versions of a nuclear rocket engine, an "unprecedented 
decision was taken to use materials prone to brittle failure, which required a change in designing principles and in established 
views of strength and thermostability" [1]. On the portion of the core, the internal and external casings are protected by 
free-edge sleeves with a great number of individual coaxially assembled cylindrical bushings of length 50–150 mm from 
anisotropic materials: orthotropic porous or high-density carbide and high-density transversely isotropic pyrolytic graphite 
(pyrographite). Inside the heat-insulation package, there are heating sections containing fuel elements which, in the process 
of operation, may "produce fractures and hence fragments" (Fig. 1) by means of which local or lumped contact interactions 
with high co-stresses may occur in coaxially neighboring sleeves.

In this connection, the focus is placed on ensuring the intrinsic thermostability of individual elements of the package 
to the occurring temperature fi eld [2, 3], on the one hand, and to their possible contact interaction because of the radial 
temperature gradient from the center to the periphery in the heating section of the fuel assembly, which may be as great as 
3000 degrees, on the other [1]. Because of the considerable temperature difference across the thickness of the entire package 
of the heating section and of each separate sleeve, the sleeves can "turn inside out" at free edges, which may result in the local 
contact of their "turned-out" edge with the coaxially neighboring sleeve, i.e., with that more distant from the center and less 
heated. As a solution to the thermoelastic problem in the presence of hot spots in the shell, we can use the results in [3–6] 
where it has been reduced to solving partial differential equations of eighth order for the resolving function or a system of 
eight differential equations of fi rst order [7].

It is of both practical and theoretical interest to investigate the stressed state of free-edge shell sleeves, the more 
so as this process is stochastic in many parameters [8]. However, with arbitrary boundary conditions, in particular, in 
the presence of the free edge, constructing analytical solutions to boundary-value problems on the basis of differential 
equations of eighth order faces insurmountable, in practice, obstacles. Therefore, here, we employ the method of coupling 
of solutions based on differential equations of fourth order in longitudinal coordinate, taking into account the stochastic 
character of the process of straining.

Let sleeve shells with one or two free edges be subjected, in the operating regime, to normal pressure of local 
character from the neighboring structural elements assembled coaxially with them. We place the origin of coordinates x = 0 
at the free edge of the shell with thickness h and radius R and introduce the dimensionless coordinate α = x/R. We assume 
that the contact normal pressure p(α, β) is transmitted to the shell by k rectangular regions in one cross section of the shell 
and represent it in the form of the series
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where θ(α) = 1 at ξ1 ≤ α ≤ ξ2; θ(α) = 0 at α ∉ (ξ1, ξ2), ξ1 = ξ – α0; ξ2 = ξ + α0; θn = 0kβ
π

 (n = 0); θn = 2
π

 sin knβ0 (n = 1, 

2, 3, …). Thus, the length of the loaded region along the generatrix is a = 2α0R, and along the contour, b = 2β0R; the load on 
one region is P = abp0 = 4α0β0p0R2.

Let  a ≈ b ≈ Rh  or α0 ≈ β0 ≈ h R ; then in the asymptotic-synthesis method [5, 6], the stressed state with high 
variability is negligible, and the full stressed state may be constructed on the basis of differential equations of the ground 
state and the local edge effect, with each being a partial differential equation of fourth order in the longitudinal coordinate 
α. Here, the ground semi-momentless state plays a major role, which follows from the distinctive features of bending of the 
shell's middle surface in the zone adjacent to the free edge: here we mainly have bending in the circumferential direction 
combined with weaker bending of the generatrices of the shell as confi rmed previously for isotropic shells both theoretically 
and experimentally [6].

The ground state is described by a modifi ed semi-momentless theory: the resolving differential equation and the 
sought factors are obtained through the application of the criterion 2 2 2 2∂ Φ ∂β >> ∂ Φ ∂α  to the equations of the general 
theory of physically orthotropic shells [7]:
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For the edge effect, we obtain the differential equation for the resolving function w = w(α, β) and expressions 
for the sought factors analogously, but through the application of the criterion 2 2 2 2∂ Φ ∂α >> ∂ Φ ∂β >> Φ  [6] to the 
differential equations of the general theory of shells:
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Fig. 1. Fragment of the NRE full assembly: coaxially assembled shell sleeves and fuel 
elements.
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The ground stressed state and the local edge effect are constructed separately, when the discrepancy in boundary 
conditions due to the separate satisfaction of the boundary conditions is eliminated through the introduction of a correcting 
edge effect in the edge zone [6]. The total values of normal displacement, forces, and bending moments are computed as 
follows:
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where the superscripts "gr" and "e" refer to the ground state and the edge effect.
The solution of the resolving equation (2) of the ground state is sought in the form
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Analogously we represent the sought factors for which we formulate tangential boundary conditions
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Summation in the mentioned series is from n = 1 (k = 2) and n = 2 (k = 1) to the value n* [6].
Substitution of (6) and (1) into (2) yields the ordinary differential equation of the ground state

 

4 2 2
4 4 4 4 2 2 20

4
2 1 2

( ) 4 ( ) ( ) , 4 ( 1)
1

n
n n n n

d p R c k n k n
E hd

Φ α λ
+ μ Φ α = θ θ α μ = −

− ν να  
 (8)

and the relations linking the amplitude values of the resolving function and the sought factors and resulting from the 
substitution of (7) into (3):
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The solution by the method of initial parameters under arbitrary and step pressure is obtained from the generalization 
of the solution written in tabular from [5] (Table 5.1) for the case of isotropic material through the replacement of the coeffi -
cient μn in accordance with its value in the differential equation (8) and on replacement of the relations
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In the case of the edge effect, the resolving function will be represented in the form of the series
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The sought factors are represented in the form of the series
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The stressed-strained state corresponding to the local edge effect may be constructed analogously ([5], Table 5.2) in the zone 
of application of a load and to the correcting edge effect at the shell's edge.

Let us dwell on consideration of a concrete shell having one free edge (α = 0) and the other rigidly fi xed 
(α = α1= l/R). Boundary conditions will be written right for the amplitude values of displacements and force factors:

 1 1 1 1 1 1 1(0) (0) (0) (0) 0 , ( ) ( ) ( ) ( ) 0 .n n n n n n n nT S Q G U V W W∗ ′= = = = α = α = α = α =   (10)

In the adopted method of coupling of solutions of the ground state and the edge effect, they are split into tangential

 1 1 1(0) (0) 0 , ( ) ( ) 0n n n nT S U V= = α = α =   (11)

and nontangential

 1 1 1 1(0) (0) 0 , ( ) ( ) 0 .n n n nQ G W W ′= = α = α =   (12)

Here, the ground state should satisfy the tangential boundary conditions, and the edge effect, the nontangential ones [5].
Results of a parametric analysis of the infl uence of the versions of combination of the characteristics of a physically 

orthotropic material (0.01 ≤ λ ≤ 100) are given as plots of the: longitudinal force (Fig. 2), normal displacement (Fig. 3), and 
circumferential bending moment (Fig. 4).

It is assumed that the load P has been applied at the center of the shell over the region a × b = 0.5R/α0 = β0 = 0.25), 
α1 = l/R = b, and R/h = 100. Plots 2–4 a have been constructed under the assumption that E1 = 210 GPa and 
E2 = υar (0.01 ≤ λ ≤ 1.0), and plots 2–4 b, under the assumption that E2 = 210 GPa and E1 = υar (1.0 ≤ λ ≤ 100).

We can easily notice a very strong dependence of these factors on the orthotropy exponent. Therefore, such analysis 
may turn out to be useful in designing the shell material and optimizing the structure under assigned loads, and also for 
understanding the operation of the structure and creating its realistic mechanical mathematical model.

Fig. 2. Distribution of the longitudinal force along the generatrix of the shell at a con-
stant elastic modulus in the direction of the generatrix (a) and in the circumferential 
direction (b).
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For shells with both edges free, we have constructed plots (Figs. 5 and 6) illustrating the behavior of the normal 
displacement and the circumferential bending moment along the zero generatrix of shells of varying length loaded at the 
center by two opposing radial forces P that create the pressure p0 on each of the two regions (k = 2) with dimensions 
a × b = 0.25R × 0.25R (α0 = β0 = 0.125). As can be seen from the plots in Figs. 5 and 6, there is a strong dependence of the 
bending moment and displacement and hence of the strength and rigidity on the shell's length.

From the numerical values of normal forces and bending moments, we fi nd the normal stresses on the exterior and 
interior surfaces of the shell sleeve [9]:
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Note that the problem on calculating transversally isotropic cylindrical shells at the pressure arbitrarily distributed 
over the shell's surface, without limitations on the dimensions of the shell and on variability of the load, has been considered 
in [7].

It is common knowledge that to evaluate the interaction force (radial pressure) of the contacting pair of coaxially 
assembled shell sleeves, we must primarily know the clearance between them, normal displacements from temperature 
fi elds, and compliance of each at a unit force of their interaction. Next, it is required that the condition of equality of normal 

Fig. 3. Distribution of the normal displacement along the generatrix of the shell at a 
constant elastic modulus in the direction of the generatrix (a) and in the circumferential 
direction (b).

Fig. 4. Distribution of the circumferential bending moment along the generatrix of the 
shell at a constant elastic modulus in the direction of the generatrix (a) and in the circum-
ferential direction (b).
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displacements at the point, region, or line of their contact be written in the form of an algebraic canonical equation of the force 
method [9]. From the found contact force, by the solution of boundary-value problems for differential equations of anisotropic 
shell sleeves, we determine forces, moments, and also stresses from formula (13). At the axisymmetric temperature fi eld, the 
contact force of interaction away from the edges may be obtained quite simply on the basis of momentless theory, and near 
the edges, from the theory of shells with account taken of the edge effect.

NOTATION

D1 and D2, cylindrical rigidities; E1 and E2, elastic moduli of the material in longitudinal (α) and circumferential (β) 
directions, N/m2; G1(α, β) and G2(α, β), longitudinal and circumferential bending moments, N; l, R, and h, length, radius, and 
thickness of the shell, m; T1(α, β) and T2(α, β), longitudinal and circumferential forces, N/m; w(α, β), normal displacement, 
m; α and β, longitudinal (α = x/R) and circumferential (β = s/R) dimensionless coordinates; α0 and β0, dimensionless param-
eters of the loaded rectangular region; θm and θn, dimensionless coeffi cients of Fourier series expansions of normal pressure 
in the α and β directions respectively; λ = E2/E1 = ν2/ν1, orthotropy exponent of the shell's material, dimensionless quantity; 
ν1, coeffi cient of transverse compression in the β direction under tension in the α direction; ν2, coeffi cient of transverse 
compression in the α direction under tension in the β direction; σ1 and σ2, longitudinal and circumferential stresses, N/m2.
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