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APPLICATION OF AN INTEGRAL NUMERICAL TECHNIQUE 
FOR A TEMPERATURE-DEPENDENT THERMAL 
CONDUCTIVITY FIN WITH INTERNAL HEAT GENERATION

O. O. Onyejekwe, G. Tamiru, T. Amha, F. Habtamu,  UDC 536.2.001
Y. Demiss, N. Alemseged, and B. Mengistu

A numerical study of convective heat transfer in a longitudinal fi n with temperature-dependent thermal conductivity 
and internal heat generation is undertaken. Integral calculations are implemented on each generic element of the 
discretized problem domain. The resulting systems of nonlinear equations are solved effi ciently because of the 
coeffi cient matrix sparsity to yield both the dependent variable and its fl ux. In order to validate the formulation, 
the effects of the thermogeometric parameter, nonlinearity due to the temperature-dependent thermal conductivity, 
and of the heat transfer coeffi cient on the fi n temperature distribution are investigated. The results are found to be 
in agreement with those for similar problems described in the literature and with the physics of the problem. 

Keywords: convective heat transfer, longitudinal fi n, temperature-dependent thermal conductivity, systems of 
nonlinear equations, discretized problem domain, sparsity of coeffi cient matrix, integral calculations, generic 
element, thermogeometric parameter.

Introduction. The primary challenge in handling a second-order ordinary differential equation for the fi n problem is 
the presence of nonlinearity arising due to the temperature-dependent thermal conductivity. For considerably long longitudinal 
fi ns with uniform cross-sectional circular and rectangular geometries, the temperature variation is assumed to occur only in 
the axial direction. This consideration explains why most fi n heat transfer calculations are one-dimensional and nonlinear, 
except for the cases when all the thermophysical properties, including the thermal conductivity, are assumed constant [1, 2]. 
However for most practical applications, the dependence of the heat transfer coeffi cient on a dependent variable should be 
expressed in such a way as to accurately represent the energy transfer process according to exponential, linear, or power law. 
A consideration of these factors with respect to heat transfer in a longitudinal fi n constitutes the primary motivation for this 
study. In addition, we have extended our investigation to include the cases of internal heat generation occurring in current 
carrying electric arcs, nuclear rods, or any other heat generating components.

The studies involving temperature-dependent thermal conductivity and heat transfer coeffi cient have for a long 
time provided a fertile ground for researches. Aziz and Benzies [3] applied a regular perturbation technique to study 
convective heat transfer in a fi n with variable thermal conductivity. In a later study, Pakdemirli and Sahin [4] as well as 
Bokhari, Kara, and Zaman [5] obtained analytic solutions of the fi n problem with variable thermal conductivity by the 
symmetry method. Mebine and Olali [6] applied the Leibnitz–MacLaurin method (LMM) for obtaining a series solution 
of the nonlinear fi n equation. Their work showed that an increase in the thermal conductivity resulted in a rise in the 
wall temperature, whereas the opposite result took place with increasing thermogeometric parameter. Their LMM results 
showed excellent agreement with previous closed-form solutions. Semianalytic techniques, such as the homotopy analysis 
method (HAM), variational iteration method (VIM), differential transform method (DTM), homotopy perturbation method 
(HPM), Adomian decomposition method (ADM), and the more recent Leibnitz–MacLaurin method (LMM) gave solutions 
expressed in a series form because most if not all their algorithms are based on variants of the Taylor series expansion. 
Such solutions may not be as fl exible as those obtained numerically, being often used as benchmarks for validating 
numerical ones. In this connection, mention may be made of the works by Coskun and Atay [7], Aziz and Enamul Hug 
[8], Campo and Spaulding [9], Kraus, Aziz, and Welty [10], Fatoorechi and Abolghasemi [11], Moitsheki [12], and Khani 
and Aziz [13].
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In other attempts, the domain-based numerical techniques were predominantly used. Sobamowo [14] applied the 
fi nite difference technique to solve systems of nonlinear equations resulting from the fi n problem. His results showed that the 
fi n temperature distribution, total heat transfer rate, and the fi n effi ciency were signifi cantly determined by the thermophysical 
fi n properties. He also found that an increase in the temperature-dependent thermal conductivity, as well as in internal heat 
generation, affects the thermal stability range of the computations. Similar attempts can be found in the work by Coskun 
and Atay [7]. A closer approach to the solution of the fi n problem with variable thermal conductivity reveals a clear bias 
towards semianalytic solutions, except some few cases that involve domain discretization or decomposition (see the works 
by Arslanturk [15] and Chiu and Chen [16]). In the present work, we still retain domain discretization, but in addition with 
converting the governing differential equation into its integral analog. The resulting elemental equations are assembled and 
solved to yield the primary dependent variable as well as its fl ux at each node. 

Mathematical Formulation. Figure 1 shows a straight fi n attached to a heat source with temperature Tb that is 
placed in a fl uid with temperature Ta. The insulated fi n has an arbitrary cross-sectional area A, perimeter P, and length b. The 
one-dimensional energy balance is given as

 
a( ) ( ) 0 ,d dTA K T Ph T T

dx dx
⎡ ⎤ − − =⎢ ⎥⎣ ⎦

 (1)

where K(T ) is the temperature-dependent thermal conductivity and h is the heat transfer coeffi cient. The thermal conductivity 
is assumed as

 a a( ) (1 ( )) ,K T k T T= + λ −  (2)

where ka is the thermal conductivity of the ambient fl uid and λ is the parameter determining the thermal conductivity variation. 
Equation (1) is nondimensionalized with the following variables:

 
2 0.5

a b a a( )/( ) , / , [ /( )] ,T T T T X x b hPb k Aθ = − − = ψ =  (3)

where ψ is the dimensionless thermogeometric fi n parameter.   As a result, Eq. (1) can be presented in the following compact 
form:

 

2 2

2
ln ( ) .

( )
d d D d

dX dX DdX
θ θ θ ψ

= − + θ
θ

 (4)

Here θ and X are the dimensionless temperature and coordinate, respectively, and D(θ) is the dimensionless temperature-
dependent thermal conductivity given by ( ) 1 ,D θ = + βθ  where b a( )T Tβ = λ −  is the fi n parameter which determines 
the variation of the temperature-dependent thermal conductivity. Equation (4) is a second-order dimensionless nonlinear 
differential equation with the following boundary conditions:

                 0
0 , (1) 1 .

X

d
dX =

θ
= θ =

                 
(5)

The following variables are very relevant for studying the heat transfer process: the heat transfer rate expressed as

 a
0

( )
b

Q P T T dX= −∫                     (6a)

and the fi n effi ciency equal to the ratio between the fi n heat transfer rate and that calculated for the case as the entire fi n is at 
the base temperature

 
1a

0

ideal b a 0

( )

( ) .
( )

b

P T T dX
Q X dX

Q Pb T T

−

η = = = θ
−

∫
∫  (6b)

The integral analog of Eq. (4) obtained via the Green second identity is
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dX D

− λθ + − − − θ − − − − θ

⎡ ⎤θ ψ
− − + ϕ + − + ϕ + − ϕ + = =⎢ ⎥

θ⎢ ⎥⎣ ⎦
∫

 (7)

where H(X ) is the Heaviside function, φ is the derivative of the dependent variable, x0, xL, and lm are the x coordinates of the 
ends of an element in the problem domain and the maximum length. Equation (7) begins the process of converting a system 
of numerical approximations of a continuous differential equation into a fi nite number of discrete elemental equations in 
the problem domain. We formalize this procedure by representing Eq. (7) at each node of a linear element in the discretized 
problem domain.

At node 1 (xi = x1) we have 

 

1

1 2 m 1 m 2 1 m
m0

1
2

1 m
0

1( ) (| | )

[(| | ) { }] 0 , , 1, 2 ;

n
j j n

n n j j

dl l l X X l dX
l dX

X X l dX j n

⎡ ⎤⎧ ⎫Ω
−θ + θ + ϕ − + ϕ + − + Ω ϕ − Θ⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦

+ − + Ω χ Ω ψ θ = =

∫

∫  

(8a)

similarly at node 2 (xi = x2) 
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1 2 m 2 m 1 1 m
m0

1
2

2 m
0

1( ) (| | )

[(| | ) { }] 0 .

n
j j n

n n j j

dl l l X X l dX
l dX

X X l dX

⎡ ⎤⎧ ⎫Ω
θ − θ − ϕ − + ϕ + − + Ω ϕ − Θ⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦

+ − + Ω χ Ω ψ θ =

∫

∫  

(8b)

We approximate the quantities ln ( ) , 1/ ( ) , and /D D d dXθ = Θ θ = χ θ = ϕ  by linear functions. Now the system 
of discrete elemental equations can be cast in a representative matrix form as

 
2( ) ( ) 0 , , , 1, 2 .ij j ij inj n j inj n jR L i j nθ + − Λ Θ ϕ + Ψ χ ψ θ = =  (9) 

Without loss of generality, we can use further advantage of this integral discrete domain-driven numerical procedure, assuming 
that the temperature-dependent thermal conductivity is uniform within each element, and present the resulting variable as 

Fig. 1. Schematic diagram of the problem.
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1() ( )( ) ( ) [( )] , 0 1 , 1 ,k kD D D a b a b a+θ ≈ θ = θ + θ ≤ ≤ = −  (10)

where k is the iteration level, ( 1) ( 1)( 1)
1 2( )/2k kk + ++θ = θ + θ  is the elemental average of the dependent variable at the 

current iteration level, ( ) ( )( )
1 2( )/2k kkθ = θ + θ  is such the average at the previous iteration level, and the subscripts refer to 

the nodal numbers of each element. It should be mentioned that a uniform representation of the dependent variable within an 
element presents a noticeable simplifi cation of Eq. (9) which can be presented as

 
2( ) 0 .ij j ij j ij jR Lθ + ϕ + ϒ χ ψ θ =  (11)

Equation (11) is still nonlinear, and the Picard scheme is adopted for its linearization.
To illustrate the versatility of this elegant and straightforward approach, Eq. (1) is modifi ed to include internal heat 

generation:

 b a int( ) ( ) ( ) 0 .d dTA K T Ph T T Q T
dx dx

⎡ ⎤ − − + =⎢ ⎥⎣ ⎦
 (12)

After the same dimensionalization procedure, Eq. (12) looks like:

 

2 2

2
ln ( ) ( {1 }) ,

( )
d d D d Q z

dX dX DdX
θ θ θ ψ

= − + θ − + θ
θ

 (13)

where z is the dimensionless internal heat generation parameter. The boundary condition is still presented by Eq. (5).
Finally Eq. (13) becomes:

 
2 ( {1 }) 0 .ij j ij j ij j jR L Q zθ + ϕ + ϒ χψ θ + + θ =  (14)

Equations (11) and (14) show that the fl ux term is computed directly as a second dependent variable, hence the 
accuracy of its determination is directly linked to the scalar profi le. For this reason, the fl ux is handled in such a way as to 
enhance stability and reduce any intermodal fl ux discontinuities and unphysical oscillations, especially for high-gradient 
problems or for the problems where scalar quantities must remain positive for some physical reasons. As a result we get

 

1( ) ( ) ( ) ( ) ,i i i i
dT dT qG X ds G X ds G X D ds G X ds
dn dn D D

Γ Γ Γ Γ

⎛ ⎞− ϕ = − = − =⎜ ⎟
⎝ ⎠∫ ∫ ∫ ∫  (15)

where .dTq D
dn

= −   The quantity 
q
D

 is approximated by a linear basis function, and now the fl ux term is given as

 ( ) .i j ij
q qG X N ds L
D D

Γ

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫  (16)

For the problem solved, D is a function of the dependent variable, and for each iteration it is presented through the previous 
iteration value

 ( ) .ij
ij jik

j

LqL q
D D

⎛ ⎞⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (17)

This procedure guarantees the achievement of conservation in an integral sense not only locally but globally, as well 
as because of the interaction between the adjacent nodes of an element in the problem domain by virtue of a shared 
boundary.

Numerical Results. Table 1 enables one to compare the results of the exact solution for the linear case (β = 0)
 obtained by the method developed herein with the analytical solution ( ) cosh ( )/coshX Xθ = ψ ψ  at 0 1X≤ ≤  and 
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TABLE 1. Dimensionless Temperature as a Result of Numerical and Exact Solutions in the Linear Case (β = 0)

X
ψ = 0.5 ψ = 1

Exact Numerical (present) Exact Numerical (present)

0 8.87E–01 8.87E–01 6.48E–01 6.48E–01

0.1 8.88E–01 8.88E–01 6.51E–01 6.51E–01

0.2 8.91E–01 8.91E–01 6.61E–01 6.61E–01

0.3 8.97E–01 8.97E–01 6.77E–01 6.77E–01

0.4 9.05E–01 9.05E–01 7.01E–01 7.01E–01

0.5 9.15E–01 9.15E–01 7.31E–01 7.31E–01

0.6 9.27E–01 9.27E–01 7.68E–01 7.68E–01

0.7 9.41E–01 9.42E–01 8.13E–01 8.13E–01

0.8 9.61E–01 9.59E–01 8.69E–01 8.67E–01

0.9 9.86E–01 9.78E–01 9.37E–01 9.29E–01

1.0 1.00E+00 1.00E+00 1.00E+00 1.00E+00

TABLE 2. Dimensionless Temperature as a Result of Numerical and Semianalytic (HAM) Solutions in Nonlinear Cases

X
β = 0.5, ψ = 1 β = 0.2, ψ = 0.5

HAM Numerical (present) HAM Numerical (present)

0 6.48E–01 6.48E–01 9.03E–01 9.04E–01

0.1 6.51E–01 6.51E–01 9.04E–01 9.05E–01

0.2 6.61E–01 6.61E–01 9.07E–01 9.08E–01

0.3 6.77E–01 6.77E–01 9.12E–01 9.13E–01

0.4 7.01E–01 7.01E–01 9.19E–01 9.19E–01

0.5 7.31E–01 7.31E–01 9.27E–01 9.28E–01

0.6 7.68E–01 7.68E–01 9.38E–01 9.38E–01

0.7 8.13E–01 8.13E–01 9.51E–01 9.51E–01

0.8 8.69E–01 8.67E–01 9.65E–01 9.67E–01

0.9 9.37E–01 9.29E–01 9.82E–01 9.94E–01

1.0 1.00E+00 1.00E+00 1.00E+01 1.00E+00

ψ = 0.5 and 1. Table 2 gives the results for nonlinear cases (β ≠ 0) at different values of the thermogeometric parameter 
β. Good agreement of the analytic and numerical results is observed in all the cases. Figure 2a illustrates the effect of the 
value of the thermal conductivity parameter β on the dimensionless temperature profi le for a fi xed value of the 
thermogeometric parameter ψ. The nonlinear temperature increase with increasing β is seen. Figure 2b shows the 
dimensionless temperature profi les for the linear case (β = 0) and different values of the thermogeometric parameter ψ. It 
is observed that as ψ increases (i.e., the fi n length increases or the cross-sectional area decreases), a lesser temperature is 
recorded. 
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We are coming now to the cases involving internal heat generation. Table 3 shows very close agreement between 
the analytic and numerical results. Figure 3a displays the profi les of the dimensionless temperature along the fi n for 

0.2, 0.3, and 0.5.Q zβ = = =  It is seen that the profi les become steeper and the temperature decreases with increase in 
ψ. This behavior is due to the fact that ψ is proportional to the fi n length. In addition, it is observed that relatively small values 
of ψ may lead to unstable heat transfer in the fi n. Figure 3b shows that an increase in the thermal conductivity parameter β 
increases the heat transfer rate through the fi n within the constraints established by the fi xed values of the fi n parameter and 
internal heat generation. This is primarily due to the fact that, as this takes place, both the dimensionless fi n temperature and 
the heat transfer rate increase. Similar trends can be observed in Fig. 3c and d for increase in the dimensionless temperature 

TABLE 3. Dimensionless Temperature with Heat Generation as a Result of Numerical and Analytic Solutions in the Linear 
Case (β = 0) at γ = 0.3

X
Q = 0.3, ψ = 0.5 Q = 0.5, ψ = 1.0

Analytic Numerical (present) Analytic Numerical (present)

0 8.87E–01 8.87E–01 6.48E–01 6.48E–01

0.1 8.88E–01 8.88E–01 6.51E–01 6.51E–01

0.2 8.91E–01 8.91E–01 6.61E–01 6.61E–01

0.3 8.97E–01 8.97E–01 6.77E–01 6.77E–01

0.4 9.05E–01 9.09E–01 7.01E–01 7.01E–01

0.5 9.15E–01 9.21E–01 7.31E–01 7.31E–01

0.6 9.27E–01 9.34E–01 7.68E–01 7.68E–01

0.7 9.42E–01 9.50E–01 8.14E–01 8.13E–01

0.8 9.59E–01 9.68E–01 8.67E–01 8.67E–01

0.9 9.79E–01 9.78E–01 9.29E–01 9.29E–01

1.0 1.00E+00 1.00E+00 1.00E+00 1.00E+00

Fig. 2. Dimensionless temperature profi les: at ψ = 0.5 and different values of β (a); at 
β = 0 and different values of ψ (b).
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with the dimensionless heat transfer rate and internal heat generation parameter, respectively. As the internal heat generation 
parameter increases, the fi n effi ciency for fi xed fi n parameters rises.

The computational scheme developed herein is further tested to see how accurately it can predict the fl ux [see 
Eq. (17)]. Figure 4a shows that the smallest fl ux is observed for β = 0 and it rises with β, reaching the maximum value at
β = 1. We also note that all the fl ux values are equal to zero at X = 0. This is in accordance with the specifi ed boundary 
condition as well as with the physics of the problem. Figure 4b illustrates the effect of the Biot number on the fl ux profi le 
for a fi xed set of the fi n parameters. As mentioned in [14], this number for the one-dimensional fi n analysis should lie within 
0 < Bi < 0.1, otherwise the two-dimensional analysis is recommended. It can be observed that the higher is the Biot number, 
the lower is the predicted fl ux. Since the Biot number mimics the thermogeometric parameter ψ, because both of them depend 
on the fi n length, an interesting comparison between the fi n fl ux profi les in Fig. 4b and the fi n temperature profi les in Fig. 3a 
is worthy of attention. In both cases the highest value of the dimensionless characteristic is matched by the lowest value of 
the corresponding parameter. This relates especially to the thermogeometric parameter: the smaller is this parameter, the less 
stable is the fi n heat transfer computation.

Fig. 3. Dimensionless temperature profi les: at z = 0.5, Q = 0.3, β = 0.2, and different 
values of ψ (a); at z = 0.6, Q = 0.3, ψ = 2, and different values of β (b); at z = 0.2,
ψ = 2, β = 0.5, and different values of Q (c); at ψ = 2, β = 0.6, Q = 0.4, and different 
values of z (d).
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Conclusions. The problem of heat transfer in a fi n with temperature-dependent thermal conductivity has been 
considered. This nonlinear problem has been solved by converting the governing nonlinear second-order differential equation 
into its integral analog. The resulting integral equations for each element were assembled and solved to yield the primary 
dependent variable as well as its fl ux for each node of a linear element in the problem domain. These results were compared, 
where possible, with the available closed-form solutions or numerical ones for the same problem. A comparison not only 
showed good agreement, but also has demonstrated that this formulation can be relied on to produce satisfactory results with 
considerable little numerical efforts. An additional point is the fact that this work can initiate researches that address the 
paucity of information on integral calculations involving the fi n problems. 

NOTATION

A, cross-sectional area; Bi, Biot number; b, length; D, dimensionless thermal conductivity; h, heat transfer 
coeffi cient; K(T ) and ka, thermal conductivity of the fi n and ambient fl uid; P, perimeter; Q, heat transfer rate; q, heat fl ux; 
Ta, Tb, temperatures of the fl uid and heat source, respectively; T, fi n temperature; x, coordinate; X, dimensionless coordinate;
z, dimensionless internal heat generation parameter; θ, dimensionless temperature; ψ, thermogeometric fi n parameter.
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