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INVERSE PROBLEM OF PIPELINE TRANSPORT 
OF WEAKLY-COMPRESSIBLE FLUIDS

Kh. M. Gamzaev    UDC 532.546:519.6

Nonstationary one-dimensional fl ow of a weakly-compressible fl uid in a pipeline is considered. The fl ow is described 
by a nonlinear system of two partial differential equations for the fl uid fl ow rate and pressure in the pipeline. An 
inverse problem on determination of the fl uid pressure and fl ow rate at the beginning of the pipeline needed for 
the passage of the assigned quantity of fl uid in the pipeline at a certain pressure at the pipeline end was posed 
and solved. To solve the above problem, a method of nonlocal perturbation of boundary conditions has been 
developed, according to which the initial problem is split at each discrete moment into two successively solvable 
problems: a boundary-value inverse problem for a differential-difference equation of second order for the fl uid 
fl ow rate and a direct differential-difference problem for pressure. A computational algorithm was suggested for 
solving a system of difference equations, and a formula was obtained for approximate determination of the fl uid 
fl ow rate at the beginning of the pipeline. Based on this algorithm, numerical experiments for model problems were 
carried out.

Keywords: pipeline transport, weakly-compressible fl uid, nonstationary fl ow, boundary-value inverse problem, 
differential-difference problem.

Introduction. At the present time, for transporting various fl uids (water, oil, oil products), pipelines of various 
dimensions are used, beginning from the smallest ones, used in laboratories and control-measuring apparatuses, up to main 
ones. Usually, in designing a pipeline the fl uid fl ow rate in it is assigned; it determines the pipeline effi ciency and the positions 
of its beginning and end. One of the main tasks here is the determination of the pressure drop along the pipeline length needed 
for the passage of a given quantity of fl uid through it. In practice, in solving this problem, use is made of the assumption 
according to which the fl uid motion in the pipeline is stationary and, proceeding from this assumption, the Darcy–Weisbach 
formula is used in calculations [1–3]:
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It should be noted that it was possible to justify this formula and to obtain an explicit expression for the coeffi cient of hydraulic 
resistance of the pipeline only for a homogeneous incompressible stationary laminar fl uid fl ow obeying the corresponding 
rheological laws. However, as the practice of the fl uid transport through pipelines shows, the start-up or stopping of a 
pipeline, switching-in or switching-off of the pumping-over station, the beginning or stopping of the fl uid takeoffs, and other 
technological operations lead to the appearance of nonstationary fl uid fl ow in the pipeline.

In this connection, for the pipeline conveyance of fl uids, of great importance is the investigation of nonstationary 
fl ow of compressible fl uid in the pipeline with the aim of determining the hydrodynamic conditions at the beginning of the 
pipeline indispensable for achieving the transmission of the assigned quantity of fl uid through the pipeline.

Problem Formulation. Nonstationary fl ow of a weakly-compressible viscous fl uid in a horizontally positioned 
pipeline of length l is considered. The fl ow is described by a system of partial-differential equations in the fl uid fl ow rate and 
pressure variables [1–3]:
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Let the state of the fl uid fl ow in the pipeline at the initial moment t = 0 be known, i.e., for the system of equations (2) 
and (3) the following initial conditions are known:

 ( , 0) ( ) ,Q x x= ϕ  (4)

 ( , 0) ( ) .P x x= ψ  (5)

It is assumed that the fl uid is supplied to the beginning of the pipeline (x = 0) and that the fl uid fl ow rate and pressure at the 
end of the pipeline (x = l) are given in conformity with its designed purpose. Then, for the system of equations (2), (3) we will 
have the following boundary-value conditions:

 ( , ) ( ) ,Q l t q t=  (6)

 ( , ) ( ) ,P l t t= θ  (7)

where q(t) and θ(t) are the functions describing the time history of the fl uid fl ow rate and pressure in the outlet section of the 
pipeline. It is necessary to fi nd the laws of variation of the pressure P(0, t) and fl uid fl ow rate Q(0, t) over time at the beginning 
of the pipeline, which provide the assigned fl uid fl ow rate q(t) in the pipeline at a certain pressure θ(t) at its end. The problem 
(2)–(7) posed relates to a class of boundary-value inverse problems [4–6].

Method of Solution. The boundary-value inverse problem (2)–(7) was solved by the method of nonlocal perturbation 
of boundary conditions [5]. We will replace the boundary condition (6), to which problem (2)–(7) owes its incorrectness by 
the nonlocal boundary condition

 ( , ) (0, ) ( ) ,Q l t Q t q t+ α =   (8)

where α is the parameter of nonlocal perturbation, which acts here as a regularization parameter: α > 0.
We discretize problem (2)–(5), (7), (8) in time. For this purpose we introduce a uniform difference time grid in the 

region [0 ≤ t ≤ T ]:
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(3) are discretized by "backward" difference:
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Introducing the notations Q j(x) ≈ Q(x, tj) and P j(x) ≈ P (x, tj), we will write problem (2)–(5), (7), (8) in the form
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 ( ) , 1, 2, , ,j jP l j m= θ = …  (12)

 0 0( ) ( ) , ( ) ( ) ,Q x x P x x= ϕ = ψ  (13)

where θ j = θ(tj) and q j = q(tj). It is evident that the resulting differential-difference problem (9)–(13) at each fi xed value j = 
1, 2, … , m can be split into two independent problems. We will fi nd P j(x) from Eq. (10):
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and we substitute the obtained expression into Eq. (9). As a result, we will have a linear differential-difference equation of 
the second order:
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 ( ) (0) .j j jQ l Q q+ α =  (16)

The boundary-value condition (16) is insuffi cient for singe-valued solution of Eq. (15). To obtain an additional condition we 
will write Eq. (14) for the case x = l:
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Hence, with account for the boundary-value condition (12), we will obtain the additional condition for Eq. (15):
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It is evident that on solving the problem (15)–(17) and determining the function Q j(x), 0 ≤ x ≤ l, we can fi nd the function 
P j(x) from the solution of the problem
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Now, for numerical solution of the boundary inverse problem for the differential-difference equation (15) we 
discretize this problem in the variable x. Let us introduce a uniform difference spatial grid in the region [0 ≤ x ≤ l]:

{ , 0, , / } ,x ix i x i n x l nω = = Δ = Δ =

and represent the discrete analog of the problem (15)–(17) on the grid ω :
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where j
iQ  ≈ Q j(xi) and j

iP  ≈ P j(xi). We transform the obtained system of difference equations to the form
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In the difference problem described by a system of linear algebraic equations (19)–(21), the approximate values of the sought 
function Q j(x) are considered to be unknown at the internal nodes of the difference grid xω , i.e., the function j

iQ , i = 0, 1, 
2, … , n, is considered. In order to divide this problem into mutually independent subproblems, each of which may be solved 
independently, we will present its solution at each fi xed value j = 1, 2, … , n in the following form [7, 8]:

 0 , 0, 1, , ,j j j j
i i iQ Q i n= ξ + η = …   (22)

where j
iξ  and j

iη  are the unknown variables. Substitution of (22) into (19) and (20) yields the relations
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from which, with account for the relation 0
jQ  = 0

jξ  + 0 0
j jQη , we obtain difference problems for determining the additional 

variables j
iξ  and j

iη :
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We can fi nd the solution of the difference problems described by systems of linear algebraic equations with a three-
diagonal matrix (23)–(25) and (26)–(28) at each fi xed value of j = 1, 2, … , m by the Thomas method [5]. Substitution of (22) 
into (21) yields the expression

0 0 ,j jj j j
n nQ Q qξ + η + α =

from which we obtain the following formula for determining the fl uid fl ow rate at the beginning of the pipeline:
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After determining 0
jQ  by formula (29), we can successively fi nd 1

jQ , 2
jQ , … , j

nQ  by the recurrent formula (22). Finding 
the fl uid fl ow rate distribution along the pipeline length, we can go over to the determination of pressure distribution. 
After constructing the discrete analog of problem (18) on the grid xω , we obtain the following computational formula for 
calculating the pressure:
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In particular, the pressure of the beginning of the pipeline is determined as

2
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Thus, the computational algorithm of the solution of inverse problem (2)–(7) on recovering the pressure and the fl uid 
fl ow rate at each discrete value of the time variable tj, j = 1, 2, … , m includes the solution of two linear difference problem of 
second order (23)–(25) and (26)–(28) for the additional variables j

iξ  and j
iη , i = 1, n , the determination of 0

jQ  from (29) 
and computation of j

iQ , i = 0, n , and j
iP , i = 0, 1n −  with the use of (22) and (30).

Results of Numerical Calculations. To elucidate the effi ciency of practical application of the proposed computational 
algorithm, numerical experiments were carried out for model problems by the following scheme: 

1) solution of the system of equations (2) and (3) at the initial conditions

( , 0) ( ) , ( , 0) ( )Q x x P x x= ϕ = ψ

and boundary conditions

0(0, ) ( ) , ( , ) ( ) ,Q t q t P l t t= = θ

2) the found dependences q(t) = Q(l, t) and θ(t) are taken to be exact data for numerical solution of the inverse prob-
lem on the recovery of Q(0, t) and P(0, t).

The fi rst series of calculations was carried out with the use of nonperturbed data. The second series of calculations 
was carried out with superposition of a certain function that models the error of experimental data on q(t):

( ) ( ) ( ) ( ) .q t q t t q t= + δσ�

In this expression δ is the error level and σ(t) is a random quantity modeled with the aid of the random-number generator. The 
value of the nonlocal perturbation parameter is determined in accordance with the misclosure principle [5], i.e., the values 
of α0 and γ are assigned and the succession αk+1 = αkγ is built. Computation is carried out until the following condition is 
fulfi lled:
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where ε is the given error.
Numerical calculations were carried out in a spatial-time difference grid with steps Δx = 5 m and Δt = 5 s. The results 

of the numerical experiment carried out for d = 1.2 m, ρ0 = 900 kg/m3, s = 1300 m/s, θ(t) = 0.2 MPa, ψ(x) = 0, φ(x) = 0, 
q0(t) = 2 + 0.5 sin 2t m3/s, l = 1000 m, λ = 0.2, ε = 0.015, α0 = 2, γ = 0.1, and α = 0.0002 with the use of nonperturbed and 
perturbed inlet data are presented in Table 1. For perturbation of the input data, the error δ = 0.05 was used. The results of 
numerical experiment show that in using nonperturbed input data the sought functions Q(0, t) and P(0, t) are recovered with 
high accuracy (the second and third, fi fth and sixth columns in Table 1). In this case, the relative errors of the recovery of 
functions do not exceed 0.02%. In using perturbed input data the error of determination of which is fl uctuating on character a 
weak dependence of the recovery of the indicated functions on this error is manifested. Thus, for an error of determining the 
input data of 4.23% the sought functions are determined with an error of 4.32%. On decrease in the error level, the solution 
is recovered more accurately. An analysis of the results of numerical experiment indicates that in the suggested algorithm the 
stability of the solution against the input data error is provided.



1572

Conclusions. Within the framework of the one-dimensional model of nonstationary fl ow of weakly-compressible 
fl uid in the pipeline the boundary-value inverse problem of determining pressure and fl uid fl ow rate is considered at the 
beginning of the pipeline, which provide the required regime of fl uid fl ow in its outlet section. The proposed computational 
algorithm makes it possible to successively determine the distributions of the fl uid fl ow rate and pressure along the pipeline 
length in each time layer only on the basis of the information on fl ow parameters in its outlet section.

NOTATION

c, velocity of sound in the fl uid, m/s; d, pipeline diameter, m; l, pipeline length, m; 0
tP , exact value of pressure, MPa; 

0P  and 0P� , values of pressure calculated at nonperturbed and perturbed input data, MPa; 0
tQ , exact value of the volumetric 

fl ow rate of fl uid, m3/s; 0Q  and 0Q� , values of the volumetric fl ow rate of fl uid calculated at nonperturbed and perturbed input 
data, m3/s; S = πd 2/4, cross-sectional area of pipeline, m2; t, time, s; u, mean velocity of fl uid fl ow in pipeline section, m/s; 
x, Cartesian coordinate, m; λ, coeffi cient of hydraulic resistance; ρ0, fl uid density, kg/m3.
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