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TRANSFER PROCESSES IN RHEOLOGICAL MEDIA

INFLUENCE OF TEMPERATURE AND PRESSURE 
ON VISCOELASTIC FLUID FLOW IN A PLANE CHANNEL

A. V. Baranov  UDC 532.135:536.242:678:065

The hydrodynamics of a steady-state nonisothermal fl ow of a viscoelastic polymer medium in a plane channel and 
heat transfer in it under boundary conditions of the fi rst kind have been investigated. Fluid fl ow with a low Reynolds 
number and a high Péclet number was investigated, which made it possible to neglect the gravity and inertial forces, 
as well as the longitudinal thermal conductivity of the medium. From the rheological viewpoint, the polymer melt 
represents a viscoelastic fl uid; therefore the Phan-Thien–Tanner fl uid model was used as a rheological model of the 
fl uid, with viscosity depending on temperature and pressure. A high-viscosity medium was considered; therefore a 
dissipation term was included into the equation of the energy of its fl ow. With the use of the indicated rheological 
model the velocity profi le of fl uid fl ow was obtained in an explicit form from the equation of fl uid motion. It has been 
established that the dependence of the fl uid viscosity on temperature and pressure exerts a noticeable infl uence on 
the distribution of the Nusselt number and of bulk temperature of the fl uid along the channel length. It is shown that 
account for the temperature dependence of fl uid viscosity leads to a decrease in the role of energy dissipation of its 
fl ow in the process of fl ow heating and that, conversely, the dependence of the fl uid viscosity on pressure considerably 
enhances the dissipation effect. The problem has been solved numerically by the method of fi nite differences.
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Introduction. Numerous publications, a partial survey of which is presented in work [1], are devoted to investigation 
of the processes of nonisothermal non-Newtonian media fl ow in various channels. In the present work, fl ow of high-viscosity 
polymer composite in a plane channel is considered (Fig. 1) on the assumption that the temperature of the medium T0 and the 
temperature of the channel walls Tw do not coincide and that Tw exceeds T0. This means that as the composite fl ows in the 
channel it will heat up from both the hot walls of the channel and due to the energy dissipation of its fl ow.

The fl ow of viscoelastic composites is accompanied by clearly manifested highly elastic effects. In the mathematical 
model of such fl ow the fi rst difference of normal stresses becomes signifi cant, which requires incorporation of the rheological 
equation of nonlinear viscoelastic medium into this model. It is considered at the present time that the best results in describing 
the fl ows of nonlinear viscoelastic media are yielded by rheological models of relaxation (velocity) type. Often, especially in 
the foreign literature, they are also called differential. One of the most effi cient models of this type is the Phan-Thien–Tanner 
(PTT) model [2–15].

Among the most important theoretical and technical problems is the elucidation of the infl uence of pressure in 
polymer fl ows on their viscosity. In practice, in processing highly viscous polymers one deals with pressures of the order of 
hundreds (in extrusion) and thousands (in die casting) atmospheres that exert a substantial effect on the viscosity of polymers, 
which leads to the deviation of their technological parameters from the values calculated without accounting for this effect. 
Partial overview of the works devoted to this problem is presented in [16]. Of the publications not considered in [16] mention 
should be made of works [17–22] where the importance of taking into account the dependence of polymer viscosity on 
pressure is emphasized.

It should be noted that the presently known works devoted to investigation of heat transfer in the course of Phan-
Thien–Tanner fl ow in channels were carried out with the use of the condition of constancy of fl uid viscosity irrespective of 
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its temperature. This can also be said of the works in which other rheological models were used, for example, the presently 
popular Giesekus model [23, 24]. But there are no works in which the indicated rheological models could have been used with 
account for the dependence of the fl uid viscosity on pressure. A review of the literature has shown that the quantity of works 
devoted to the development of simple mathematical models of nonisothermal fl ow of viscoelastic fl uids in channels is clearly 
insuffi cient. Therefore an attempt has been made in the present work to create a model of this process that is relatively simple 
for engineering applications and that accounts for the key dependence of the fl uid viscosity on temperature and pressure.

Mathematical Model. Consideration is given to a polymer medium having a high viscosity whose fl ow occurs at 
low Reynolds numbers. This allows one, fi rst, to omit consideration of the hydrodynamic entry section of medium fl ow in the 
channel and consider that the fl ow velocity profi le at the inlet to the channel is developed and, second, to neglect the inertial 
terms in the equation of medium motion. It is adopted that transverse (secondary) fl ows in the channel are absent, i.e., the 
consideration may be restricted only to the longitudinal component of the fl ow velocity vx.

The viscoelastic rheological properties of the medium are described by the Phan-Thien–Tanner model written in a 
simplifi ed form as [12]

 
( ) ( ) ,T Tf tr V V V V V

t
∂τ⎛ ⎞τ τ + λ + ⋅ ∇τ − τ ⋅ ∇ − ∇ ⋅ τ = μ ∇ + ∇⎜ ⎟∂⎝ ⎠  

 (1)

where r is the channel radius, λ the time of fl uid fl ow relaxation in the channel, t the time, and τ is the extra tensor of stresses. 
The function f(trτ) can be presented in both exponential and linear form [12]. To simplify the intermediate calculations we 
use the linear form of this function:

 
( ) 1 ,f tr trελ

τ = + τ
μ  

 (2)

where ε is the rheological constant inversely proportional to the longitudinal viscosity of the medium. It is determined 
experimentally that for some grades of rubber mixtures based on various raw rubbers ε = 1 and λ ≈ 0.05 s [15].

With account for the foregoing assumptions, the rheological equations for the considered medium take the form [12]

 ( ) 2 ,x
xx xx xy

vf
y

∂
τ τ = λτ

∂
 (3)

 ( ) ,x
xx xy

vf
y

∂
τ τ = μ

∂
 (4)

where τxx and τxy are the components of the extra stress tensor. Equations (3) and (4) were written on the assumption that 
τyy = 0. If we divide (3) by (4), we obtain

 

22 .xx xy
λ

τ = τ
μ  

 (5)

Taking Eq. (5) taken into account, we will write the system of rheological equations (3) and (4) in dimensionless form as

 

22Wi ,xx xyσ = σ
μ

 (6)

Fig. 1. Schematic diagram of fl ow of a viscoelastic fl uid in a plane channel.
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The rheological equations (6)–(8) are supplemented with simplifi ed equations of motion of the medium [25]:

 

xy dP
Y dX

∂σ
=

∂  
 (9)

and with the conditions of its constant fl ow rate:

 

1

0

1 ,xV dY =∫
 

 (10)

where 
w x

phP
v

=
μ

 and X = x/h.

We supplement the given mathematical model with the boundary conditions

 0: 0 , 0 ,xVY
Y Y

∂ ∂θ
= = =

∂ ∂
 (11)
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T T
−
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−

After the fi rst integration of the equation of motion (9) we obtain

 
.xy

dP Y
dX

σ =
 

 (14)

Substituting (6) and (14) into (8), we obtain

 

22
2

2
2 Wi( ) 1 .xx

dPf Y
dX

ε ⎛ ⎞σ = + ⎜ ⎟μ ⎝ ⎠  
 (15)

Substitution of (15) into (7) yields

 

32
3

2
2 Wi .xV dP dPY Y

Y dX dX
∂ ε ⎛ ⎞μ = + ⎜ ⎟∂ μ ⎝ ⎠  

 (16)

After repeated integration of (16) with account for boundary condition (12) we obtain an expression for the fl ow velocity 
profi le of the medium in the channel:

 

3 3
2

3
1 1

2 Wi .
Y Y

x
dP Y dP YV dY dY
dX dX

⎛ ⎞= + ε ⎜ ⎟μ μ⎝ ⎠∫ ∫
 

 (17)

The unknown pressure gradient in the channel can be found by using the condition of constant fl ow rate of the 
medium in it (10):

 
1 13

2
1 2

0 0
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(18)



1299
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1 2 3
1 1
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Y Y

Y YF X Y dY F X Y dY= =
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The posed problem is solved for a nonisothermal medium whose viscosity depends on temperature and pressure 
[25, 26]:

 exp [ ] ,SPμ = ψθ +   (19)

where w 0( )b T Tψ = − and w .xs vS
h

μ
=  It is apparent that in this case the mathematical model must be supplemented 

with an energy equation. The solution of the hydrodynamic problem is carried out simultaneously with determination of the 
temperature fi eld in the fl ow of the medium.

Polymer melts and rubber mixtures have low thermal diffusivity; therefore the fl ow of such media occurs, as a rule, at 
high Péclet numbers (Pe > 100). This allows one in the energy equation of the fl ow of the medium to neglect its axial thermal 
conductivity in comparison with convective heat transfer in it. In this case, the energy equation of the fl ow of the medium 
with account for dissipation of this energy has the form
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where Pe xv h
a

=  and 
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. The bulk temperature of the fl ow of the medium in dimensional and dimensionless 

form is determined from the expressions
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The Nusselt number, which characterizes the local heat transfer on the channel wall, in dimensional and dimensionless form, 
is defi ned as

 m w m 1

1Nu , Nu .
| | Yy h

h h T
k T T y Y ==

⎛ ⎞α ∂ ∂θ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟− ∂ θ ∂⎝ ⎠⎝ ⎠  
 (22)

The posed problem was solved numerically by the iteration scheme with the use of the method of fi nite differences. 
From the onset, at the zero step of iteration, use was made of the velocity distribution of fl ow of the isothermal medium with 
a constant viscosity and of pressure gradient in it along the channel length:

 
32 4

21 1Wi ,
2 2x

dP Y dP YV
dX dX

− −⎛ ⎞ ⎛ ⎞= + ε⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  

(23)

 

3
21 2 Wi 1 0 .

3 5
dP dP
dX dX
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⎝ ⎠ ⎝ ⎠  

(24) 

Discussion of Results. Figure 2 shows the transformation of the fl ow velocity profi le of a viscoelastic fl uid in a 
fl at channel along its longitudinal coordinate at a fi xed value of the Weissenberg number (also called the Deborah number 
in many works) and of the Brinkman number. It is known that the temperature dependence of the viscosity of such a liquid 
manifests itself most distinctly on the initial segment of its fl ow in the channel. At the inlet to the channel the fl ow velocity 
profi le is fully developed and corresponds to a homogeneous temperature distribution, i.e., to the isothermal conditions. 
Thereafter the fl uid fl ow velocity profi le is transformed because of the dependence of its viscosity on temperature. The wall 
fl uid layers are heated primarily due both to the hotter channel wall and to the fl uid fl ow energy dissipation. This leads to a 
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decrease in the fl uid viscosity in this region. As a result, the fl uid fl ow velocity near the channel wall increases, whereas the 
fl uid fl ow velocity in the middle of the channel decreases, and the fl ow velocity profi le becomes planer. Thereafter, as the 
fl uid moves along the channel, it is heated over the entire section of its fl ow, and the velocity profi le of this fl ow is elongated 
again. As a result, at a great enough distance from the inlet into the channel the fl uid velocity profi le approaches the form 
typical of isothermal fl ow.

An analysis of the results presented in Figs. 3 and 4 allows evaluation of the effect of various factors on the bulk 
temperature of fl ow of a viscoelastic fl uid in a plane channel and the local Nusselt number of this fl ow. In particular, it is 
seen that disregard of the dissipation of the fl uid fl ow energy leads to an error that increases with the length of the channel. 
The graphs presented illustrate also the infl uence of the dependence of fl uid viscosity on its temperature and pressure in it on 
the main characteristics of heat transfer during fl uid fl ow in a channel. An increase in the fl uid viscosity on pressure increase 
enhances the dissipative effect, which leads to its rapid heating.

Figure 5 shows the fl uid temperature profi les at a certain distance from the inlet to the channel at fi xed values of 
Br and Wi. A comparison of the curves presented in this fi gure allows one to determine the infl uence of the dependence of 

Fig. 2. Transformation of fl uid fl ow velocity profi le in the entry section of the channel at 
εWi2 = 0.1 and Br = –3; 1) x = 0; 2) 15.

Fig. 3. Change of the mean mass fl uid temperature along the channel length: 1) b = 0.008 deg–1, 
s = 0.7·10–8 Pa–1, Br = –3.0; 2) 0, 0, –3.0; 3) 0.008, 0, –3.0; 4) 0.008, 0, 0.

Fig. 4. Distribution of the local Nusselt number along the channel length: 
1) b = 0.008 deg–1, s = 0.7·10–8 Pa–1, Br = –3.0; 2) 0, 0, –3.0; 3) 0.008, 0, –3.0); 
4) 0.008, 0, 0.
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the fl uid viscosity on its temperature and pressure in it on the temperature fi eld during its fl ow in the channel. It is seen that 
disregard of any of these factors leads to a noticeable error in the calculation of the fl uid fl ow parameters. Account for the 
temperature dependence of the fl uid viscosity leads to a reduction of the role of the fl ow energy dissipation in the process of 
fl uid heating, whereas account for the dependence of the fl uid viscosity on pressure, conversely, considerably enhances the 
dissipation effect.

Conclusions. The problem on nonisothermal fl ow of a viscoelastic polymer medium in a plane channel has been 
solved with the use of the Phan-Thien–Tanner rheological model, which allowed obtaining an expression for fl ow velocity in 
explicit form with account for the dissipative heat releases in the channel, as well as the dependence of the fl uid viscosity on 
its temperature and pressure in it. The profi les of the fl uid temperature and of the velocity of its fl ow have been calculated. 
A substantial effect of fl uid fl ow energy dissipation, as well as of the fl uid temperature and pressure in it, on the profi le of its 
temperature and on the distribution of bulk fl uid temperature and of the local Nusselt number of its fl ow along the channel 
is shown.

NOTATION

a, thermal diffusivity of fl uid; b and s, empirical rheological constants; h, half-height of the channel; k, thermal 
conductivity of the fl uid; p, pressure; Т, fl uid temperature; Tm, bulk fl uid temperature in the given section of the channel; 
Tw, temperature of the channel wall; T0, fl uid temperature at the inlet to the channel; vx and xv , axial fl ow velocity component 
and its mean value; x and y, longitudinal and transverse coordinates; α, coeffi cient of heat transfer on the channel wall; μ, fl uid 
viscosity; μw, fl uid viscosity at temperature Tw; Pe, Nu, Br, and Wi, Péclet, Nusselt, Brinkman, and Weissenberg numbers, 
respectively.
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