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RIEMANN AND SHOCK WAVES IN A POROUS LIQUID-SATURATED
GEOMETRICALLY NONLINEAR MEDIUM

V. I. Erofeev and A. V. Leont′eva  UDC 534.1

Within the framework of the classical Biot theory, the propagation of plane longitudinal waves in a porous liquid-
saturated medium is considered with account for the nonlinear connection between deformations and displacements 
of solid phase. It is shown that the mathematical model accounting for the geometrical nonlinearity of the medium 
skeleton can be reduced to a system of evolution equations for the displacements of the skeleton of medium and of 
the liquid in pores. The system of evolution equations, in turn, depending on the presence of viscosity, is reduced 
to the equation of a simple wave or to the equation externally resembling the Burgers equation. The solution of the 
Riemann equation is obtained for a bell-shaped initial profi le; the characteristic wave breaking is shown. In the 
second case, the solution is found in the form of a stationary shock wave having the profi le of a nonsymmetric kink. 
The relationship between the amplitude and width of the shock wave front has been established. It is noted that the 
behavior of nonlinear waves in such media differs from the standard one typical of dissipative nondispersing media, 
in which the propagation of waves is described by the classical Burgers equation.

Keywords: porous medium (Biot medium), geometrical nonlinearity, evolution equation, Riemann wave, generalized 
Burgers equation, stationary shock wave.

The mathematical models of deformed porous materials, both presented in the classical works of M. A. Biot [1, 2], 
Ya. I. Frenkel [3], L. Ya. Kosachevskii [4] and subsequently in modifi ed forms in [5–30], are widely used in studying the processes 
proceeding in the geophysics and mechanics of natural and artifi cial composite materials. The authors of the majority of works 
in their investigations restrict themselves to the linear theory of pore-toughness despite the fact that, as shown experimentally in 
[31], the nonlinear effects in liquid-saturated porous media are substantial and are also of defi nite interest.

Moreover, in nature, technique, and technologies porous liquid-saturated materials are frequently encountered that 
contain cavities fi lled with a liquid and distributed chaotically. Under certain conditions, the cavities oscillate under the action 
of an elastic wave and exert a substantial infl uence on the laws governing the propagation of waves. It is shown in works [32–
34] that along with the geometric nonlinearity (nonlinear connection between deformations and displacements) and physical 
nonlinearity (nonlinear connection between stresses and deformations) it is important to account for the cavity nonlinearity.

Works [35–37] consider the propagation of plane longitudinal waves in a porous liquid-saturated medium with 
cavities. The behavior of linear and nonlinear waves in cavity-porous media is studied. It is shown that in such media three 
longitudinal waves propagate: two waves as in the Biot medium and one wave due to the presence of cavities in the medium. 
The infl uence of the size of spherical cavities on the basic parameters of stationary waves, on the amplitude and width of the 
solitons are investigated.

The equations that describe the deformation of the Biot medium are presented in [2]. In this system, the relationship 
between deformations and displacements is linear. The equations that describe the motion of a porous liquid-saturated medium 
in a one-dimensional case with account for the geometrical nonlinearity take the form
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where U = U (x, t) and V = V (x, t) are the displacements of the skeleton and liquid in the pores along the coordinate x:
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where the viscosity coeffi cient is b = (η/Kper)Φ2.
We seek the solution of the system of equations (1) in the form of asymptotic expansions in the small parameter 

U = U(0) + εU(1) + …, V = V(0) + εV(1) + …, where ε << 1. In this case, we introduce new variables ξ = x – ct and τ = εt. Such 
selection of the variables is explained by the fact that the perturbation, while propagating with velocity c along the x axis, 
evolves slowly in time because of the nonlinearity, dispersion, and dissipation. We consider that the nonlinearity in system 
(1) has the fi rst order of smallness in ε and the viscosity is a small quantity.

In the zero approximation we obtain the following system of equations:
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The condition of the existence of the nonzero solution of this system yields the following biquadratic equation for determining 
the velocity:
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roots of the equation it is necessary that the inequalities of one of the two systems could be satisfi ed:
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The connections of the attached density of the mass ρ12 with the real densities of phases are given, for example, in [2] and 
have the form ρ11 = ρ1 – ρ12, ρ22 = ρ2 – ρ12, ρ12 < 0; ρ1 and ρ2 are the densities of the solid and liquid phases, respectively. 
It is evident that m1 > 0.

The fi rst approximation in ε leads to the system of evolution equations for the displacements of the medium skeleton 
U and of the liquid in pores V:
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We will consider the case where the viscosity is absent in the medium. Then the system of equations (2) is reduced to one 

equation for W = U∂
∂ξ

:
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Equation (3) is the equation of a simple wave or the Riemann equation [38, 39] and can be solved by the method of 
characteristics as a fi rst-order partial differential equation.

If we select a bell-shaped profi le as the initial profi le of the wave at the zero instant of time

2exp ( ) , 0 , ,W = −ξ τ = − ∞ < ξ < +∞

then the equations for the characteristics of the wave and for its profi le at an arbitrary moment will have the form
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. We consider the wave that runs in the positive direction of the Ox axis.

The initial condition assigns the wave profi le in the form of a bell at the zero instant of time. As the perturbation 
propagates, the wave profi le undergoes distortion. It is seen on the graphs of Fig. 1 that with time, on increase in the distance 
covered by the wave, the forward front facing in the direction of motion becomes steeper, whereas the back one becomes 
more sloping. The different portions of the wave profi le run with different velocities. The breaking of the wave will occur 

when the characteristics intersect for the fi rst time at the moment 22
et
a

∗ =  (Fig. 2). The wave surface is depicted in Fig. 3.

We will consider the case where the viscosity is present in the medium. In system (2), we introduce new symbols 
UW ∂

=
∂ξ

 and VG ∂
=

∂ξ
 and subtract the second equation of the system from the fi rst one to obtain
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The second equation of system (4) is obtained by summing up the fi rst and second equations of system (2) with account for 
the new symbols multiplied by ρ22 and ρ12, respectively.

System (4) can be reduced to one equation for the function of the longitudinal deformation of the skeleton W:

Fig. 1. Riemann wave profi les at different instants of time: 1) τ0 = 0; 2) τ1; 3) τ2 (dash-
dotted curves); τ0 < τ1 < τ2.

Fig. 2. Characteristic Riemann curves.
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It is seen that with b tending to zero with subsequent integration over τ Eq. (5) goes over into Eq. (3). Considering another 
limiting case where b is the infi nitely large quantity, we also obtain the Riemann equation.

The classical equation for describing waves in a nonlinear nondispersing medium with dissipation is, as is known, the 
Burgers equation. From the obtained equation (5) it is seen that dispersion in the considered medium is absent. Equation (5) 
differs from the Burgers equation by the second derivative in time and by the presence of one another quadratic-nonlinear 
term (time derivative from the quadratic nonlinearity available in the Burgers equation). The dissipative terms in Eq. (5) 
are present explicitly and implicitly. Only one dissipative term enters explicitly into the equation. The additional (relative 
to the Burgers equation) nonlinear term demonstrates itself partially as a dissipative one, which is seen from the linear 
approximation for small perturbations. The presence of nonlinear and dissipative terms in Eq. (5) allows one to make the 
assumption about the possibility of the existence of stationary shock waves in the medium.

Let us consider a stationary wave W = W(χ), where the running coordinate χ = ξ – vτ. In this case, Eq. (5) takes the 
form
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resemblance to the equation given in [40] with accuracy up to the coeffi cients. The difference is in the presence of the last 
term in Eq. (6) which has the solution in the form of a stationary shock wave. Integrating the equations once over the running 
coordinate with account for the boundary conditions
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we obtain an expression for the velocity of the nonlinear wave:
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The equation obtained after single integration is integrated again with account for the shock wave velocity (8) by 
the method of separation of variables. In the course of repeated integration we adopt that the integration constant is zero. We 
obtain the solution in an implicit form:

Fig. 3. Riemann wave surface in a medium without viscosity.
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The derivative has the form
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where W is determined from Eq. (9).
The profi le of the solution W (χ) at different values of the viscosity coeffi cient b and derivative W′(χ) are presented 

in Figs. 4 and 5. It is seen from the fi gures that the profi le of the solution of Eq. (9) has the form of the nonsymmetrical kink 
relative to the infl ection point. On decrease in the viscosity coeffi cient the profi le of the wave becomes more sloping, i.e., the 
width of the wave front increases.

The parameters of the shock wave appearing as a result of the mutual compensation of the nonlinearity and dissipation 
effects are related as
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where A = W2 – W1 is the shock wave amplitude, Δ is the characteristic width of the shock wave front, the shock wave 
velocity v is defi ned by expression (8). It is seen from relation (10) that the relationship between the wave front width and the 

fl uid viscosity is inversely proportional. The wave front width depends inversely proportionally on the amplitude at 1
va
A

<  

and directly proportionally at 1
va
A

> . The relationship between the shock wave parameters differs from that for the stationary 

shock wave of the Burgers equation. In Burgers′ classical equation the front width depends directly proportionally on viscosity.
Thus, this work presents a mathematical model that describes the propagation of a plane longitudinal wave in a 

porous liquid-saturated medium with account for the geometrical nonlinearity of the medium skeleton. Evolution equations 
have been obtained for the displacements of the medium skeleton and of the liquid in pores. It is shown that if the liquid fl ows 
freely from pores to pores, the system of evolution equations is reduced to one equation of a simple wave, i.e., the propagation 
of a plane longitudinal wave in a porous medium is described by the well-known equation of nonlinear wave dynamics, i.e., 

Fig. 4. Profi le of a stationary shock wave W (χ) at different values of the viscosity 
coeffi cient b1 (1), b2 (2), b3 (3), b3 < b2 < b1.

Fig. 5. The W (χ) (1) and W ′ (χ) (2) curves. The graph of W′(χ) is displaced upward on the 
ordinate axis by W1.
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by the Riemann equation. If the liquid is held in the pores, the propagation of the wave is described by the equation that 
has the solution in the form of a stationary shock wave originating as a result of the mutual compensation of the effects of 
nonlinearity and dissipation. The dependence of the shock wave front width on the viscosity of the fl uid saturating the pores 
and the shock wave amplitude has been determined. On increase in the viscosity coeffi cient the wave front width decreases. 
On increase of the wave amplitude the front width may both increase and decrease depending on the remaining parameters 
of the original system.
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(Project No. 18-29-10073).

NOTATION

A, elastic constant, Pa; a, a1, a2, a3, used to reduce notation; b, viscosity coeffi cient, Pa·s/m2; c, wave velocity, m/s; 
e = exp (1); G, longitudinal deformation (there is viscosity in the medium), 1; Kper, permeability coeffi cient, m2; m1, m2, 
m3, used to reduce notation; N, Q, R, elastic constants, Pa; t, time, s; U, V, displacements of the skeleton and of liquid along 
the coordinate x, m; v, velocity of nonlinear wave, m/s; W, longitudinal deformation (there is no longitudinal deformation 
in the medium), 1; x, coordinate m; ε, small parameter, 1; η, dynamic viscosity of the fl uid, Pa·s; ρ11, effi cient density of the 
skeleton, kg/m3; ρ22, effective density of liquid in pores, kg/m3; ρ12, coeffi cient of mass connection between the fl uid and the 
solid phase, kg/m3; τ, new variable, slow time, s; Φ, porosity factor, 1; χ, running coordinate, m.
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