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TRANSFER PROCESSES IN RHEOLOGICAL MEDIA

SPECIAL FEATURES OF NONLINEAR BEHAVIOR 
OF A POLYMER SOLUTION ON LARGE PERIODIC DEFORMATIONS

G. V. Pyshnograi,a N. A. Cherpakova,b and H. N. A. Al Jodac UDC 532.135

Study of the behavior of polymer solution fl ows in the region of nonlinear viscoelasticity allows one to more accurately 
evaluate the adequacy of rheological models and to describe the rheological properties of a material in more detail. 
The nonlinear viscoelastic properties manifesting themselves in the process of studying the behavior of a polymer 
material on signifi cant deformations were investigated with the aid of time dependences of shear stresses calculated at 
different amplitudes. The present work considers the applicability of the modifi ed Vinogradov–Pokrovskii rheological 
model to describing the oscillating shearing of polymer fl uids with a large amplitude. It has been established that 
on increase of the deformation amplitude, the shear stresses cease to be a true harmonic, and one observes the 
appearance of a "step" on their left front, which speaks of the substantial nonlinearity in the behavior of the sample. 
The obtained theoretical dependences are compared with experimental data for a 5% solution of polyethylene 
oxide in dimethyl sulfoxide. The comparison was made as by plotting the time dependences of normalized stresses, 
so by analyzing Lissajous fi gures. Despite the simplicity, the modifi ed Vinogradov–Pokrovskii rheological model 
adequately describes the behavior of polymer materials on signifi cant periodic deformations.
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Introduction. Many of the rheological models [1–7] are often used for describing the rheological characteristics of 
polymer materials in the case of stationary shear or comparatively small periodic shear deformations. However, in processing 
solutions and melts of polymers one encounters a situation, in which samples are subjected to nonstationary deformation 
taking on great values. Therefore transition from an analysis of the behavior of fl ows in the linear viscoelastic region to 
nonlinear effects is due to both practical considerations and to the appearance of more accurate measurement methods, for 
example, in the case of large periodic deformations [7–10]. This affords a possibility for a more reliable evaluation of the 
prognostic properties of rheological models due to the expansion of the region of their applicability for different types of 
deformation. In this connection, currently modeling of rheological characteristics in the region of nonlinear viscoelasticity 
becomes increasingly indispensable, since measurements in the case of large periodic deformations allow one to describe 
nonlinear rheological properties of a material in greater detail [7].

Dynamic shear oscillating tests are used widely in the rheology of fl uids with specifi c properties such as solutions 
and melts of polymers, biopolymers, polyelectrolytes, suspensions, emulsions, gels, etc. [11–13]. In particular, measurements 
in the case of small-amplitude oscillating streams (SAOS) represent a classical method of obtaining relations of linear 
viscoelasticity of such fl uids. This method has been studied most thoroughly from both theoretical and practical viewpoints 
[2]. As mentioned above, the majority of real processes proceed in the regions with appreciable deformation, and this requires 
the study of nonlinear dynamic properties of the systems studied. Often among such characteristics there is the dependence of 
stationary shear viscosity and of the fi rst difference of normal stresses on the rate of shear. In this case, the dynamic properties 
do not manifest themselves or manifest them insignifi cantly, for example, such as nonmonotonic establishment of stress on 
simple shear.
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To obtain a more complete picture of nonlinear behavior of a polymer fl uid use can be made of large-amplitude 
oscillations of shear vibrations (LAOS). From experimental point of view both SAOS and LAOS at the inlet are characterized 
by two parameters: the relative amplitude of sinusoidal shear vibrations γ0 and their frequency ω. There are substantial 
differences, however, in studying the response of a polymer system to periodic effects determined by the specifi city of the 
material itself. For SAOS the response is a sinusoid, and the amplitude of shear vibrations is directly proportional to γ0. 
The main characteristics of SAOS are G′(ω) and G″(ω), which are the components of the dynamic shear modulus: elasticity 
modulus and loss modulus. For LAOS the response of the system is no longer a true sinusoid, and the amplitude of such 
vibrations increases with γ0 not strictly proportionally. This is confi rmed in experiments in [14–27].

The LAOS method itself began to be used fairly recently. Already in early publications [15–25] relating to the years 
1960–1970 basic concepts of the analysis of shear stresses at large oscillations were suggested. This is a direct analysis of the 
form of nonlinear viscoelastic response and application of the Fourier transform [16–23]. Initially this method was used to 
investigate solutions and melts of linear polymers [15], as well as fi lled systems [15]. Later it was applied to mixtures, gels, 
melts of polymers, biopolymers, polyelectrolytes, and suspensions [17, 24]. It is already at that time that researchers noted 
that as the amplitude of vibrations increased there occurred a decrease in the components of the dynamic shear modulus, 
which are the fi rst harmonics of the signal investigated. Since the Fourier analysis required measurement of higher-order 
harmonics and many of the technical problems were not solved at that time and hampered the progress in this area, some of 
the researchers began to apply Lissajous fi gures for investigations of nonlinear viscoelastic behavior as they can easily be 
reproduced on the screens of oscillographs [22]. As is shown in [9], nonlinear viscoelastic properties manifesting themselves 
in investigation of the behavior of polymer material on signifi cant deformations can be interpreted, for example, with the aid 
of Lissajous fi gures or directly by analyzing time dependences of shear stresses obtained at different degrees of deformation. 
Here a conclusion can be drawn on the increase in the nonlinearity of the response of the sample with increase in the amplitude 
of vibrations. From the mid-1990′s many technical diffi culties of experimental character were overcome, and at the present 
time the LAOS method is a reliable instrument of both experimental and theoretical investigations [24, 25]. In particular, this 
method is important for checking the adequacy of rheological models in the nonlinear region of deformation rates.

At the present time, there exist many rheological models, with some being developed up to now, whereas others 
ceased to be crucial. Among the most known methods there are those of Giesekus [3], Pom–Pom [5], Leonov–Prokunin [4], 
and of Vinogradov–Pokrovskii (modifi ed model) [1, 6, 11–14]. All of them yield a good description of the linear effects at 
small periodic deformations and nonlinear effects at large stationary deformations. In the present work, we investigate the 
change in the structure of material response on increase in the deformation amplitude. The aim of the work fi rst of all is the 
checking of the adequacy of the modifi ed Vinogradov–Pokrovskii rheological model.

Kinematics of the Process. We consider two plane parallel plates, with a polymer sample placed in between. The 
lower plate is at rest, whereas the upper one executes vibrations by the harmonic law with frequency ω and amplitude A. We 
arrange the coordinate axes xyz as shown in Fig. 1. As a result, there occur shear deformations in the sample, but no changes 
take place along the Z axis, i.e., 0Z is neutral with respect to deformation. In the case considered only one component of the 
tensor of velocity gradients ν12 differs from zero.

If we assume that y = h, then the law of the displacement of the upper plate or deformation of the sample will have the 
form x = A sin ωt. Then the equation for the deformation rate will take the form Vx = dx/dt = Aω cos ωt. At the space between 
the plates comparable with the deformation amplitude, the distribution of the deformation rates in the space will have a linear 
character (Fig. 1) and the distribution of the rate in the sample along the 0x axis can be expressed as Vx(y) = Aω (y/h) cos 
ωt. Evaluating the derivative with respect to the variable y, we fi nd the gradient of the deformation rate, which will look like

ν = = ω ω = γ ω ω12 0cos cos .xdV A t t
dy h

Dependence of stresses on the deformation rate ν12 is used in investigation of nonlinear rheological properties of polymer 
materials [1, 2].

Thus, if the deformation of the sample follows the sinusoidal law, the deformation rate will have the form of the 
cosine curve. For stresses in the process of deformation it is possible to observe the effect of the delay in the polymer system 
response from deformation or deformation rate (Fig. 2):

 ′σ = ω γ ω +′ ′′ ′ω γ ω = γ ω + ω ω +′ ϕ2 2
12 0 0 0( ) sin ( ) cos ( ( )) ( ( ))( )  sin ( ) ,t G t G t G G t   (1)
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where the angle of the shift of phases or the angle of losses is φ = arctan (G″(ω)/G′(ω)) [1, 2].
The frequency dependences of the components of the dynamic shear modulus have been studied rather adequately 

[1, 2, 13]. At different frequencies the viscous properties of the material can prevail over the elastic ones and vice versa. If 
we restrict ourselves only to the discussion of one relaxation process with characteristic time τ0, then at ω << 1/τ0 the loss 
modulus is much in excess of the elasticity modulus G″(ω) >> G′(ω), and the material behaves as a viscous fl uid. In this case, 
φ ≈ π/2. When ω = 1/τ0, the loss modulus is equal to the elasticity modulus G″(ω) = G′(ω) and φ ≈ π/4. If ω >> 1/τ0, the loss 
modulus is much less than the elasticity modulus G″(ω) << G′(ω), and the material behaves as an elastic body. In this case, 
φ → 0.

A convenient method of visual representation of results is the rejection of the use of time as an argument and 
construction of the phase pattern of the dependence of stress on deformation. Such a pattern is called the Lissajous fi gure. For 
the region of the linear viscoelastic behavior of the Lissajous fi gures are ellipses, whereas in the case of nonlinear response 
of the sample they are transformed into fi gures of various shapes [7].

We can easily see this for the case of small oscillating vibrations. We write down the relationship between the 
normalized shear stress and deformation in a parametric form:

{ = ϕ ω + ϕ ω
= ω

cos sin sin cos ,
sin .

y t t
x t

From this, having replaced the variable t, we obtain

 − ϕ + = ϕ2 2 22 cos sin .x xy y   (2)

Thus, the phase trajectory is the curve of the second order a1x2 + 2a2xy + a3y2 = a4 [28] and, to determine its type, 
we will rotate the coordinate axes. To determine the turning angle we will make use of the expression [28]

−
α = =1 3

2
cot 2 0 .

2
a a

a

Fig. 1. Schematic representation of shear periodic deformations.

Fig. 2. Dependence of normalized stresses and deformation on time.
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That is, the turning of the coordinate axes is to be made by π/4. Then, having made the replacement of variables (Fig. 3), for 
curve (2) we obtain the canonical equation of the ellipse:

+ =
ϕ ϕ

− ϕ + ϕ

2 2

2 2 1 .
sin sin

1 cos 1 cos

x y

The semiaxes of this ellipse are defi ned by the following expressions:

= ϕ − ϕ = ϕ + ϕsin / 1 cos , sin / 1 cos ,a b

from which it is seen that a ≥ b. When ω << 1/τ0, φ → π
2

, a → 1, and b → 1, then the ellipse is degenerated into a circle 

(Fig. 3). When ω >> 1/τ0, a → 2  and b → 0, and the ellipse is degenerated into a segment along the 0x axis.
The phase portrait in normalized stress–deformation rate coordinates is constructed analogously. Here, instead of (2) 

we obtain

{ = ϕ ω + ϕ ω
= ω

cos sin sin cos ,
cos ,

y t t
x t

where y is the normalized stress and x is the normalized deformation rate. After analogous transformations we obtain

+ =
ϕ ϕ

+ ϕ − ϕ

2 2

2 2 1 .
cos cos

1 sin 1 sin

x y

This is also an ellipse with semiaxes a = cos φ + ϕ1 sin ; b = cos φ/ − ϕ1 sin , with a ≤ b. When ω << 1/τ0, a → β and 
b → 2 , the ellipse degenerates into a segment along the 0y axis. When ω >> 1/τ0, a → 1 and b → 1, and the ellipse 
degenerates into a circle.

Mathematical Model. The numerical calculations are based on the equations written on the basis of the modifi ed 
Vinogradov–Pokrovskii rheological model [1, 6, 12]. To obtain this rheological determining relation, a microstructural 
approach was used allowing one to follow the relationship between the macro- and microcharacteristics of a polymer system. 
Of greater importance in the theory of polymer viscoelasticity is the monomolecular approximation, in the case of which one 
selected macromolecule moving in an effective medium formed by a solvent and other macromolecules is considered instead 
of the entire set of macromolecules in the volume [4–6]. In this case, the dynamics of the very selected macromolecule is 
modeled by the motion of an elastic dumb-bell — two beads connected by a spring. The characteristic feature of this model 

Fig. 3. Dependence of the normalized shear stress on normalized deformation.
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is the account for the tensor character of the coeffi cient of friction of the beads determined by the induced anisotropy of the 
shear fl ow. This model has the form

 

η
σ = − δ +

τ

+ κ − β β
− ν − ν + = γ −

τ τ

0

0

0 0

3 ,

1 ( ) 2 3 .
3

ik ik ik

ik ij jk kj ji ik ik ij jk

p a

d Ia a a a a a
dt  

 (3)

Here I = ajj is the fi rst invariant of the anisotropy tensor γik = (νik + νki)/2. In the equations of the dynamics of the 
macromolecule, the phenomenological parameters of the model κ and β take into account the dimensions and shape of the 
macromolecular ball and are connected by the relationship κ = 1.2β, which corresponds to the condition of independence of 
the asymptotic behavior of stationary shear viscosity from the molecular weight of the polymer [6, 12].

Earlier this rheological determining relation (3) was checked for the correspondence to the fl ows of real polymer 
fl uids [3, 11–14]. Viscosimetry fl ows of polymer media were investigated, of which the most investigated are the simple shear 
and uniaxial stretching. Numerous experimental data on shear deformation of solutions and melts of linear polymers show 
that the shear viscosity is a decreasing function of the shear rate; the shear stress is an increasing function of the shear rate; 
the coeffi cients of the fi rst and second difference of normal stresses are the decreasing functions of the shear rate. The results 
of calculations of the viscosimetrics function demonstrate qualitative correspondence of model (3) to the real behavior of 
solutions and melts of linear fl owing polymers [6].

We also studied nonstationary effects on the basis of rheological model (3). For this purpose, the problem on 
establishing stresses on simple shear after instant application of shear deformation with a constant shear rate was solved. This 
can be done conveniently because there is possibility to compare the obtained results with both experimental data [10] and 
with calculations carried out on the basis of other models [7, 10].

Thus, model (3) can be selected as the initial approximation in describing nonlinear and viscoelastic properties of the 
solutions and melts of linear and branched polymers. Based on Eqs. (3), vibrations with both a large and small amplitude were 
modeled. It was assumed that the polymer sample was subjected to deformation with frequency ω by the harmonic law with 
the given amplitude γ0. The response of the material is the dependence of stress on time. The calculations have shown that on 
deformation from the state of rest [σik(0) = 0] a periodic regime of vibrations develops rather rapidly in the polymer system. 
The solutions of the obtained system of differential equations were found by the Runge–Kutta method.

At a small amplitude the shear stresses appearing in the material are directly proportional to deformation, i.e., 
represents a correct harmonic. At periodicity of deformation of the material with greater amplitude the response ceases to be 
a true harmonic. This is confi rmed by both the results of modeling (Fig. 4) and experiments [7, 8].

Fig. 4. Dependence of the dimensionless shear stress on time at different values of 
deformation amplitude.
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Fig. 5. Lissajous fi gures obtained on change of the amplitude and frequency of vibrations.

Fig. 6. Comparison of theoretical and experimental dependence for normalized shear 
stresses σ(t) in an established regime at different relative deformation amplitudes: a) 5; 
b) 10; c) 20; d) 30.
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Figure 5 presents the Lissajous fi gures constructed in the normalized stresses–shear deformation coordinates 
at different values of amplitude and frequency. At small values of the relative amplitude of shear vibrations the phase 
trajectories have the shape of an ellipse with the sizes of semiaxes calculated in the previous section. The nonlinearity 
of the mechanical behavior at large deformations is refl ected in the nonellipticity of the Lissajous fi gures. It is seen from 
Fig. 5 that on increase of the frequency, they narrow, which corresponds to the increase of the elastic properties of the 
sample in comparison with viscous ones. On increase in amplitude, the Lissajous fi gures transform closer to a rectangular or 
hysteresis shape.

Comparison of Modeling Results with Experiment. A great number of works, the references to which can be found 
in [6–8], are devoted to investigation of transient and stationary rheological characteristics at large periodic deformations. Let 
us consider the experimental data of work [8] where deformation of a 5% solution of polyethylene oxide in dimethyl sulfoxide 
was investigated. The polymer solution was subjected to harmonic deformation at a large amplitude γ0 that successively 
attained the values 50, 100, 500, 1000, 2000, and 4000% at the frequency ω = 0.2 Hz.

In the calculations use was made of the following values of the parameters of the model: τ0 = 0.21 s; 
η0 = 2.76 Pa·s; β = 0.037; κ = 0.0453. The effectiveness of application of the modifi ed Vinogradov–Pokrovskii rheological 

Fig. 7. Lissajous fi gures for theoretical dependences and experimental data for normalized 
shear stresses σ(t) in an established regime at different relative deformation amplitudes: 
a) 5; b) 10; c) 20; d) 40.
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model was checked by optimizing the parameters of the model in the linear region (at small periodic deformations). 
Thereafter the behavior of the model with found parameters was compared with experimental results obtained at large 
periodic deformations. Figure 6 contains a comparison of the established dependences of the normalized response with 
experimental data from work [8].

Attention should be paid to the fact that the left and right fronts of forced vibrations are deformed differently with 
increase of the relative amplitude. At the left front, with increase of the amplitude at the graph of experimental dependences 
one observes the appearance of a "step." With increase in γ0, the fi rst front deviates from the harmonic without the appearance 
of a step. The model provides a good description of this effect (Fig. 6).

We will consider now the Lissajous fi gures for the dependences obtained (Fig. 7). The noted nonlinearity of the 
viscoelastic properties of a polymer melt manifests itself more vividly as deviation of the closed phase trajectory from the 
ellipsoidal form. As is seen from the graphs given in Fig. 7, an increase in the nonlinearity of the response of the sample 
on increase in the amplitude of vibrations manifests itself not only in the deformation of the initial ellipse, but also in the 
appearance of infl ection points on the phase portraits. This is confi rmed by both experimental data and by the theoretical 
dependence. Since measurements were carried out at a small frequency ω = 0.2 s–1 < 1/τ0 s–1, it is possible to note the 
predominance of viscous properties of the solution over the elastic ones, which is confi rmed by the large width of the fi gures 
obtained (Fig. 7).

Comparing the obtained results with experimental data, it can be concluded that the model allows one to rather 
accurately describe the behavior of polymer materials at large periodic deformations.

Conclusions. In the course of the work we carried out modeling of nonlinear viscoelasticity of a polymer material in 
the case of its large periodic deformations with the aid of modifi ed Vinogradov–Pokrovskii rheological model. A comparison 
of the results was carried out with experimental data for a 5 wt.% solution of polyethylene oxide in dimethyl sulfoxide 
investigated at harmonic deformations with a large amplitude attaining 40 relative units, which were measured at 35o and 
frequency 0.2 Hz.

The nonlinear properties of the investigated sample manifest themselves in the distortion of the material response. 
The response ceases to be a true harmonic, on increase in the amplitude the appearance of a step is observed on the left front, 
with the absence of response deformation on the right front. On increase in the amplitude, one can observe the deviation from 
the ellipsoid form on the Lissajous fi gures and the appearance of defl ection points. The considered model allows one to model 
the nonlinear effects appearing on increase in the amplitude of material deformation. It is also possible to use this model for 
modeling more complex fl ows of polymer media.

Curiously, the simple model (3) that takes into account only one relaxation process gives such good correspondence 
with experimental data. In describing the gradient dependence of shear viscosity and of the fi rst difference of normal stresses, 
this model demonstrates only qualitative correspondence of computational dependences and experimental data [13, 14].

In further investigations we are planning to adapt the considered model to the multimode case to increase the accuracy 
of the results obtainable in various regimes of deformation.

Acknowledgment. This work was carried out with fi nancial support of the Russian Foundation for Basic Research 
(Grant No. 18-31-00030 mol_a).

NOTATION

A, amplitude of deformation; a1, a2, a3, a4, coeffi cients in the general equation of the second-order curve, ellipse 
semiaxes; aik, symmetrical tensor of anisotropy of second rank; G′, elasticity modulus; G″, loss modulus; h, distance between 
plates; p, hydrostatic pressure; t, time; Vx, deformation rate; 2α, angle of rotation of coordinates; γik, symmetrized tensor of 
velocity gradients; γ0, relative amplitude of deformation; ν12, gradient of deformation rate; η0, initial value of viscosity; κ and 
β, phenomenological parameters of the model; νik, tensor of velocity gradients; σik, tensor of stresses of a polymer system; 
σ12(t), shear stresses; τ0, initial value of relaxation time; φ, angle of shift of phases; ω, frequency of oscillations.
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