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HYDROGASDYNAMICS IN TECHNOLOGICAL PROCESSES

SEMIEMPIRICAL MODEL OF CONVECTIVE HEAT TRANSFER
OF TURBULENT GASES

V. A. Kuznetsov UDC 536.24.01

On the basis of the Prandtl semiempirical wall-turbulence hypothesis, the author has substantiated theoretically 
the possibility of setting boundary conditions to the equations of a mathematical model of turbulent motion and 
convective heat transfer of a gaseous medium on a coarse grid. It has been shown that the results of numerical 
simulation are in agreement with experimental data on the heat transfer of air and high-temperature gases in tubes.
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Introduction. At the present time, to investigate engineering problems, use is made of mathematical models 
consisting of differential equations of turbulent motion of a gaseous medium and of convective and radiative heat transfer 
[1]. Their numerical solution is implemented by numerous iterations on grids containing hundreds of thousands of nodes in 
three-dimensional models, since fairly small dimensions of grid cells are selected to obtain reliable results.

The grid near the wall surface is refi ned to the greatest extent [2] so as to fi nd, with an acceptable degree of accuracy, 
the derivatives of the velocity and temperature of gases, which are necessary for setting boundary conditions, upon the linear 
variation in the quantities. Here, the model of turbulent viscosity of the gases in the medium′s wall layer is corrected by means 
of empirical functions [3].

Meanwhile, grid cells in the wall region can multiply be enlarged by applying, to the nonisothermal boundary layer, 
the Prandtl semiempirical wall-turbulence hypothesis determining the stress of a friction force which is created by turbulent 
vortices:

2( / ) .du dyσ = ρ l

Smooth-Wall Boundary Condition to the Equations of Motion of Nonisothermal Gases. In the wall region of 
a turbulent boundary layer, we usually single out a thin viscous sublayer adjacent to the wall surface, in which turbulent 
viscosity dominates molecular one, and an equilibrium sublayer in which the generation and dissipation of kinetic turbulence 
energy balance each other. Between them, there is a buffer sublayer.

In a thin nonisothermal layer of gases which is adjacent to the wall, the sum of the molecular and turbulent stresses 
may be set equal to the shear friction stress σw on the wall surface:

2 2 2
w w ,/ ( / )u du dy du dy∗σ ≡ ρ ≈ ρν + ρl

where ρw is the density of the gases at the wall temperature, and u* is the dynamic viscosity which replaces shear stress in the 
formulas. Determining the dimensionless variables by the relations of the quantities

w w/ , / , / ,u u u y yu u∗ ∗ ∗≡ ≡ ν ≡ νl l+ + ++ + +

we reduce this equality to a dimensionless form:
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2 2 w ww ( / ) 0 ,/du dy du dy ρ νν − =
ν ρν

+l+ + + + ++ + + + +

where νw is the coeffi cient of viscosity of the gases at the wall temperature.
Solution of the quadratic equation gives an expression for the derivative of the dimensionless velocity u+, which will 

be written formally as the inverse proportionality to the mixing length:

 w/ / / ,udu dy f += ρ ρ l+ ++ +   (1)

where fu is the theoretical function approaching unity away from the wall at great values of the mixing length

2

2 2
w w ww

1 11 .
24

fu
ρ ν ρν= + −
ρ ν ρν ll ++

In the particular case of an isothermal boundary layer these formulas are transformed to simpler expressions:

 
iso iso iso 2/ / , 1 1/(4 ) 1/(2 ) .u udu dy f f= = + −l l l+ + + + ++ + + + +   (2)

The superscript "iso" marks the quantities in the isothermal medium.
With account of equality (1), the Prandtl hypothesis yields a dimensionless expression for the relation of the 

coeffi cients of turbulent and molecular viscosity in the gases′ wall layer:

 turb w w/ / .uf ρν ν = ρl+   (3)

Formulas (1)–(3) become useful in modeling mathematically turbulent gas motion, if the dimensionless mixing 
length l is known. It is determined by the Van Driest exponential formula [4] which takes account of the attenuation of 
turbulence near the wall

 [1 exp ( / )] .y A y= − − κl+ + + ++ + + +   (4)

The confi guration factor A+ has been found [4] from the condition that the calculated values of the dimensionless velocity 
near the wall, on the average, agree with experiments. However, because of the great scatter in experimental data, the value 
A+ = 26 assigned to it turned out to be insuffi ciently exact for using this formula in mathematical models.

A more effi cient method to determine the factor A+, which lies in calculating its value directly from each experimental 
value of dimensionless velocity, was implemented in [5]. Mathematical processing of the obtained values has shown that near 
a smooth wall, the factor A+ varies by a quadratic law which is expediently represented in the following generalized form:

( )2log30 1 ./A y y⎡ ⎤−⎢ ⎥⎣ ⎦
≈+ + ++ + +

The constants κ = 0.41 and logy+  ≈ 50 have been found from the experimental velocity distribution near the wall in the case 
of developed turbulence.

A refi ned exponential dependence (4) with quadratic variation in the factor A+ is smoothly conjugate to the Prandtl 
linear law for the mixing length at the dimensionless distance from the wall y+ = logy+  where a formal transition to a logarithmic 
law of variation in the velocity occurs. In fact, the logarithmic law begins to act at y+ ≈ log0.7y+ . Thus, it may be assumed that 
at the values of the dimensionless coordinate y+ within (0.7–1) logy+ , a transition region is formed which formally belongs to 
the buffer sublayer but possesses properties characteristic of the equilibrium sublayer of the turbulent boundary layer.

At the known mixing length l+, it becomes possible to approximate the right-hand side of differential expression (2) 
by a suffi ciently exact polynomial dependence and to integrate it. Thus, we have obtained an eighth-degree polynomial 
describing the variation in the dimensionless velocity of isothermal gases in the viscous and buffer sublayers [6]:

 
iso 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 .u a a y a y a y a y a y a y a y a y= + + + + + + + ++ + + + + + + + ++ + + + + + + + +   (5)
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Its coeffi cients pertaining to developed turbulence are presented in Table 1. In the equilibrium sublayer at l+ > 50, the 
dimensionless velocity of isothermal gases varies logarithmically:

iso 1 ln 5.1 .
0.41

u y+= ++

We take into account that at the origin of coordinates, the derivative of the dimensionless velocity (du+/dy+)w and the 
ratio of the dimensionless velocity u+ to the coordinate y+ are equal to unity. With this condition, it becomes possible to fi nd a 
one-sided derivative of the velocity of isothermal gases on the wall from its discrete value uP/yP, using the rule of calculation 
of an unknown quantity from its known function (u+/y+)P at the wall node P of the grid:

 

iso iso
w ( / )( / ) .P

P
P

udu dy y u
y

= + ++ +

 
 (6)

The same approach to formulating boundary conditions in the nonisothermal boundary layer is more diffi cult to 
implement, since in the general case the variation in the dimensionless velocity of the nonisothermal medium near the 
wall remains unknown. In this connection, consideration will be given to the possibility of applying the singularities of an 
isothermal wall layer to nonisothermal conditions of cooling of turbulent gases. Using relation (2), we introduce, into the 
right-hand side of formula (1), the derivative of the isothermal gases

iso
w

iso .u

u

du du f
dy dy f

ρ=
ρ

+ ++ +

+ ++ +

We carry out formal integration of the resulting equality:

iso
w

iso / .u uu u f fρ= ρ+ +

In the angular brackets is a group of quantities averaged on the segment of integration from the wall to the nearest wall node 
P of the grid.

Applying the obtained results to the grid′s wall node P, we transform the dimensionless relation (y+/u+)P into the 
factor mu changing the discrete relation uP/yP to a one-sided derivative of the velocity of isothermal gases on the wall

 

iso
iso

w/ .u u u
P P

y ym f f
u u
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

≡ = ρ ρ+ ++ +

+ ++ +  
 (7)

Using this factor, we write a formula for calculating, on the wall, the one-sided derivative of the velocity of nonisothermal 
gases:

 w

.P P
u

P PP

du u y u m
dy y u y

+

+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
= =

 
 (8)

Expression (8) generalizes formula (6) obtained for isothermal gases.
Semiempirical Model of Convective Heat Transfer of Turbulent Gases to a Smooth Wall. In considering heat 

transfer in the turbulent wall layer, use is made of the notion of the medium′s dimensionless temperature [7]

TABLE 1. Coeffi cients of Polynomial (5) to Compute Dimensionless Velocity

y+ a0 a1 104a2 104a3 104a4 106a5 108a6 1010a7 1012a8

0−11 0 1 1 –10.6 7.18 –248 2990 –15,870 32,000

11−50 –2.58 1.986 –1296 55.4 –1.57 2.9135 –3.395 2.255 –0.6528
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w w w w( )/ ,T c u T T q∗≡ ρ −++

where ρw and cw are the density and heat capacity of the gas at the wall temperature, Tw and T are the temperatures of the wall 
and of the gaseous medium near it respectively, and qw is the density of the heat fl ux on the wall surface.

To fi nd the relation of the dimensionless quantities (T+/y+)P at the grid node P, we take into account that in the 
boundary layer, convective heat transfer to the wall is usually disregarded. As a result, a differential expression for the density 
of the conductive heat fl ux near the wall is represented in the following form:

turb
w

turb
.

Pr Pr
dTq c
dy

⎛ ⎞
⎜ ⎟
⎝ ⎠

ν ν= ρ +

Hence, assuming the heat capacity of the gases in the wall layer to be constant, we obtain the dimensionless equality

turb
w ww turb

1 11 .
Pr Pr

dT
dy

⎛ ⎞ρ ν ν
= +⎜ ⎟ν νρ ⎝ ⎠

+

+

On its right-hand side, we drop the fi rst term whose value in the equilibrium sublayer and in most of the buffer sublayer is 
smaller than that of the second term. Using then formula (3) for the turbulent viscosity, we obtain the approximate expression 
of the derivative of the dimensionless temperature

turb w/ Pr / ( ) .udT dy f+ + ≈ ρ ρ l+

A comparison of the last equation and formula (1) shows that at a certain distance from the wall, there is an approximate 
proportionality between the dimensionless derivatives of the temperature and velocity of nonisothermal gases:

turb
2

Pr .
u

dT du
dy dyf

+ +

+ +
≈

One might expect that after the integration of the obtained equality, the proportionality will hold for the dimensionless 
values of temperature and velocity, at least, in the equilibrium sublayer and in the adjacent exterior part of the buffer sublayer:

 turb
2Pr .uT u f≈+ ++ +  

 (9)

This assumption is confi rmed by experimental data. Figure 1 gives, in dimensionless form, results of measuring the air 
temperature and velocity in a turbulent boundary layer near the plate [7, Table 12]. Curve 1 is drawn through the points of the 
dimensionless velocity u+. Multiplying by 0.76 changes it to curve 2 which is coincident with the values of the dimensionless 
temperature T+ in the equilibrium sublayer and in most of the buffer sublayer.

Experimental values of the dimensionless temperature T+, which have been divided by the Prandtl number of the air 
correspond to the points through which curve 3 is drawn. In the region of the viscous sublayer, it is coincident, in practice, 
with the distribution of the dimensionless velocity. This means that the derivative of the dimensionless function T+/Pr is equal 
to unity at the origin of coordinates. Consequently, the ratio of this function to the dimensionless distance y+ may be used in 
calculating a one-sided gas-temperature derivative on the wall from its discrete value determined at the nearest node P of the 
grid:

w

w

Pr .P

P P

dT T T y
dy y T

⎛ ⎞ ⎛ ⎞−
=⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
+

+

Replacing the dimensionless temperature T+ by the dimensionless velocity u+ according to the approximate equality (9) 
and using defi nition (7) of the factor mu, we obtain a formula suitable for the one-sided temperature derivative with the 
arrangement of the wall nodes of the grid in the equilibrium sublayer and in most of the buffer sublayer alike:

 

w

turbw

2Pr .
Pr

P
u

P
u

dT T T f m
dy y

⎛ ⎞ −
=⎜ ⎟

⎝ ⎠  
 (10)
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The density of the convective heat fl ux from the turbulent medium to the wall will be determined under the 
conventional assumption that there is no convection directly on a solid surface and hence the transfer of heat in the thin wall 
layer of the heat-transfer agent is only by heat conduction according to the Fourier law:

w w w w w( / ) /Pr .cq dT dy= ρ ν

Substitution of expression (10) into this equation leads to a formula of the semiempirical model of convective heat transfer in 
the turbulent wall layer of nonisothermal gases:

 

2w w w
w w

turb
( ) .

Pr P u u
P

cq T T f m
y

ρ ν= −
 

 (11)

Discussion. To simplify a computational algorithm, in the mathematical model we used the wall-transfer factor ζ 
determining boundary conditions on the wall

w

w

,
P

u
u y

⎛ ⎞ν ∂
ζ ≡ ⎜ ⎟∂⎝ ⎠

where uP is the velocity at the wall node P of the grid. Clearly, it is proportional to the dynamic velocity squared:

 
2 .Pu u∗ζ =   (12)

Taking into account expression (8) for the one-sided velocity derivative, we fi nd the discrete form of the wall-transfer factor

 w , .u P Pm yζ = ν   (13)

In the course of the iterations, we calculated the dynamic velocity u* according to formula (12) from the approximate value 
of the factor ζ. Next, we determined the dimensionless coordinate y+ for the wall node P of the grid, calculated the factor mu 
according to formula (7), and refi ned the value of the wall-transfer factor ζ by relation (13).

In implementing the mathematical model numerically, we replaced the averaged physical quantities in formulas (7), 
(10), and (11) by their local values found at grid nodes adjacent to the wall, assuming that possible errors would be eliminated 
using an empirical correction.

If the factor mu in Eq. (11) is replaced by its expression following from equality (13), the calculated formula of 
convective heat transfer, with account of what has been said above, takes on the following calculated form:

 2w w
w w ,

turb
, ( ) ,

Pr P u P m P
cq T T f gρ≈ ζ −   (14)

Fig. 1. Dimensionless velocity and temperature of the air near the wall: 1) velocity u+, 
2) temperature T+, and 3) function T+/Pr; points, experimental data [7].
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where gm,P is the empirical correction function which is defi ned at the grid node P adjacent to the wall:

 
0.5

, [1 exp ( / )] .mm P Py Ag −
+= − −   (15)

Here the factor Am is calculated according to the formula

218[1 ( 100) ] ./m PA y= − ++

The semiempirical model of connective transfer of heat was checked by comparing the results of numerical modeling 
and the Tamonis data [8, Table 5] on the heat transfer of a turbulent air fl ow at a distance of 3.52 m from the beginning of the 
experimental portion of a tube of diameter 150 mm. The average calculated air temperature in the cross section of the tube 
was 410–425 K at a wall temperature of 296 K. The turbulent Prandtl number was taken to be 0.85. For a radial step of the 
grid from 1 to 2.5 mm, grid nodes next the wall were beyond the viscous sublayer (y+ > 11).

The conditions of motion and cooling of the air before the experimental tube have not been rigorously determined 
in [8], but it is noted that heat transfer in the experimental portion is close to a stabilized state in which the formation of 
dynamic and thermal boundary layers is known to be completed. In this connection, for a fuller agreement with experimental 
conditions, a topping two-meter cooled portion of the tube is provided in the mathematical model, along which a boundary 
layer is formed under the conditions of unstabilized motion and heat transfer.

The relation between experimental Nusselt Nue and Reynolds numbers Ree determined in [8] from the values of 
physical quantities on the tube axis and from the heat fl ux to cooled walls is shown in Fig. 2 as points. The results of numerical 
modeling are presented by curves 1–5, with the fi rst three of them being obtained without an empirical correction function in 
the equation of convective heat transfer (14).

Curve 1 calculated with a radial step of the grid of 2.5 mm and a dimensionless coordinate of wall grid nodes 
25 < y+P < 84 is, on the whole, in satisfactory agreement with experimental data. Nonetheless, as might be expected, the 
portion of this curve that corresponds to the location of wall nodes in the buffer sublayer lies somewhat lower than the 
group of experimental points. Curves 2 and 3 calculated with a radial grid step equal to 1.5 mm (16 < y+P < 51) and 1 mm 
(11 < y+P < 34) respectively lie much lower than the experimental points of the Nusselt number.

The use of the empirical correction function (15) with a radial step of the grid of 2.5 mm converts curve 1 in Fig. 
2 into dependence 4 between the Nusselt and Reynolds numbers which is coincident well with experimental points. Here, 
curve 3 obtained with a grid step of 1 mm is transformed into dashed line 5 differing little from dependence 4.

The adequacy of the semiempirical model with Eqs. (11)–(15) has also been confi rmed by a comparison, in Fig. 3, 
of the results of numerical modeling and Tamonis′s data on radiative-convective heat transfer of high-temperature gases 
[8, Table 7]. The temperature of the cooled gases was measured on the axis of the experimental portion of a tube of diameter 
150 mm at a temperature of its wall of 296 K. The group of experimental points along curves 1–3 corresponds to the lower-

Fig. 2. Results of modeling of the convective heat transfer of gases without correcting 
equations (1–3) and with an empirical correction (4, 5) at different radial grid steps: 1 and 
4) 2.5 mm, 2) 1.5 mm, and 3 and 5) 1 mm; points, experiment [8].
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than-average content of carbon dioxide (5–6%) and of steam (11–12%). Points along curves 4–6 correspond to the higher 
content of triatomic gases.

In this case the presence of the topping cooled portion, along which a boundary layer is formed under the conditions 
of unstabilized motion and heat transfer, is provided, as previously, in the mathematical model. Numerical modeling of the heat 
transfer to tube walls was carried out with the differential model of radiative heat transfer in selective gases [9], which, with a 
radial step of the grid of 1.5 mm, corresponded to the dimensionless distance to the grid nodes next to the wall y+ = 31–75.

The results are presented by curves 1–6 which are in good agreement with experimental points as a rule. Of prime 
importance is the coincidence of the calculated and experimental dependences which demonstrates the identical rate of 
cooling of the gas fl ow along the tube length and hence the identical intensity of transfer of heat in the experimental and 
numerical methods of modeling.

According to Eq. (14), the heat fl ux of convective heat transfer is dependent on the turbulent Prandtl number whose 
value is known to be in the range of 0.7 to 1. Curve 2 in Fig. 3 corresponds to the mean value Prturb = 0.85. The remaining 
temperature curves have been obtained at a turbulent Prandtl number varying linearly from 0.7 to 0.8 in the transition region 
from the equilibrium sublayer to a buffer sublayer (at 50 > y+ > 35). This enabled us to bring them in better coincidence with 
the experimental points, bearing in mind that with one and the same radial step of the grid, the dimensionless distance from 
the wall to the grid node next to it decreases downstream with the gas fl ow.

CONCLUSIONS

1. The Prandtl semiempirical wall-turbulence model has been applied to a turbulent boundary layer of nonisothermal 
gases. It has been shown that on the basis of this model, boundary conditions to the equations of motion can be 
set using a coarse grid near the wall.

2. The approximate proportionality has been established between the dimensionless derivatives of the gas 
temperature and velocity in the equilibrium sublayer of the turbulent boundary layer and in most of the buffer 
sublayer. This made it possible to substantiate a semiempirical convective-heat-transfer model that requires no 
refi nement of the grid near the wall surface.

3. The adequacy of the semiempirical model has been confi rmed by the agreement between the results of numerical 
modeling and the experimental data on the heat transfer of turbulent fl ows of air and high-temperature gases to 
the cooled walls of the experimental tube.

NOTATION

A+, confi guration factor; c, specifi c mass heat at constant pressure, J/(kg·K); d, inside diameter of a tube, m; 
f, theoretical function; g, empirical function; l, mixing length, m; m, factor to the discrete velocity derivative; Nu, Nusselt 

Fig. 3. Temperature on the axis of the experimental tube with a fl ow rate of the gases 
of: 1) 473, 2) 720, 3) 570, 4) 627, 5) 511, and 6) 839 kg/h; points, experiment [8], lines, 
numerical modeling.
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similarity number; Pr, Prandtl similarity number; Prturb, turbulent Prandtl number; q, heat-fl ux density, W/(m2·K); 
Re, Reynolds similarity number; T, thermodynamic temperature, K; u, longitudinal velocity, m/s; u*, dynamic velocity, m/s; 
x, distance along the length of the experimental portion, m; y, normal distance to the wall, m; ζ, wall-transfer factor, m/s; 
κ, universal constant; ν, kinematic coeffi cient of viscosity, m2/s; ρ, gas density, kg/m3; σ, shear stress, Pa. Subscripts and 
superscripts: iso, isothermal; e, experiment; log, logarithmic; m, correction; w, on the wall; turb, turbulent; P, at the grid node P;
u, for velocity; t, at temperature; +, dimensionless quantity.
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