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MHD FLOW OF A WILLIAMSON FLUID OVER AN INFINITE
ROTATING DISK WITH ANISOTROPIC SLIP 

Najeeb Alam Khana and Faqiha Sultanb UDC 532.5

An MHD fl ow of a Williamson fl uid over an infi nite rotating disk with the Soret and Dufour effects and an anisotropic 
slip was investigated. The system of nonlinear partial differential equations governing this fl ow and the heat 
and mass transfer in it was rearranged to the ordinary differential equations with the use of the von Kármán 
similarity transformation. The ordinary differential equations were numerically solved using the MATLAB routine 
bvp4c. 
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Introduction. Recently major attention has been concentrated on the analysis of non-Newtonian fl uids because 
of their numerous applications in industry and engineering. The most common example of the non-Newtonian fl uids are 
the pseudoplastic ones. Pseudoplastic fl uids are used in the preparation of emulsion sheets, such as photographic fi lms, 
in the extrusion of polymer sheets, in the formation of plasma and blood fl ows, and in other processes. The rheological 
properties of such fl uids cannot be defi ned with the use of only the Navier–Stokes equations. To overcome this defi ciency, 
several rheological models, such as the Carreau model, power-law model, Ellis model, and Cross model, have been 
developed. In 1929, Williamson [1] presented a detailed description of pseudoplastic materials, proposed a constitutive 
equation that defi nes the fl ow characteristics of pseudoplastic fl uids, and experimentally validated the results obtained. 
The correspondence of this model of a non-Newtonian fl uid to blood fl ow has attracted the attention of researchers. 
Many valuable works have been added to this fi eld in recent years. Nadeem et al. [2] presented a study on the two-
dimensional fl ow of a Williamson fl uid over a stretched sheet. Khan et al. [3] investigated the effect of a chemical reaction 
on the boundary layer fl ow of a Williamson fl uid. Zehra et al. [4] proposed a numerical solution of the problem on the 
Williamson fl uid fl ow with a pressure-dependent viscosity over an inclined channel. Malik et al. [5] presented the solution 
of the problem on the homogeneous and heterogeneous reactions in a Williamson fl uid over a stretched cylinder with 
the use of a Keller box. Recently, Malik et al. [6] performed a numerical investigation on the infl uence of the variable 
thermal conductivity of a Williamson fl uid and the generation/absorption of heat by it on its fl ow and the heat transfer 
in it. 

An exact solution of the momentum equations governing the steady fl ow generated by an infi nite disk rotating 
with a uniform angular velocity was proposed for the fi rst time by Kármán [7]. It was assumed that in the direction of 
the fl ow close to the disk there are no pressure gradients that would balance the centrifugal forces so that the fl uid would 
spiral outward. The disk works as a centrifugal fan: the fl ow generated by it is supplemented by an axial fl ow retracing 
to the surface of the disk. The problem on the fl ow of a Newtonian fl uid over a rotating disk has attracted considerable 
attention from researchers. The problem on the fl ow of a non-Newtonian fl uid over a rotating disk has received much less 
attention despite the fact that this fl ow has found many applications in engineering. Some of the recent works were devoted 
to the study of the effect of a magnetic fi eld on the laminar fl ow of a non-Newtonian Eyring–Powell fl uid over a rotating 
disk [8], the stability of the boundary layer of the fl ow of a non-Newtonian fl uid over a rotating disk [9], and the effect 
of double diffusion on the unsteady MHD fl ow of a couple-stress fl uid over a rotating disk and the heat transfer 
in it [10]. 

The latest developments in micro- and nanotechnology made it possible to use micro- and nanosized devices 
in many applications. In such devices, the surface properties play a major role. Lately the hydrophobic and hydrophilic 
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surfaces obtained with the use of micro- and nanotechnologies have attracted much attention. It was established that 
the drag of a fl ow in a microsized channel is decreased due to the slip of this fl ow on the hydrophobic surface of the 
channel. Recently, superhydrophobic surfaces have attracted much attention because they make it possible to substantially 
decrease the skin-friction drag in turbulent fl ows. Several engineering applications of these surfaces have been explored 
lately [11–13]. The fl ows over some surfaces show an evident slip denying the traditional no-slip condition. In 1823, 
Navier [14] proposed a slip boundary condition, in accordance with which the slip velocity of a fl ow depends linearly 
on the shear stress in it. In recent years, some advances have been achieved in the study of fl ows over such surfaces. Ng 
and Wang [11] investigated the emploiment of superhydrophobic surfaces and investigated the Stokes shear fl ow over a 
grating. Later, they obtained two- and three-dimensional patterns of the slip of the Stokes fl ow over a surface with the use 
of the semianalytical technique [15]. Busse and Sandham [16] investigated the infl uence of the anisotropic Navier slip-
length boundary condition on the turbulent fl ow in a channel. Wang [17] investigated the axisymmetric stagnation fl ow 
over a moving plate with different streamwise and spanwise slip coeffi cients. Recently, Cooper et al. [18] have presented 
a theoretical study on the effect of anisotropic and isotropic slips on the stability of the boundary layer fl ow over a rotating 
disk. 

Many technical and industrial applications, such as the cooling of electronic devices by fans, nuclear reactors during 
emergency shutdowns, and heat exchangers with low-velocity fl ows, are based on forced and free convection. In such 
devices, a cross-diffusion also takes place due to the simultaneous occurrence, in them, of heat transfer and mass transfer 
that infl uence each other. The mass transfer affected by a temperature gradient is known as the Soret effect, whereas the 
heat transfer affected by a concentration gradient is known as the Dufour effect. Osalusi et al. [19] investigated the Dufour 
and Soret effects in a steady convective fl ow, generated by a rotating disk, with heat and mass transfer, Ohmic heating, 
and viscous dissipation under slip conditions in the presence of a magnetic fi eld. Shatei and Motsa [20] investigated the 
boundary layer fl ow over an unsteady stretching surface with a Hall-current and a Soret–Dufour effects. Narayana and 
Sibanda [21] investigated the effect of a double diffusive on a fl ow over a cone. Recently, Khan and Sultan [22] have 
presented the fl ow of an Eyring–Powell fl uid over a cone bounded by a porous medium with Soret and Dufour effects.

A survey of literature has shown that the structure of the fl ow of a Williamson fl uid over a rotating disk, the Soret 
and Dufour effects in it, the infl uence of an anisotropic slip on this fl ow, and its heat and mass transfer characteristics 
have not been analyzed so far, despite the fact that the indicated parameters of such a fl ow are of importance when is used 
in oceanography, rotating machinery, nanotechnology, electronic and nuclear devices, and computer storage devices, and 
control of these parameters of a fl ow makes it possible to decrease the skin-friction drag in it. In the present work, an 
effort has been made to overcome this defi ciency and investigate the infl uence of an anisotropic slip of a MHD fl ow over a 
rotating disk with Soret and Dufour effects on the structure of this fl ow and the heat and mass transfer in it. The von Kármán 
similarity transformation was used to transform the ordinary differential equations governing the momentum and the heat 
and mass transfer characteristics of the indicated fl ow to the partial differential equations. The model of this fl ow, including 
all the above effects, is very complex and, therefore, it cannot be solved analytically. A numerical solution of this model was 
obtained with the use of the MATLAB routine bvp4c.

Mathematical Model. A pseudoplastic fl uid following the Williamson rheological model is considered. The tensor 
of an extra stress in a Williamson fl uid is defi ned as 

 1
0( ( )(1 ) ) ,A−

∞ ∞τ = μ + μ − μ − Γγ  (1)

where Γ  is the time constant, ( )tA V V= ∇ + ∇  is the strain-rate tensor, ∇  is the differential operator, and 

 21 .
2

trAγ =  (2)

Using the fi rst-order Taylor series approximation of 1(1 ) (1 )−− Γγ ≅ + Γγ  with 2 1,Γ <<<  we bring Eq. (1) to the form

 0 0( ( ) ) .A∞τ = μ + μ − μ Γγ  (3)

The shear components of a Williamson fl uid in cylindrical polar coordinates have the form
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2 2 2 2 2 21 1 12 2 2 .u v u v u w v u w v w

r r r r z r r r r z z
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞γ = + + − + + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂θ ∂ ∂ ∂θ ∂θ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (5)

Formulation of the Problem. We consider a steady three-dimensional, axisymmetric incompressible fl ow of a 
Williamson fl uid over a rotating disk with heat and mass transfer. This fl ow  is produced by an infi nite hydrophobic disk 
rotating with a constant angular velocity Ω. The fl uid propagates infi nitely in the positive half-space of the disk (z > 0), and 
it is initially located at z = 0. The disk has different slips in the radial and tangential directions. A uniform external magnetic 
fi eld of strength B0 is applied normally to the disk. The schematic diagram of the problem is presented in Fig. 1. The 
temperature at the surface of the disk Tw and the species concentration at this surface Cw remain unchanged. The temperature 
T∞ and concentration C∞ of the ambient fl uid are uniform at a constant pressure P∞.

Assuming that the above-described fl uid fl ow has a small Reynolds number, we write the following system of 
equations for this fl ow and the heat and mass transfer in it: 

 0 ,u u w
r r z
∂ ∂

+ + =
∂ ∂

 (6)

 
2

2
0 ,rr zr rru v u pu w B u

r r z r r z r
θθ⎛ ⎞∂ ∂ ∂ ∂τ ∂τ τ − τ

ρ − + = − + + + − σ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (7)

 2
02 ,r z rv uv vu w B v

r r z r z r
θ θ θ∂ ∂ ∂τ ∂τ τ⎛ ⎞ρ + + = + + − σ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (8)

 ,rz zz rzw w pu w
r z z r z r

∂ ∂ ∂ ∂τ ∂τ τ⎛ ⎞ρ + = − + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9)
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m
2 2 2 2

s

1 1 ,T

P P

T T k T T T D K C C Cu w
r z C r r C C r rr z r z

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ρ ∂ ∂∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (10)

Fig. 1. Physical model of the fl uid fl ow and coordinate system.
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with the boundary conditions 

 
1 2 w w, , 0 , 0 , , , at 0 ,

0 , 0 , 0 , , as .

rz zu k v r k w P T T C C z

u v w T T C C z

θ

∞ ∞

= τ = Ω + τ = = = = =

→ → → → → → ∞
 (12)

Similarity transformation. To obtain the dimensionless continuity, momentum, energy, and concentration equations 
for the fl uid fl ow being considered, we use the similarity solution of the Navier–Stokes equations, obtained by Kármán [7]:

 
w

2

( ) , ( ) , ( ) , ( ) , ( ) ,
 

( ) ,  , Re .
w
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r r T T

C C rz
C C

∞

∞

∞

∞

−
η = η = η = η = Θ η =

Ω Ω ρνΩ −νΩ

− Ω Ω
ϕ η = η = =

− ν ν

 (13)

Using the above similarity transformation, we represent Eqs. (6)–(11) in the form 

 2 0 ,f h′+ =  (14)
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The boundary conditions (12) are transformed as
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( )

2 2 2 2
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2 2 2 2
2

(0)  (0) 1 We 4( (0)) Re(( (0)) ( (0)) ) 2( (0)) ,

(0) 1  (0) 1 We 4( (0)) Re(( (0)) ( (0)) ) 2( (0)) ,

(0) 0 , (0) 0 , (0) 1 , (0) 1 ,  

( ) 0 , ( ) 0 , ( ) 0 , ( ) 0 ,

f f f f g h

g g f f g h

h P

f g

′ ′ ′ ′= λ + + + +

′ ′ ′ ′= + λ + + + +

= = Θ = ϕ =

∞ = ∞ = Θ ∞ = ϕ ∞ =

 (20)

where 1 1 0k Ω
λ = μ

ν
 and 2 2 0 .k Ω

λ = μ
ν

Physical parameters. The shear stress coeffi cients, the moment of friction, and the local Nusselt and Sherwood 
numbers of a von Kármán fl ow with heat and mass transfer are important physical parameters. The coeffi cients of radial and 
tangential shear stresses in the Williamson fl uid at the surface of the disk are defi ned as 

 
0 0 0

( , ) , .rz z
f g

z
C C θ

=

⎛ ⎞τ τ
= ⎜ ⎟μ Ω μ Ω⎝ ⎠

 (21)

Hence, we have the following relations for the local skin-friction coeffi cients:

 ( )2 2 2 21 We 4( (0)) Re(( (0)) ( (0)) ) 2( (0)) (0) ,
Re

fC
  f f g h f′ ′ ′ ′= + + + +  (22)

 ( )2 2 2 2 1 We 4( (0)) Re(( (0)) ( (0)) ) 2( (0))  (0) .
Re
gC

 f f g h g′ ′ ′ ′= + + + +  (23)

Another interesting parameter of a fl uid fl ow over a rotating disk is the turning moment of the disk with fl uid on both its 
sides, known as the moment of friction. This parameter is determined from the tangential velocity profi le by integrating the 
shear stresses of the fl uid over the disk surface. The moment coeffi cient Cm for the Williamson fl uid over a rotating disk is 
determined from the expression 

 ( )2 2 2 22 1 We 4 Re( ) 2 .
RemC f f g h g− π ′ ′ ′ ′= + + + +  (24)

The heat and mass fl ows at the surface of the rotating disk are fefi ned as

 w w
0

( , ) , .
z

T Cq M k D
z z =

∂ ∂⎛ ⎞⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠
 (25)

Hence, for the Nusselt and Sherwood numbers, we have the expression

 (Nu, Sh) Re( (0), (0)) .′ ′= − Θ ϕ  (26)

Numerical Method. The momentum and heat and mass transfer properties of a Williamson fl uid over a rotating disk 
with Soret and Dufour effects have not been studied yet because of the complexity of the system of governing equations. 
This system is highly nonlinear, and it consists of coupled ordinary differential equations that are quite diffi cult to solve 
analytically. Moreover, the presence of slip terms in the boundary conditions additionally complicates the indicated system. 
To overcome these diffi culties, the system was numerically solved using the MATLAB routine based on the numerical bvp4c 
method offered by Kierzenka and Shampine [23]. Many engineering problems were successfully solved by this method. 
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Results and Discussion. The anisotropic slip of the fl uid fl ow of a Williamson fl uid generated by a rotating infi nite 
disk as well as the Soret and Dufour effects and the heat and mass transfer in it were determined from the numerical solution 
of the system of governing equations for this fl ow. Results of investigations of the infl uence of the indicated parameters of 
the fl uid fl ow on its velocity, pressure, temperature, and concentration distributions are presented in Figs. 2–10. The validity 
of the model proposed and the results obtained with it was proved by comparison of the numerical data obtained for a special 
case of Williamson fl uid where We = 0 (Tables 1 and 2). The numerical values of some important physical parameters of a 
Williamson fl uid are presented in Tables 3 and 4. For simplicity, constant values were taken for some parameters: We = 0.4,  
λ1 = 0.4, λ2 = 0.2, M = 0.1, M = 0.1, Re = 0.1, Df = 0.5, Sr = 0.2, Sh = 1.0, and Pr = 6.

The general structure of the profi les of the radial, tangential, and axial velocities of the fl uid fl ow, observed from 
the fi gures, can be theoretically described in the following way: the radial velocity profi le shows the rapid growth near the 
disk, and then it steadily diminishes to zero, allowing more fl uid to pass through the disk; the tangential velocity profi le 
appears to be exponentially decaying, and the axial velocity profi le takes a limiting asymptotic value. The effects of the 
Williamson parameter on the velocity profi les of the fl uid fl ow and the pressure distribution in it are presented in Fig. 2. It 
is seen from Fig. 2a that the Williamson parameter has increasing impact on the radial velocity of the fl ow near the disk, 
which allows a larger amount of the fl uid to pass through the disk, but it shows no effect as the velocity profi le moves 
away from the disk. At the same time, as seen from Fig. 2b, the Williamson parameter has increasing infl uence on the axial 
velocity away from the disk. It is seen from Fig. 2c that the pressure distribution also increases with increase in We. The 
infl uence of the radial slip on the radial and axial velocities of the fl uid fl ow in the presence of a tangential slip is presented 
in Fig. 3a and b: the impact is quite similar to the effect of the Williamson parameter. The radial slip increases the radial and 

Fig. 2. Distributions of the radial (a) and axial (b) velocities of the fl uid fl ow and of the 
pressure in it (c) under the anisotropic slip conditions at We = 0.4 (1), 0.6 (2), and 0.8 (3).
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Fig. 3. Distributions of the radial (a) and axial (b) velocities of the fl uid fl ow and of the 
pressure in it (c) under the tangential slip conditions at λ1 = 0 (1), 0.2 (2), and 0.4 (3).

Fig. 4. Temperature distribution in the fl uid fl ow with a tangential slip at λ1 = 0 (1), 1 (2), 
and 2 (3).

Fig. 5. Distribution of the radial velocity of the fl uid fl ow with a radial slip at λ2 = 0 (1), 
0.2 (2), and 0.4 (3).
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axial fl ow velocities. However, as seen from Fig. 3c and Fig. 4, the pressure and temperature profi les decrease when the radial 
slip increases. On the other hand, as is seen from Figs. 5 and 6, an increase in the tangential slip substantially reduces the 
radial and axial velocities. Figure 7 shows the infl uence of the magnetic fi eld on the radial and tangential velocities of the 
fl ow, and both profi les show a decreasing behavior with increase in magnetic fi eld. The infl uence of the temperature and 

Fig. 6. Distributions of the axial velocity of the fl uid fl ow with a radial slip at λ2 = 0 (1), 
0.04 (2), and 0.08 (3).

Fig. 7. Distributions of the radial (a) and tangential (b) velocities of the fl uid fl ow with an 
anisotropic slip at M = 0 (1), 0.05 (2), and 0.1 (3).

TABLE 1. Values of Some Physical Parameters of the Fluid Flow Obtained in the Present Work and in [24] at We = 0, M = 0, 
Pr = 0.71, Sh = 0.6, Df = 0, and Sr = 0

Physical quantities Present work [24]

f '(0) 0.5102 0.51023

–g'(0) 0.6159 0.61592

–h(∞) 0.8844 0.8838

–P(∞) 0.3911 0.3906
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Fig. 8. Concentration distribution in the fl uid fl ow with an anisotropic slip at Sr = 0 (1), 
0.4 (2), and 0.8 (3).

Fig. 9. Temperature distribution in the fl uid fl ow with an anisotropic slip at Df = 0 (1), 
0.4 (2), and 0.8 (3).

Fig. 10. Concentration distribution in the fl uid fl ow with an anisotropic slip at Sc = 0.2 (1),
0.8 (2), and 1.4 (3).

TABLE 2. Dependences of the Temperature of the Fluid Flow on the Prandtl Number Obtained in the Present Work and in 
[25] at We = 0, M = 0, Sh = 0.6, Df = 0, and Sr = 0

Pr
–Θ'(0)

Present work [25]

0.71 0.3286 0.32857

1 0.3962 0.39626

10 1.1341 1.1341

100 2.6871 2.8672
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TABLE 3. Values of the Local Skin Friction Coeffi cients Cf  and Cg and the Moment of Friction Cm Depending on We, λ1, λ2, 
and M at Re = 0.1, Df = 0.5, Sr = 0.2, Sc = 1.0, and Pr = 6

We λ1 λ2 M
1
2Re fC

−
1
2Re gC

− Cm

0.4 0.0066 0.3295 6.5461

0.6 0.4 0.2 0.1 0.0211 0.3758 7.4677
0.8 0.0371 0.4176 8.2980

0.0 0.0032 0.3126 6.2110
0.4 0.2 0.2 0.1 0.0049 0.3203 6.3633

0.4 0.0066 0.3295 6.5461
0.0 0.0092 0.3636 7.2253

0.4 0.4 0.2 0.1 0.0066 0.3295 6.5461
0.4 0.0047 0.3025 6.0105

0.0 0.0130 0.2166 4.3032
10 0.2 0.2 0.05 0.0097 0.2758 5.4791

0.1 0.0066 0.3295 6.5461

TABLE 4. Values of the Local Nusselt and Sherwood Numbers Depending on We, λ1, λ2, M, Pr, Df, and Sr at Re = 0.1

We λ1 λ2 M Pr Df Sr
1
2Re Nu

−
1
2Re Sh

−

0.4 0.2319 0.0686
0.6 0.4 0.2 0.1 6 0.5 0.2 0.3692 0.0924
0.8 0.4603 0.1148

0.0 0.1571 0.0651
0.4 0.2 0.2 0.1 6 0.5 0.2 0.1944 0.0663

0.4 0.2319 0.0686
0.0 0.2664 0.0732

0.4 0.4 0.2 0.1 6 0.5 0.2 0.2319 0.0686
0.4 0.2009 0.0659

0.0 0.3291 0.0988
0.4 0.4 0.2 0.05 6 0.5 0.2 0.2823 0.0809

0.1 0.2319 0.0686
1 0.0851 0.0965

0.4 0.4 0.2 0.1 3 0.5 0.2 0.1555 0.0829
5 0.2096 0.0728

0.0 0.2346 0.0681
0.1 0.5 0.2 0.2319 0.0686

1.0 0.2288 0.0693
0.0 0.2212 0.1003

0.4 0.4 0.2 0.1 6 0.5 0.5 0.2319 0.0686
1.0 0.2442 0.0324
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diffusion effects on the mass transfer in the fl uid fl ow is demonstrated in Fig. 8. It is clearly seen that an increase in the 
Soret number increases the mass transfer in the fl uid fl ow. Figure 9 shows the behavior of the temperature profi le of the 
fl uid vs the Dufour number. The temperature distribution decreases near the disk, and its pattern changes away from the 
disk. The infl uence of the Schmidt number on the concentration profi le of the fl uid fl ow is presented in Fig. 10. It is seen 
from this fi gure that the concentration profi le decreases with increase in the Schmidt number. 

A Williamson fl uid shows viscous behavior at We = 0 and μ0 → μ∞ or Γ = 0. Considering this property of the 
Williamson fl uid, the model of fl ow of a Williamson fl uid over a rotating disk with an anisotropic slip and the results obtained 
with it were verifi ed by comparison of them with the results obtained in [24] for viscous fl uid fl ows over a rotating disk 
(Table 1). In Table 2, the numerical data on the heat transfer in the fl uid fl ow at different values of the Prandtl number 
are compared with the corresponding results obtained in [25]. The numerical comparisons presented in both tables prove 
the validity of the model developed. The numerical values of the radial and tangential skin-friction coeffi cients and the 
coeffi cient of friction are presented in Table 3, and the numerical values of the local Nusselt number and the local Sherwood 
number are given in Table 4. In follows from Table 3 that the Williamson parameter exerts similar effects on the skin-friction 
drag in both the radial and tangential directions and on the moment of friction: all the quantities increase with increase in 
We. The effects of the radial slip on the radial and tangential skin-friction drags are opposite in character to those of the 
tangential slip. The radial slip increases the skin-friction in both directions with increase in the moment of friction, while the 
tangential slip decreases both the skin-friction coeffi cients and the moment of friction. However, the skin-friction in the radial 
direction decreases with increase in the magnetic fi eld, but it increases the drag in the tangential direction with increase in 
the moment of friction. Moreover, as seen from Table 4, an increase in We increases the heat and mass transfer in the fl uid, 
and the radial slip increases the local Nusselt and Sherwood numbers, but the tangential slip and the magnetic fi eld decrease 
these quantities. On the other hand, the Prandtl, Dufour, and Soret numbers differently infl uence the Nusselt and Sherwood 
numbers. The Prandtl and Soret numbers increase the heat transfer and decrease the mass transfer in the fl uid fl ow, but the 
Dufour number decreases the heat transfer and increases the mass transfer in this fl ow. 

Conclusions. A numerical investigation of the Soret and Dufour effects on the MHD fl ow of a Williamson fl uid over 
an infi nite rotating disk with an anisotropic slip has been performed. It was established that an anisotropic slip and the Soret 
and Dufour effects signifi cantly infl uence the structure of the indicated fl ow and the heat and mass transfer in it. Radial slip 
increases the radial velocity of the fl ow, and tangential slip decreases the fl ow velocity in this direction. A magnetic fi eld 
decreases both the radial and azimuthal velocities of the fl ow. The adequacy of the numerical data obtained was confi rmed by 
comparison of them with the analogous data found in the literature. 

NOTATION

B0, magnetic fi eld; C, species concentration in the boundary lay er; CP, specifi c heat at a constant pressure; 
Cs, concentration susceptibility; Cw, species concentration at the wall; C∞, species concentration in the ambient fl uid; 
D, molecular diffusivity; f, h, and g, radial, axial, and tangential components of the dimensionless fl ow velocity; Df, Pr 
Re, and Sr, Dufour, Prandtl, Reynolds, and Soret numbers; Dm, effective mass-fl ow diffusivity; k, thermal conductivity; 
k1 and k2, radial and tangential slip coeffi cients; KT, thermal-diffusion ratio; M, magnetic fi eld parameter; Nu and Sh, local 
Nusselt and Sherwood numbers; p, hydrostatic pressure; P∞, constant pressure; P, dimensionless dynamic pressure in the 
fl uid above the disk; T and Tav, temperature and average temperature of the fl uid, K; Tw, temperature of the disk wall, K;
T∞, free-stream temperature, K; u, v, and w, fl uid-velocity components in the x, y, and z directions; V, velocity of the fl uid 
fl ow; We, Williamson parameter; ,γ  second invariant of the strain-rate tensor; η, dimensionless distance from the surface of 
the disk; Θ and φ, dimensionless temperature and concentration of the fl uid; λ1 and λ2, radial and tangential slip parameters; 

μ0 and μ∞, zero and infi nite viscosity shear rates; 0 ,μ
ν =

ρ
 kinematic viscosity; ρ, density of the fl uid; τ, extra stress tensor. 

Subscripts: av, average; m, mass; s, susceptibility; w, wall.
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