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MODELING THE INDUCTION HEATING OF PRESS EQUIPMENT 
IN AN AUTOMATIC-TEMPERATURE-CONTROL MODE

A. O. Glebov, S. V. Karpov, S. V. Karpushkin,   UDC 62-932.4
and E. N. Malygin

Consideration has been given to the most widespread three-dimensional formulations of a mathematical model of 
the process of inducing eddy currents in ferromagnetic materials. Two procedures have been proposed to calculate 
temperature fi elds of induction heating devices in a mode of automatic proportional-integral-differential temperature 
control, which makes it possible to considerably reduce the consumption of computer time with ensuring acceptable 
accuracy. The fi rst procedure provides for a successive conduct of electromagnetic and thermal analyses with the 
"scaling" of heat releases from the eddy currents at the stage of control. In the case of shortage computational 
resources it is possible to use the second procedure which involves a thermal model under the assumption of a 
uniform release of heat in the region of inductors and is only applicable for the inductors placed inside heated 
bodies. Using the calculation of temperature fi elds in press plates, molds, and vulcanized products as an example, the 
authors have shown the necessity of taking account of the period of stabilization of a temperature fi eld in developing 
and operating heating plates.
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Introduction. In the segment of press equipment intended for fabricating rubber technical goods (RTGs), the induction 
technique of heating of plates is preferred because of the durability of heating elements, i.e., inductors. The high indices of 
specifi c power make it possible to decrease the total length of grooves for placing them, to improve the manufacturability of 
a plate′s structure, and to provide a greater scope for optimizing the temperature fi eld.

In the operating cycle of heating plates, we can single out two stages: 1) heating from the initial temperature to an 
assigned one and 2) automatic temperature control using a positioning controller or a proportional-integral-differential (PID) 
controller. At the second stage, the temperature fi eld of a plate undergoes substantial changes produced by the reduction in 
the power consumption. In this connection, solution of problems of searching for optimum modes of implementation of the 
vulcanization process (assigned value of the temperature of a checking thermocouple, the vulcanization time, and also the 
duration of stabilization of the temperature fi eld, i.e., reaching a nearly stationary temperature mode) assumes the conduct of 
thermal analysis at the stage of automatic control.

The diffi culty with controlling the process of induction heating is due to the nonlinearity and nonstationarity of 
the electromagnetic processes underlying them (because of the presence of hysteresis). Furthermore, attaining assigned 
parameters of the temperature fi eld of the working surface of a plate is made diffi cult by the intricate confi guration of the 
temperature distribution in its volume, and also by perturbations of electromagnetic and thermal nature.

Scientifi c publications on the subject of control of the process of induction heating are mainly devoted to the 
development of methods and algorithms to synthesize the control of the existing technological objects. Here, these problems 
are solved without mathematical modeling of the temperature fi elds of objects based on consideration of integral indices, i.e., 
temperatures at one or several points, and investigation reliability is confi rmed by the results of laboratory and simulation 
investigations.

The procedure of calculation of temperature fi elds of induction heating devices with positioning control was 
considered in [1]. An analysis of the results presented in this publication and others has shown that positioning control often 
fails to meet requirements imposed on the quality of control. For example, in controlling the induction heating of a system of 
molds for pressure molding of plastic, it is expedient to use only PID control [2].
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In automatic PID control, it is necessary to recalculate the values of heat releases from eddy currents for each 
instant of time, which strongly increases the amount of computations. In [3], it has been shown that the use of a regular PID 
controller is unacceptable in some cases and has been proposed that a controller based on fuzzy logic be used.

Mathematical Model of Induction Heating of Ferromagnetic Materials. The process of propagation of eddy 
currents in ferromagnetic materials is modeled by Maxwell′s fundamental equations whose direct solution in a three-
dimensional formulation seems impossible. The development of mathematical models of propagation of eddy currents in 
three-dimensional bodies that are suitable for practical use began in the 1970s [4] and has not lost its relevance to date [5]. 
Over this period, a few mathematical models have been proposed whose solution with the fi nite-element method satisfi es 
Maxwell′s initial differential equations. The models most widespread in calculation practice are as follows:

1) based on the vector magnetic potential A (Wb/m) and the scalar electric potential V (V) in a classical nodal 
formulation of the fi nite-element method [6];

2) based on the edge vector magnetic potential A and the nodal scalar electric potential V [7];
3) based on the edge vector current potential T (A/m) and the scalar nodal electric potential φ (A) [4, 7].

In [7, 8], it has been shown that approximation of the vector magnetic potential A by nodal basis functions at 
substantial values of the normal component of A at the boundaries of abrupt change in the magnetic permeability may lead 
to great errors in calculating eddy currents. Physically, the normal component of the vector magnetic potential at these 
boundaries undergoes a discontinuity which cannot be modeled using nodal fi nite elements. At present, the model based 
on the nodal vector magnetic potential loses its relevance for three-dimensional problems. Therefore, the support of fi nite 
elements SOLID97 of the ANSYS fi nite-element-analysis system, which implement this model, was stopped in 2016.

The use of edge basis functions makes it possible to ensure the discontinuity of the normal component of the vector 
magnetic potential. In this approximation, variables (degrees of freedom) are assigned by the edges of fi nite elements, not 
by their nodes. Let us consider this model in greater detail. In the space where an electromagnetic fi eld is modeled, we can 
single out three domains: the existence domain of eddy currents Ω1, the domain with zero electrical conductivity Ω2 (air space 
or electrical insulation), and the domain with an external current Ω3 (coil connected to a current or voltage source) (Fig. 1).

For the domain Ω1, the mathematical model based on the edge vector magnetic potential and on the scalar electric 
potential is of the form

 
1rot ( rot ) grad 0 ,V

t
− ∂

μ + γ + γ =
∂
AA  (1)

 div grad 0 .V
t

∂⎛ ⎞γ + γ =⎜ ⎟∂⎝ ⎠

A  (2)

In the domains Ω2 and Ω3, the electromagnetic fi eld is described by the equation

 
1 extrot ( rot ) .−μ =A J   (3)

At the boundary Γn,c of contact between the electrically conductive (Ω1) and dielectric (Ω2) domains, we specify 
boundary conditions of continuity for the tangential component of the magnetic fi eld strength and of continuity for the normal 
component of the magnetic induction:

 1 1
1 1 2 2rot rot ,− −μ × = μ ×A n A n  (4)

 1 2rot rot .⋅ = ⋅A n A n  (5)

Analogously we write the conditions at the boundary between the domains Ω2 and Ω3. Condition (4) yields that on abrupt 
change in the magnetic permeability, the function A must be discontinuous at the boundary Γn,c.

At the external boundary Γn of the dielectric domain Ω2, we specify the condition of parallelism or perpendicularity 
for the magnetic induction (depending on the problem in question):

 rot 0 ,⋅ =A n  (6)

 rot 0 .× =A n  (7)
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In the planes of symmetry of the analyzed domain, there can be the external boundaries Γc of the electrically conductive 
domains Ω1 and Ω3 (Fig. 1). In the case of the perpendicularity of the eddy currents to these planes, the boundary conditions 
are of the form

 0 ,× =A n  (8)

 const .V =  (9)

The density vector of the eddy currents J (A/m2) is calculated from the formula

 
grad .V

t
∂

= −γ − γ
∂
AJ

 
 (10)

Consequently, the condition of parallelism of the eddy currents to the planes of symmetry has the form

 
grad 0 .V

t
∂⎛ ⎞⋅ γ + γ =⎜ ⎟∂⎝ ⎠

An
 

 (11)

Approximation of the vector magnetic potential is carried out from the equation [7]
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The electric potential is approximated by the nodal basis functions:
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 (13)

Solution of mathematical model (1)–(11) in the ANSYS system is realized using 20-node fi nite elements SOLID236. 
The integral of the vector magnetic potential along the edge of the element ak in the ANSYS system is denoted by AZ, and 
the scalar electric potential, by VOLT. Subdividing the model into subdomains enables us to minimize the total number 
of unknowns: Eq. (3) is only solved for the vector magnetic potential. Thus, the existence domain of eddy currents Ω1 is 
approximated by the fi nite elements SOLID236 with degrees of freedom AZ for each edge and VOLT for each node. The 
domains Ω2 and Ω3 contain fi nite elements with degree of freedom AZ.

Direct use of Eq. (3) is only possible in the cases of a determinate current density in inductors. In actual practice, we 
more often face the problem of connection of the inductors to a voltage source. The voltage drop on the inductor is expressed 
by the equation

Fig. 1. Domain in the space of modeling of an electromagnetic fi eld.
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 .V RIΔ = + ε   (14)

The self-induction electromotive force (EMF) is determined by the rate of change in the magnetic fl ux Φ through the inductor:

 3

c

c
.d N d d

dt S dtΩ

Φ
ε = = Ω∫

At
 

 (15)

The inductor is usually modeled more simply, i.e., as a solid (continuous) body. In [9], it has been shown that the layout of 
turns, and also gaps between them exert no infl uence on induced eddy currents. Consequently, the averaged current density 
for the inductor′s simplifi ed model will be

 
ext

c c/ .IN S= ⋅J t   (16)

With account of expressions (13) and (15), Eq. (3) for the case of connection of the inductor to the voltage source will be 
rewritten in the following form:

 
1

c crot ( rot ) ( )/( ) .IN V S R−μ = ⋅ Δ − εA t   (17)

The inductor connected to the voltage source is modeled in the ANSYS system using the fi nite elements SOLID236 
with degrees of freedom AZ, VOLT, and EMF. The voltage drop ΔV is assigned as the degree of freedom VOLT at all the 
nodes. In this connection, contact of the domains Ω1 and Ω3 cannot be allowed; an insulator in the form of Ω2 between them 
is needed, which prevents the "fl owing" of the scalar electric potential V through the shared nodes with degree of freedom 
VOLT to the existence domain of eddy currents Ω1. The values of the degrees of freedom EMF are taken identical for all the 
inductor nodes.

The mathematical model based on the edge vector current potential T and on the nodal magnetic scalar potential 
φ is distinguished by less exacting requirements of computational resources, however, ranks behind model (1)–(11) as far 
as calculation accuracy is concerned [4, 10]. In the present work, this formulation is not considered and relations (1)–(11) 
realized in the ANSYS system are used to model the eddy currents.

Since the magnetic permeability of a ferromagnetic material depends in the magnetic fi eld strength, solution of 
nonlinear differential equation (1) takes much computer time, which is particularly critical when the electromagnetic processes 
in question are nonstationary. Under the assumption of the constant magnetic permeability and the sinusoidal voltage source, 
Eq. (1) is much simplifi ed to a linear quasi-steady equation in complex representation:

1 rot ( rot ) 2 grad 0 .j j V−μ + π γ + γ =A A

Equations (2)–(11) are rewritten analogously.
Calculating a constant value of magnetic permeability that is equivalent to the magnetization curve, as far as 

the criterion of active power is concerned, is based on a nonlinear two-dimensional electromagnetic analysis. In a two-
dimensional formulation, on condition that the external current is perpendicular to the XY plane, the magnetic vector potential 
has the only component Az are there is no need for introduction of the scalar electric potential. Thus, vector equation (1) is 
simplifi ed to a scalar equation:

 
1rot ( rot ) 0 .z

z
AA
t

− ∂
μ + γ =

∂  
 (18)

Solution of nonlinear equation (18) presents no computational problems. Therefore, the two-dimensional formulation 
can effi ciently be used to calculate the equivalent magnetic permeability. This procedure has been presented in [7] in greater 
detail. A result of the solution of the electromagnetic problem is the fi eld of heat releases in the plate′s volume q = q(x, y, z) 
at the instant of time t, which is used to solve the heat-conduction equation

 

2 .T qT
t c c

∂ λ
= ∇ +

∂ ρ ρ  
 (19)

The heat release is determined according to the Joule–Lenz law

 
2| | /2 .q J= γ   (20)
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The initial condition for Eq. (19) is as follows:

 0( , , , 0) .T x y z T=   (21)

The heat transfer from the working surface, the cover, and the ends of a heating plate, and also from the lateral surfaces of 
molds in the absence of heat insulation is described by the boundary conditions of the third kind

 ,

amb( ) .
p r

r r
T T T
n Ω

∂
−λ = α −

∂
 

 (22)

The coeffi cients of heat transfer from the rth surface (of a plate, a mold) αr is determined with criterial equations according 
to [11].

Procedures of Calculation of the Temperature Fields of Induction Heating Devices at the Stage of Automatic 
Control. The implementation of the processes of vulcanization of RTGs or heat treatment of plastics involves the stage of 
holding at an exactly defi ned temperature. To control heating devices using the PID law, use is most frequently made of 
pulse-width control: the controller′s output signal Y taking on values in the range from 0 to 1 is converted to a pulse whose 
duration (width) is

 imp max .t t Y=   (23)

At this moment, voltage is fed to the heaters. Next, during the period tmax – timp, the heaters are disconnected, and 
thereafter a new control signal is generated. Fast action of today′s controllers makes it possible to update the control signal 
with a period of tens of milliseconds. In this connection, the implementation of a mathematical model simulating the actual 
operation of a PID controller takes much computer time. For example, modeling a holding period of duration 30 min at the 
value tmax = 1 s will require 3600 computational time steps (two steps per tmax). With a modern computer, such thermal 
analysis may last for tens of hours.

To reduce the consumption of computer time in calculating the temperature fi eld at the stage of PID-controlled 
holding, we propose the following approach. The period tmax with a stepwise change in the power from the rated power 
P to 0 is approximated by a constant value of PY (Fig. 2). Here, instead of the constant computational time step tmax, we 
use a variable step whose value is determined from an analysis of the second derivative of the temperature of a checking 
thermocouple: the step increases if the change in the thermocouple′s control temperature approaches a linear law [12]. Thus, 
this model approximately reproduces the operation of an actual PID controller from the value of the average control action, 
which fi nally forms a temperature fi eld. Note that the tuning factors of the modeled and actual PID controller may differ 
signifi cantly because of the different value of time steps. If the modeling seeks to determine the factors of the PID controller, 
we should use a constant step (period of updating of the control signal), and also its computation algorithms which are 
usually not given in the instruction manuals of the manufacturer of the controller and is proprietary information (algorithm of 
computation of an antisaturating correction, etc,).

Fig. 2. Control pulsed signal and its approximation.
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Figure 3 gives the diagram of the procedure of calculation of the temperature fi elds of induction heating devices, 
which includes the calculation of three-dimensional fi elds of eddy currents. At the warmup stage at a constant rated power, 
it is unexpedient to use the model of a PID controller. The controller is "switched on" when the condition Tsens – Tbuff is 
observed. The use of a "buffer zone" of Tbuff enables us to avoid excessive correction (overcontrol). Practical calculations 
suggest that the optimum value of Tbuff lies in the range 5–15 K.

Since the electrical conductivity of materials decreases in the process of heating, the overall heat-release power 
gradually decreases. Dissimilar time scales of electromagnetic and thermal processes make it diffi cult to simultaneously 
solve Eqs. (1)–(11) and (18). At an industrial frequency of the electric current of 50 Hz, the period of its oscillations is 
20 ms. Consequently, to adequately describe nonstationary electromagnetic processes, a time step must be no longer than 2 

Fig. 3. Complete diagram of calculation of the temperature fi elds of induction heating 
devices including the calculation of three-dimensional eddy-current fi elds.



1136

ms, which, under the conditions of slow thermal processes, leads to an excessive amount of computations. Rough estimation 
of the consumption of computer time shows that simultaneous solution of the equations of the electromagnetic and thermal 
models of induction heating of an actual plate will take no less than three years (on a 1 min per time step basis at a fi nal 
heating time of 60 min). Therefore, a successive type of analysis is used to model induction heating (Fig. 3).

In [13], it has been shown that acceptable accuracy of calculating temperature fi elds with the successive type of 
analysis is attained, if the average plate temperature increases by no more than 50oC in the course of one iteration. For 
example, if the initial plate temperature is 20oC, and the fi nal one, 150oC, no less than three iterations of electromagnetic 
analysis are necessary. Consequently, no solution of the equations of the electromagnetic model at each new stage of control 
is required. The heat-release fi eld q calculated at the last iteration of electromagnetic analysis from Eq. (19) is "scaled" in 
accordance with the controller′s output signal. For the ith time step, we have the equality

 .i iq Y q=   (24)

Figure 4 gives the model of a commercial induction-heating plate, which is used for RTG production. The grid of 
fi nite elements of the electromagnetic model includes the elements of surrounding air space on whose spherical exterior 
surface condition (6) is specifi ed. The grid of fi nite elements of the thermal model consists of just the plate elements and the 
inductor and the insulator between them.

Passage to linear differential equations of the electromagnetic fi eld considerably simplifi es the problem, but solving 
them in a three-dimensional formulation requires extensive computational resources. For example, approximately 8 Gb of 
random-excess memory and 2 h of computer time (AMD Phenom II X4 920 processor) are required to calculate the fi eld 
of eddy currents in the model of a quarter of the heating plate, which includes 730 thousand fi nite elements (Fig. 4a). An 
analysis of electromagnetic and thermal processes in the system "plate–mold–product" assumes considering a model of two 
plates between which there are molds with products. Thus, the problem′s resource intensity increases more than twofold for 
a single plate.

An alternative approach to solution of such a problem (Fig. 5) is in modeling the temperature fi elds under the 
assumption of a uniform release of heat in the inductor domain Ω3:

 ind ind/ .q P V=   (25)

This approach is inconsistent with the physics of the process of induction heating: heat is released in the volume of the 
plate at the boundary with the inductors, not in the inductors. However, at a relatively high thermal conductivity of the 
plate′s material, the temperature gradient is smoothed out in accordance with Fourier′s law. Thus, in the majority of cases, 
the difference in heat-release distribution is refl ected only slightly on the fi nal result: the temperature fi eld on the working 
surface of the heating plate and in the product, which is partly confi rmed by the conclusions in [3]. At the stage of automatic 

Fig. 4. Model of an induction-heating plate: a) geometry of the plate with four inductors 
and b) fi nite-element grid of the computational domain.



1137

control, the average power considerably decreases to a level corresponding to the heat loss. Consequently, the values of heat 
fl uxes inside the plate decrease, which leads to an equalization of the temperature fi eld. This effect additionally diminishes 
the infl uence of the localization of heat releases on the fi nal result.

 For calculating the inductor power Pind, we propose the following procedure. The initial three-dimensional inductor 
is approximated by a two-dimensional axisymmetric model from the condition of equality of the lengths of their axial lines:

 2D 3D /2 .R L= π   (26)

Here, the geometry of the cross section of a groove for an inductor remains constant. As noted above, in two-dimensional 
formulation (18), taking account of the magnetization curve presents no problems. Consequently, the inductor power average 
over the period can be calculated with a high degree of accuracy according to the equation

 

st

st 1

1/ 2

ind ,
t f

z

t

JP f d dt
+

Ω

= Ω
γ∫ ∫

 
 (27)

where the eddy-current density is determined from the formula

 
.z

z
AJ
t

∂
= −γ

∂  
 (28)

Fig. 5. Diagram of the simplifi ed procedure of calculation of the temperature fi elds of 
induction heating devices which includes only a nonstationary thermal analysis.
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The choice of the axisymmetric model is due to the possibility of placing several inductors of varying length in 
one plate, and also to the reproduction of an "annular effect" which is manifested in the domains of the current reversal: the 
induction of the magnetic fi eld inside the annulus is higher than outside. A more detailed presentation of the procedure and 
its substantiation and the fi eld of application are given in [9].

Example of Practical Use of the Simplifi ed Procedure. With the simplifi ed procedure of modeling of induction 
heating, we have carried out a calculation of the system "plate–mold–product" whose objective was to determine the 
temperature difference in the product′s volume during the period of vulcanization. Figure 6 gives the geometry of a quarter 
of the calculated system: use is made of the model of a plate of total average power 6080 W with six inductors controlled by 
one PID controller. Between the plates, there is a mold to fabricate a membrane, which consists of three plates.

Under the regulations, the plates and empty molds are warmed up, until an assigned temperature Tset is attained 
at the site of installation of the checking thermocouple. Next, the plates are released, and a rubber mixture is charged into 
the molds. Thereafter, a stage of press molding is implemented during the scheduled vulcanization time. The vulcanization 
temperature of a rubber mixture is usually taken as Tset (in the example, Tset = 151oC). Due to the diffi culty with formalizing, 
the processes of releasing the plates and charging the rubber mixture were not modeled: the assumption was made that the 
charging is instantaneous when the condition Tsens > Tset – 1 is observed.

Figure 7a gives the graphs of behavior of the plate temperature at the site of installation of the checking thermocouple 
and of the temperature of the product charged at an instant of time of 2645 s. Under the regulations, vulcanization of the 
membrane lasts for 20 min. After this time interval, the temperature average over the product′s volume was only 142.6oC. 
The vulcanization temperature of the rubber mixture (151oC) is attained within 39 min after the charging (Fig. 7b). The graph 
of behavior of the power of the plate is given in Fig. 8b. In a time interval of 2560–5000 s, the plate′s power continuously 
decreases without reaching a steady-state value.

In designing new plates and analyzing the existing structures, the dynamics of the temperature difference over the 
working surface (Fig. 8a) is of particular interest. At the stage of warmup, the temperature difference increased to a value 
of 37.6% at the maximum power. Decrease in the power at the stage of automatic control (Fig. 7b) leads to an equalization 
of the temperature fi eld. The presence of the minimum on the graph of the temperature difference (3.0oC at an instant of 
time of 4500 s) is attributed to the distinctive feature of the heating-plate structure: at the maximum power, the peripheral 
region is heated faster than the central part. Figure 9a gives the temperature fi eld of a quarter of the plate′s working surface 
on completion of the warmup stage. The temperature minimum corresponds to the center of the plate, and the maximum, 
to the corner region. On reduction in the power, the center of the plate is gradually warned up because of the high thermal 
conductivity of the plate′s material. By an instant of time of 5000 s, the fi eld pattern is reversed: the temperature maximum 
shifts to the center of the plate, and the minimum, to its corner (Fig. 9b). Thus, the extremum on the graph of the temperature 
difference is characterized by the equilibrium of the temperatures of the corner and central regions of the plate. Warming up 
the center of the plate requires an energy whose expenditure decreases as the temperature grows, which explains the gradual 
reduction in the power consumption of the plate at the stage of automatic control.

Fig. 6. Geometry of a quarter of the calculated system "plate–mold–product."
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Fig. 7. Temperature of the product and of the checking thermocouple: a) graphs of 
the temperature at the site of installation of the checking thermocouple (1), maximum 
temperature of the product (2) and minimum temperature of the product (3) and 
b) temperature fi eld of a quarter of the product at a fi nal instant of time of 5000 s.

Fig. 8. Temperature differences and power of the plate vs. time: a) graphs of temperature 
differences on the plate surface (1) and over the product's volume (3) and b) power 
consumed by the plate.

Fig. 9. Temperature fi eld of a quarter of the working surface of the plate (its center 
corresponds to the top right corner) at different instants of time: a) 2525 and b) 5000 s.
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An analysis of the calculation result allows the conclusion on the necessity of singling out a stage of stabilization 
of the temperature fi eld: on completion of warming up, the temperature fi eld of the heating plate and hence of the mold fails 
to meet technical requirements of the process of vulcanization. Stabilization of the temperature fi eld requires a certain time, 
which depends on the plate structure. For the considered example, this time was approximately 25 min.

The use of the simplifi ed procedure of calculation of the temperature fi elds of induction heating devices enabled us to 
obtain a solution with a minimum consumption of computer time. The calculation of the warmup stage lasted for 14 min, and 
the calculation of the automatic-control stage, for 109 min. The total number of time steps was 170. Since the electromagnetic 
analysis requires a small step of discretization of space near magnetic-fi eld sources, eliminating three-dimensional equations 
of an electromagnetic fi eld made it possible to signifi cantly reduce the number of fi nite elements. The model′s geometry given 
in Fig. 5 was approximated by 581,033 fi nite elements.

Conclusions. To solve the problem of calculating temperature fi elds of press equipment in induction heating, the 
choice was made in favor of a mathematical model based on the edge vector magnetic potential and the nodal scalar electric 
potential, which ensures high accuracy of solution.

Two procedures have been proposed to calculate temperature fi elds of induction heating plates at the stage of 
automatic PID control, which make it possible to considerably reduce the amount of computations. According to the fi rst 
procedure, heat releases from eddy currents at each time step are determined as a result of the "scaling" of the heat releases 
calculated earlier at the stage of warmup using linear differential equations of the electromagnetic fi eld. This approach 
enables us to use a variable time step without the need for multiple solution of electromagnetic-fi eld equations.

The second procedure is based on the assumption of a uniform release of heat in the region of grooves for inductors, 
which allows reducing the problem of electromagnetic analysis to a problem of determination of the inductor power, which 
can be solved in a two-dimensional formulation. It is expedient to use this procedure under the conditions of shortage of 
computational resources; however, the issue of occurring errors in calculating the temperature fi elds when the heat releases 
are represented more simply remains open.

With the proposed procedures, an analysis has been made of the system "plate–mold–product" at the stages of 
warmup and automatic PID control. Calculation results showed the necessity of singling out and taking account of the stage 
of stabilization of a temperature fi eld in designing new plates and operating the existing ones. In the considered example, 
early charging of the product leads to insuffi cient heating, which may cause rejection. Also, such calculations enable us to 
make a justifi ed choice of the site of installation of a checking thermocouple and an assigned value of its temperature to 
ensure required temperature modes in the product.

Acknowledgment. This work was carried out with fi nancial support from the Ministry of Education and Science of 
the Russian Federation within the framework of the basic part (Project No. 8.7082.2017/8.9).

NOTATION

A, vector magnetic potential, Wb/m; Az, z component of the vector magnetic potential, Wb/m; ak, curvilinear integral 
of the vector magnetic potential A along the edge k of the fi nite element; c, heat capacity of the plate′s material, J·kg–1·K–1;
f, oscillation frequency of the voltage source, Hz; I, inductor current, A; J, vector of the eddy-current density, A/m2; 
Jz, z component of the vector of the eddy-current density, A/m2; Jext, current density of the external source, A/m2; 
|J| = 2 2Re Im ,J J+  modulus of the complex amplitude current density; j, imaginary unit; L3D, length of the initial inductor 
along the axial line, m; Nk, basis function for the edge k; Nc, number of turns of the inductor; n, unit vector of the normal to 
the surface of contact between the electrically conductive and dielectric domains; ne, number of edges of a fi nite element; 
nn, number of nodes of a fi nite element; Pind, inductor power, W; q, fi eld of heat releases, W/m3; R, ohmic resistance of the 
inductor, Ω; R2D, average radius of the axisymmetric analog of the initial inductor, m; Sc, area of the inductor cross section, m2; 
T, edge vector current potential, A/m; T = T(x, y, z), temperature at a point of the plate volume with coordinates (x, y, z) at the 
instant of time t, K; T0, plate temperature at the initial instant of time t, K; Tr, average temperature of the rth plate surface, K; 
Tamb, ambient-air temperature, K; Tbuff, difference between the assigned plate temperature and the temperature of the 
beginning of the control stage ("buffer zone"), K; Tsens, temperature at the site of installation of the checking thermocouple, K;
Tset, assigned value of the operating plate temperature, K; t, unit vector of the direction of the current in the inductor; t, 
time, s; timp, duration of a pulse to which the controller output signal is converted, s; tmax, maximum pulse width (period of 
generation of control signals), s; tst, conditional time of stabilization of electromagnetic processes, after which the changes in 
the amplitude values of the current density Jz may be ignored, s; V, scalar electric potential, V; Vk, value of the scalar electric 
potential at the node k; Vind, volume of a groove to place an inductor, m3; Y, controller′s output signal taking on values in the 
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range from 0 to 1; αr, coeffi cient of heat transfer from the rth surface, W·m–2·K–1; γ, specifi c electrical conductivity, Ω–1·m–1; 
ε, self-induction electromotive force, V; Φ, magnetic fl ux through the inductor, Wb; φ, nodal magnetic scalar potential, A; 
λ, thermal conductivity of the plate′s material, W·m–1·K–1; μ, magnetic permeability, H/m; ρ, density of the plate′s material, 
kg/m3; Ωp,r, rth surface of the heating plate or of the mold. Subscripts and superscripts: 2D, two-dimensional; 3D, three-
dimensional; amb, ambient, buff, buffer; c, coil; ext, external; e, edge; ind, inductor; imp, impulse, pulse; sens, sensor; set, 
setting (assigned value of the checking-thermocouple temperature).
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