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NONSTATIONARY MASS TRANSFER AND CONTROLLING 
THE PROCESS DURING THE LAMINAR MOTION OF A LIQUID 
IN PACKED-COLUMN APPARATUSES

D. V. Elizarov, R. R. Shavaleev, and V. V. Elizarov UDC 66.011

Approximate solutions have been obtained for the equations of nonstationary mass transfer in packed-column 
apparatuses, and a method has been proposed to calculate them under the conditions of laminar motion of a liquid 
phase and displacement of a gas. On the basis of the nonstationary-mass-transfer equations, a problem of control 
of packed-column apparatuses has been solved. The solutions of the equations have been obtained in the form of an 
expansion of functions in a trigonometric series; formulas to determine the values of terms in the series have been 
presented. Initial conditions for the equations of nonstationary mass transfer are equations of a stationary process. 
Exact and approximate solutions for the stationary-mass-transfer equations have been obtained based on which an 
algorithm has been proposed for designing packed-column apparatuses. A calculation of the process of absorption 
of an acetone vapor from air by water has been carried out. Plots of the control and of the concentration change in 
controlling and with different perturbations have been presented.

Keywords: mass transfer, mathematical model, designing, control of the process, packed-type column, packing, 
absorption.

Introduction. Packed-column apparatuses with regular and irregular packings fi gure prominently among commercial 
mass-exchange apparatuses [1]. In recent times, active development of high-effi ciency packings and bringing them into 
commercial practice have been carried out [2–5].

Packed-column apparatuses for mass-exchange processes between a gas and a liquid operate most frequently in 
a fi lm regime. Owing to the intense interaction between a thin liquid fi lm and a gas fl ow, their use allows obtaining quality 
products. This accounts for the wide use of fi lm (wetted-wall) apparatuses to conduct heat- and mass-transfer processes of 
absorption, condensation, rectifi cation, extraction, heating, and cooling.

In rectifying, distilling, evaporating, and condensing, we observe the fi rst and second laminar regimes of fl ow 
(12 ≤ Refi lm ≤ 1200 ± 200), and in absorption processes, the second wave laminar and turbulent regimes; at Refi lm ≥ 2500, 
the laminar regime becomes turbulent [2].

Technological designing of an apparatus involves determining the basic dimensions and the fl ow rate of a separating 
agent. The separating-agent′s fl ow rate is found from the material-balance equation containing the fl ow rate of the starting 
material and the concentrations of the component at the inlet and outlet of the fl ow [5, 7]. At an assigned inlet concentration 
of the gas and liquid phases, the concentrations of the phases at the apparatus outlet remain unknown and for them to be 
determined, it is necessary to calculate the concentration distribution over the height of the packing layer [8, 9].

In the system of automated control of packed-column apparatuses, mathematical models of nonstationary processes 
represent a system of partial differential equations. For solution of such equations, use is usually made of numerical methods 
[10–12], which are laborious and require great volumes of random-access memory and much computer time. They give no way 
of making an engineering analysis of the entire process in general form. In this work, it is proposed that a system of control of 
the process of absorption in packed columns be constructed on the basis of the approximate analytical solution of such equations.

Mathematical Modeling of Nonstationary Mass Transfer in a Packed-Column Apparatus during the Laminar 
Flow of a Liquid and the Displacement of a Gas. At the mean values of the liquid and gas velocity over the height of the 
packing layer, the equations of nonstationary mass transfer take the form [7, 10, 13]
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where kxaV and kyaV are the volume mass-transfer coeffi cients expressed in the concentrations of the liquid and gas phases, 

x0(t) and y0(t) are the inlet concentrations of the liquid and the gas, ξ = 
H
ξ  is the dimensionless concentration over the 

apparatus′s height, ξ = 0 and ξ = 1 are the coordinates of entry of the gas and the liquid into the packing layer for the phase 

counterfl ow, u = 0 f
2

L L
S
+  and v = 0 f ,

2
G G

S
+  L0 and Lf are the fl ow rates of the liquid at entry into the packing layer 

at ξ = 1 and at exit from the packing layer at ξ = 0, and G0 and Gf are the fl ow rates of the gas at entry into the packing layer 
at ξ = 0 and exit from the packing layer at ξ = 1. We assume that the volume mass-transfer coeffi cients over the height of 
the packing layer are constant.

A solution to the system of partial equations (1) and (2) with initial and boundary conditions (3) will be obtained in 
the form of series expansions in trigonometric functions.

We represent the solution of Eqs. (1) and (3) in the form of the series
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As a result of rearrangements, we arrive at a system of ordinary differential equations for the unknown xm(t) and 
ym(t) (m = 1, 3, 5, …):
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First, we differentiate Eq. (6) with respect to t
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and Eq. (7) for mdy
dt

:
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Substituting these values into Eq. (8), we obtain the system of second-order equations linear for xm(t)
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whose solution for each m (dropping the subscripts m = 1, 3, 5, …) takes the following form:
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The integration constant g10 will be found from the initial condition: x = x(ξ) at t = 0, g10 = x(ξ) = – g20. We differentiate 
Eq. (11) with respect to t:
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Substituting the resulting values of dx
dt

 and x(t) from Eqs. (11) and (12) into Eq. (9), we obtain
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From initial condition (3) (y = y(ξ) at t = 0), we fi nd
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for each [0, 1]ξ ∈  and m = 1, 3, 5, … . The initial values of the functions x(t)  and y(t) at t = 0 – x(ξ) and y(ξ) are determined 
from the equations of stationary mass transfer in the packing layer.

Mathematical Modeling of Stationary Mass Transfer in a Packed-Column Apparatus during the Laminar 
Motion of a Liquid and the Displacement of a Gas. The material-balance equations for the liquid and gas phases in the 
packing layer are of the form [8, 9, 10, 14]
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with conditions at the boundaries y = y0 at ξ = 0 at entry of the gas and x = x0 at ξ = 1 at entry of the liquid, where x(ξ) and 
y(ξ) are the concentration of the extracted component in the liquid and gas phases. We introduce the notation
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In dimensionless quantities, Eqs. (14) will be written as follows:
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We differentiate Eq. (15) with respect to ξ
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and obtain the value of y in Eq. (18) from Eq. (15)
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Then Eq. (18) will be written as
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The integration constant c1 is determined from the inlet condition: x = x0 at ξ = 1
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The solution (20) is written as follows:
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We substitute the value of the derivative of (22) and the value of the function x(ξ) (21) into Eq. (19) and fi nd the integration 
constant c2 from the condition y = y0 at ξ = 0. We obtain the exact solution of Eqs. (14)
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In Eqs. (23) and (24), x0 and y0 are assigned values of the concentrations of the liquid and the gas at the apparatus 
inlet. To determine the initial values of the variables x(ξ) and y(ξ) at t = 0 in Eqs. (11) and (13) at m = 1, 3, 5, … , we obtain 
the approximate solution of Eqs. (14). For this purpose, we represent the concentration distributions in the form of series 
expansions
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where xm and ym (m = 1, 3, 5, …) are the unknown quantities.
The solutions of (25) and (26) satisfy specifi ed conditions at ξ = 0 and ξ = 1. Assuming that the series converge to the 

exact solutions (24), we set expressions (23) and (25) equal to (24) and (26). We obtain
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Since the number of unknown parameters xm and ym (m = 1, 3, 5, …) in Eqs. (27) and (28) is larger than the number of 
equations, we take the coeffi cients with m = 3, 5, … equal to zero and determine the coeffi cients x1 and y1 from Eqs. (27) and 
(28). Then Eqs. (27) and (28) take the form
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The unknown coeffi cients x1 and y1 will be found from the outlet conditions of the fl ows: at ξ = 0, we fi nd x1, and at ξ = 1, 
the value of y1:
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The solutions of the stationary-mass-transfer equations are of the form
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Algorithm for Designing Packed-Column Apparatuses. Based on the obtained solutions (23) and (24) or (30), the 
apparatus is designed, and the fl ow rate of the absorbent is determined, in the following order. The amount of the component 
extracted from the gas (vapor) phase by a liquid absorbent in the phase counterfl ow is assigned by the degree of extraction 

φ = 0 0 f f

0 0
,G y G y

G y
−  where G0, Gf, y0, and yf are the fl ow rates and concentrations of the component in the gas phase at the 

apparatus inlet and outlet. Then the amount of the component absorbed by the liquid absorber will be equal to

 A 0 0 ,W G y= ϕ  
and the amount of the escaping gas, to

 f 0 A .G G W= −  
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The concentration of the component in the gas phase at exit from the apparatus yf is expressed by the degree of 
extraction φ and the concentration y0 at entry into the apparatus:
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From the equation of total material balance, we determine the concentration of the component in the liquid phase at exit from 
the apparatus

 0 0 f f f f 0 0 .G y G y L x L x− = −  
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Here L0 and Lf are the fl ow rates of the absorbent at entry into the apparatus and at exit from it respectively.
In the next step we assign the fl ow rate of the absorbent as a fi rst approximation (1)

0 ,L  compute the mean values of 
fl ow rates of the gas G  = (G0 + Gf)/2 and of the liquid L  = (1) (1)

0 f( )L L+ /2, select a packing, and calculate the mean values 
of the liquid and gas velocities, the dimensions of the apparatus, the kinetic parameters of mass transfer, and the height of the 
packing layer H.

From Eqs. (29), we obtain the values of the concentrations of the liquid xf.c and the gas yf.c at exit from the apparatus, 
which are compared with the values obtained from the equations of total material balance (31) and (32):

 f.b f.c f.b f.c0 , 0 .x x y y− = − =   (33)

If the conditions are observed, the dimension of the apparatus and the fl ow rate of the absorbent (1)
0L  satisfy the material-

balance equations and the requirements of the assignment. Otherwise, we select the approximation (2)
0L  = (1)

0L  + ΔL and 
repeat the calculation until condition (33) is observed.

Calculation of the process of absorption of an acetone vapor from air by water. The calculation is carried out on 
the basis of the data given in [14]. The fl ow rate of the gas mixture is G0 = 62.5 kmole/h and the concentration of acetone 
in the mixture is y0 = 0.0639 mole fractions. The degree of extraction is φ = 98%. The specifi c surface of the packing is 
aV = 204 m2/m3, the equivalent diameter is de = 0.0145 m, the free volume of the packing is εfr = 0.74, the distribution 
coeffi cient is m0 = 1.68, the coeffi cient of diffusion of acetone in water is Dliq = 1.03·10–9 m and of acetone in air is 
Dg = 0.082·10–4 m2/s, and the amount of acetone going from the gas phase into the liquid phase is φG0y0 = G0y0 – Gfyf = 
3.91 kmole/h, Gf = G0 – 3.91 = 58.6 kmole/h.

As a fi rst approximation, we take, for the calculation, the data obtained in [14]. The diameter of the apparatus is 
D(1) = 0.675 m, the cross section is S(1) = 0.358 m2, the height of the layer is H(1) = 16.8 m, and (1)

0L  = 166.7 kmole/h. 
The fl ow rate of water at exit from the apparatus is (1)
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Lav = 168.7 kmole/h. The regime of motion of the liquid fi lm is laminar: Refi lm = av e
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ν
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The coeffi cients of mass transfer in the liquid fi lm βx and in the gas phase βy are determined on the basis of 
hydrodynamic analogy [15, 16]. In the liquid fi lm, we take a parabolic velocity profi le to determine the fi lm thickness. In the 
gas phase, we determine the rate of dissipation of the energy εg-liq of the gas fl ow to calculate the dynamic velocity at the 
phase boundary. We obtain
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where εg-liq = g-liq

fr liq( )
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Δ

ε − ε
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 is the hydraulic resistance of a dry packing (ΔPg-liq = ΔPirr at the wettability coeffi cient of the liquid 

ψ = 1), Pa, εliq = εliq.d is the amount of the retained liquid, Q is the liquid spray rate, m3/(m2·s), and Mliq and Mg are the molar 
masses of the liquid and gas mixtures. The calculated values of mass-exchange coeffi cients are equal to
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The calculated values of mass-transfer coeffi cients are equal to
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The coeffi cients in Eqs. (30) are as follows:
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Substituting the coeffi cients a and b into Eq. (30), we obtain the concentration profi les of acetone in the liquid and 
gas phases over the height of the packing layer (Fig. 1) and the concentration of the saturated absorbent xf = 2.35·10–2 mole 
fractions and of the escaping gas yf = 0.00143 mole fractions.

The new height of the packing layer will be calculated from the equation
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where Δyav = 4.4·10–3 is the mean logarithmic motive force of mass transfer and ρg = 1.295 kg/m3 is the density of the gas 
mixture. The height H satisfactorily, with an error of 2.4%, agrees with that taken as a fi rst approximation [14].

Figure 1 gives the concentration distribution of acetone in the liquid and gas phases at the calculated values of 
technological and structural parameters of the apparatus. Figure 2 gives the concentration profi les of acetone in the liquid 
phase at different initial concentrations y0 and the fl ow rate of the absorbent L0 = 2957 kg/h (curves 2 and 3) and different 
fl ow rates of the absorbent and the initial concentration y0 = 0.0639 mole fractions (curves 4 and 5).

Fig. 1. Concentration distribution of acetone in the gas (1) and liquid (2) phases over the 
height of the packing layer at the fl ow rate of the absorbent L = 3000 kg/h.
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Controlling the Process of Absorption of Acetone by Water. The fl ow rate of the gas mixture, the pressure and  
temperature in the apparatus are considered constant, whereas the composition of the gas mixture varies. The parameters of 
the process′s steady state are determined from the stationary-mass-transfer equations considered in the previous items: the 
concentration of acetone in the original gas mixture is y0 and at the apparatus outlet, yf, the concentration of acetone in the 
liquid at entry of the absorbent into the apparatus is x0 and in the saturation absorbent at the apparatus outlet, xf0, and the rate 
of the absorbent in the steady state is L0.

The concentration distribution of acetone over the height of the apparatus in the liquid phase x(ξ) and in the gas phase 
y(ξ) is shown in Fig. 1.

The variation in the composition of the gas mixture or the liquid is determined by the departure of the parameters 
e1m(t) and e2m(t) on the right-hand side of Eqs. (6) and (7) from a steady state. The values of the concentration of the gas 
mixture and the liquid, and also the rate of their growth at the apparatus inlet at the instant of time t = t0, change by the value 
of Δy0 or Δx0: y0 = y0 ± Δy0, x0 = x0 ± Δx0, dy0/dt, and dx0/dt.

The solutions of Eqs. (11) and (13), once the perturbations Δy0 and Δx0 have been introduced, show the changes 
in the acetone concentrations with time at any cross section of the apparatus ξ. At exit of the gas mixture from the apparatus 
at ξ = 1, the concentration of acetone is equal to yf(t) and at the exit of the absorbent from the apparatus at ξ = 0, the 
concentration of acetone is equal to xf(t); these values differ from the stationary values yf0 and xf0 obtained at y0 and x0.

It is necessary to fi nd the control of the process, i.e., the fl ow rate of the absorbent L(t) at which the departure of 
the concentration of acetone in the gas phase at exit from the apparatus yf(t) or in the liquid xf(t) from the stationary values 
yf0 and xf0 will be minimum, e.g.,

 
2

f f0( ( ) ) min .R y t y= − →   (36)

The dependence of the concentrations yf(t) and xf(t), according to Eqs. (11) and (13), on the fl ow rate of the absorbent L(t) 
is complex and implicit in character. The expression to determine the extremum of the function R has a cumbersome form.

To determine the control L(t), it is proposed that a numerical method be used. At each time interval Δt = ti+1 – ti 
(i = 0, 1, 2, … , n) n = T/Δt, the fl ow rate of the absorbent will be assumed constant:

 1 f f0sign ( ( ) ) ,i i i iL L L y t y+ = + Δ −   (37)

where the symbol "sign" is the function of sign, yf(ti) is the value of the concentration at the instant of time ti, and ΔLi is the 
change in the absorbent′s fl ow rate at the time interval Δti.

With a positive departure of the concentration yf(ti) at the instant of time ti from the stationary value yf0, the fl ow rate 
of the absorbent increases by the value of ΔLi and with a negative departure, decreases by ΔLi:
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i
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−
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Fig. 2. Concentration distribution of acetone in the liquid phase over the height of the 
packing layer at different initial concentrations in the gas phase: 1) y0 = 0.0639, 2) 0.052, 
and 3) 0.071 mole fractions, and also at y0 = 0.639 mole fractions and different fl ow rates 
of the absorbent: 1) L0 = 2957, 4) 2500, and 5) 3500 kg/h.
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where K is the gas concentration–absorbent fl ow rate channel gain. To determine the gain K, we calculate the steady state of 
mass transfer at y = y0 and x = x0 and at y0 = y0 ± Δy0, and x0 = x0 ± Δx0

 

f.n f0

0n 0
,y yK

L L
−

=
−  

where yf.n and L0n are the new steady-state values of the concentration yf and of the fl ow rate of the absorbent L0. The gain 
is dependent on perturbations arriving from other channels: the pressure in the apparatus, the concentration of the arriving 
absorbent, and the absorbent′s fl ow rate.

The time of the transient process T is determined from Eqs. (5) and (13) with the condition adopted in control theory 
[17]: the departure of the concentration at exit from the apparatus yf(T ) at ξ = 1 from the stationary value yf0 is no higher than 
5%: yf(T ) – yf0 = 0.05yf0. For example, writing Eq. (5) with account of expression (13) with the given condition, we obtain 
the equation to determine the time T
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  (38)

At each instant of time, by changing the fl ow rate of the absorbent, it is necessary to reduce the value of the 
concentration of acetone in the escaping gas yf to the stationary value yf0. Figure 3 plots yf versus t for the control and different 
perturbations of the composition of the original mixture, and Fig. 4 gives the plots of the control (fl ow rate of water) at 
K = 1.6·10–6. Figures 5 and 6 give the plots of the concentration change for the control and different perturbations with gain 
K = 0.3·10–6 and the plots of the control (fl ow rate of water).

Fig. 3. Time change in the concentration of acetone in the gas phase at the apparatus 
outlet with the control and stepwise perturbation of the composition of acetone in the 
original gas mixture: 1) ±20, 2) ±15, 3) ±10, and 4) ±5 wt.%.

Fig. 4. Control of the process of absorption of acetone (fl ow rate of the absorbent) 
L (kg/h) with stepwise perturbation of the composition of acetone in the original gas 
mixture: 1) ±20, 2) ±15, 3) ±10, and 4) ±5 wt.%.
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CONCLUSIONS

1. Iterative calculation of packed-column apparatuses on the basis of stationary-mass-transfer equations ensures 
substantiated selection of technological and structural parameters of an apparatus.

2. The approximate solution of nonstationary-mass-transfer equations allows constructing a system of control of the 
quality of the obtained products.

NOTATION

aV, specifi c surface of the packing, m2/m3; Dliq, diffusion coeffi cient, m2/s; e1, c1, q1, e2, c2, q2, a, and b, coeffi cients 
of the equations; G, fl ow rate of the gas, kmole/h; g10 and g20, integration constants; g, free-fall acceleration, m/s2; 
H, height of the packing layer, m; K, gain; kx, mass-transfer coeffi cient expressed in the concentration of the liquid 
phase, m/s; ky, mass-transfer coeffi cient expressed in the concentration of the gas phase, m/s; L, fl ow rate of the 
absorbent, kmole/h; m0, distribution coeffi cient; Re, Reynolds number; r1 and r2, roots of the characteristic equation; 
S, cross-sectional area of the apparatus, m2; T, time of the transient process, s; t, time, s; u, mean value of the liquid velocity 
in the apparatus, m/s; v, mean value of the gas velocity in the apparatus, m/s; W, amount of the component absorbed by 
a liquid absorbent, kmole/h; x, concentration of the extracted component in the liquid phase, mole fractions; x* = y/m0, 
equilibrium concentration of the component in the liquid phase, mole fractions; y, concentration of the extracted component 
in the gas phase, mole fractions; y* = m0x, equilibrium  concentration of the component in the gas phase, mole fractions; 
βx, mass-exchange coeffi cient, m/s; ε, free volume of the packing; εliq.d, dynamic component of the retainment of the liquid; 
νliq, coeffi cient of kinematic viscosity of the liquid, m2/s; ξ, dimensionless coordinate over the height of the apparatus; 
φ, degree of extraction of the component from the gas. Subscripts: 0, zero value (at entry into the apparatus); A, absorbent; 
f, fi nal value (at exit from the apparatus); k and m, numbers of terms of the Fourier series; f.b, fi nal balance value; f.c, fi nal 
calculated value; liq, liquid phase; d, dynamic component; fi lm, fi lm fl ow; f.n, fi nal new value; 0n, initial new value; fr, free; 
g, gas; av, average, mean; g-liq, at the phase boundary; irr, irrigated; dr, dry.
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