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INTEGRAL MODELS OF RHEOLOGICALLY NONSTATIONARY FLUIDS

O. M. Sokovnin, N. V. Zagoskina, and S. N. Zagoskin UDC 532.135+51-72:532

Consideration has been given to the status and prospects for development of integral models of rheologically 
nonstationary (viscoelastic) fl uids. The predominant fi eld of application of these models are media with a fairly long 
relaxation time (concentrated polymer solutions and melts, biological tissues, foams, and others), for which taking 
account of the preceding states assumes substantial importance. The emphasis has been placed on today′s integral 
models developed on the basis of a classical Kaye–Bernstein–Kearsely–Zapas model through singling out viscous 
and purely elastic components in the potential function of the medium′s stored energy (so-called factorization of 
the K-BKZ model). An analysis has been made of the thixotropy and rheopexy phenomena caused by the lag of the 
reaction of response of rheologically nonstationary fl uids to external action. The authors have shown the expediency 
of the loop test used in determining the integral parameters of motion of viscoelastic fl uids (velocity, fl ow rate, 
pressure difference, etc.), and also the possibility of using a fl ow curve representing the averaging of the ascending 
and descending branches of a hysteresis loop in the case of its small width.
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Introduction. The present work is a continuation of [1] in which an analysis of differential mathematical models 
of rheologically nonstationary fl uids was made. The general expression of an integral rheological model follows from the 
Boltzmann theory of linear viscoelasticity [2]:
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Here G(t – t′) is the relaxation modulus, a positive exponentially decreasing function of the time interval (t – t′), Pa. According 
to the principle of fading memory, the farther the quantity t ′  from the running time t, the smaller the infl uence of it on the 
modulus G. The quantity T(t) is determined by the strain history and allows computing the stress for each instant of time t 
and the known G(t – t′) function. The lower limit of integration in (1) can also be taken to be zero when by this we mean the 
instant of initial strain.

Expression (1) yields that the integral model takes account of all the preceding states of a viscoelastic fl uid, however 
distant from the running instant of time they may be. Such models are used when the infl uence of memory effects is signifi cant 
and the relaxation time is long (theoretically, infi nite). Conversely, differential models used in describing polymer fl ows 
assume a relatively fast relaxation of the structure of a viscoelastic fl uid.

Integral Models. The Green–Rivlin model, as noted in [3], was historically the fi rst rheological model of simple 
materials with fading memory. According to Noll, the term "simple material" means a viscoelastic material the stress at 
whose given point is dependent on just the prehistory described by the fi rst strain gradient and is independent of higher-order 
gradients [4]. The model is based on the hypothesis that the stress T(t) is caused by displacement gradients (strain-rate tensors 
D) at the instant of time t and in N of the previous instants from 0 to t. When N tends to infi nity the stress–strain relation is 
expressed by the sum of multiple integrals [5]
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The moduli Gi characterize the stress relaxation and they are determined by the material′s properties. The instants of time ti 
(i = 1, 2, … , N ) correspond to the variation in the deforming action. The material satisfying Eq. (2) is called a viscoelastic 
material of the integral type of order N. The shorter the strain history, the lower the order of the rheological model (in actual 
practice, use is made of the models up to the third order inclusive).

In the Green–Rivlin model, the stress is dependent on strain and time nonlinearly. In the analysis of the overall status 
of modeling of destruction of thermoplastics and composites (rubbers and foams), it is noted that their nonlinear properties 
are disregarded in the main or are replaced by linear models, which distorts the reaction of load removal. This approach is 
due to the fact that commercially used models for calculation of materials are often restricted to the linear viscoelasticity and 
cannot take account of experimental data because of the diffi culty with identifying the parameters of a nonlinear model. In 
[6], foam is presented by a material subdivided into the linear superelastic and nonlinear viscoelastic parts. Here, a modifi ed 
equation (2) in fi nal form contains just the linear convergent integrals. The possibility to reliably model in this manner a 
number of nonlinear viscoelastic phenomena, e.g., air saturation of Confor CF-45-type polyurethane foams, has been shown.

The Green–Rivlin model is successfully used to describe viscoelastic properties of biological materials, in particular, 
brain tissues [7, 8]. The nonlinearity of their rheological characteristics is of decisive importance in studying the action of fi nite 
strain and of multiple shock accelerations appearing in the case of craniocerebral injuries. Experimental data of investigation 
of the viscoelastic properties of bovine-brain samples have shown that at a shear strain higher than 30%, the Green–Rivlin 
equation of third order describes quite accurately the nonlinearity of the reaction of brain tissue to strains [7]. The reaction of 
samples of human and bovine brain to stepwise strains has been studied in [8]. It has been shown experimentally that under 
small strains, the reactions of the samples′ response are satisfactorily described by linear and nonlinear models, with the 
nonlinear Green–Rivlin model being expedient at strains over 50%.

Pulsating motion of a viscoelastic-fl uid fl ow in straight pipes with an arbitrary cross section has been investigated 
in [9–11]. This fl ow occurs during the operation of volumetric pumps producing cyclic pressure pulsations, which is 
characteristic of biological and technical systems alike (motion of the blood in aortas, the stimulation of oil production by 
feeding periodically the working fl uid to the injection well, etc.). Clearly, the parameters of pulsating viscoelastic-fl uid fl ow 
depend to the greatest extent on pressure values that are the nearest to a given instant of time. The Green–Rivlin model 
refl ecting the stress relaxation of the viscoelastic fl uid for each acting function by the relevant relaxation modulus Gi is 
capable of describing most accurately the characteristic features of such fl ow.

The Kaye–Bernstein–Kearsley–Zapas (K-BKZ) model, according to the initial version, relates stresses and strains in 
an incompressible viscoelastic fl uid by the dependence of the form [12, 13] 
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where J1 and J2 are the fi rst and second invariants of the Finger strain tensor B and Ω(J1, J2, (t – t′ )) is the function of the 
invariants  J1 and J2 and of the instants of time t and t′ . The function Ω is the stored-energy potential function [13, 14]; by it, 
there is determined the rate of damping of the stresses (Pa/s) from the action preceding the instant of time t. In the second part 
of [12], in considering a number of concrete viscoelastic-fl uid fl ows, the function Ω was assigned by the sum of the exponents

 1 1 1 2 2 2exp [ ]( 3) exp [ ]( 3) .( ) ( )C K t t' J C K t t' JΩ = − − − + − − −   (4)

Here C1 and C2 represent physically the relaxation moduli of the fl uid (analog of the function Gi in the Green–Rivlin model), 
and 1/K1 and 1/K2 are the periods of stress relaxation which correspond to the values of the invariants J1 and J2.

A further development of the K-BKZ model was "factorization" of the Ω function, i.e., singling out, from it, of the 
time-dependent viscous part m(t – t′ ) (memory function) and of the time-independent purely elastic part h(J1, J2) (damping 
function) determined by experiments respectively in the regions of linear and nonlinear strains of a viscoelastic fl uid [15, 16]:
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We consider the best known forms of a factorized K-BHZ model.
The Rivlin–Sawyers model [17]. Within the framework of this model, the damping functions h1 and h2 are the scalar 

functions of the invariants J1 and J2, whose expressions may be different. The memory function in Eq. (5) is defi ned as
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where μi and λi are the experimental values of the shear viscosity (Pa·s) and of the relaxation period (s) at the ith rate of strain 
of the viscoelastic fl uid.

The Wagner model combines the functions h1 and h2 into one [18]:
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The relationship of the damping function "after Wagner" and the potential function of the original K-BKZ model is determined 
by the relations 
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and its direct expression is of the form [18]
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where n = 1/γs = 2/γN is the constant damping function (γs and γN are the shear strains at maximum shear stresses τ12 and the 
difference τ11 – τ22 of normal stresses).

A more general Wagner model contains two measures of fi nite strains [19]
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Here the expression of the damping function (0 < a < 1 is the empirical constant) is as follows:
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The memory function in the Wagner model is expressed by the sum of the exponents [18]
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The parameters of the memory function Gi and λi for the ith strain rate are determined experimentally as in the Rivlin–
Sawyers model. A practically suffi cient number of experiments in the linear region of strain of the medium is i = 6–8; with 
growth in i, the Gi values decrease fast, tending to zero [20].

The Papanastasiou–Scriven–Macosko (PSM) model was proposed to describe viscoelastic fl ows of polymer melts. 
Here the damping function is expressed by the relation [21]
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where α and β are the parameters determined in shear and elongational or extensional fl ow of a viscoelastic medium. The 
quantity α (α > 1) depends on the spectral width of the periods of relaxation λi and increase as the branching of the polymer 
chain grows. The parameter β (0 < β < 1) characterizes the degree of extension (straightening) of a polymer chain [21].

More recently, Luo and Tanner developed the PSM model by introducing the parameter θ into it, which takes account 
of the nonzero difference of the normal stresses N1 and N2 [22]
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The Doi–Edwards (DE) model. Viscoelastic-fl uid fl ow is considered as a set of macromolecular motions in the 
tubes of linkages formed by neighboring macromolecules (tube model) [23]. The essence of this model is that an individual 
macromolecule is placed in a tube of the same confi guration as the macromolecule itself, and the macromolecules forming 
the tube restrict its motion which is due to the snake motion, i.e., reptation, similarly to the motion of a snake (reptile) in 
a bunch of similar creatures. This yields another name of the model: a reptation model.

According to this model, a macromolecule of length L executes motion along the axis of a tube of diameter d, but 
its movements in the perpendicular direction are limited by the tube radius. The model predicts two different relaxation 
processes: a fast process occurring inside the tube with a relaxation time τe (so-called "equilibrium time") and a slow one 
associated with the variation in the confi guration of the tube itself with a relaxation (reptation) time τd. Physically, τe is the 
time between successive "linkages" of the macromolecule inside the tube, and τd is the time of "crawling out" of the polymer 
molecule of length L from the tube of diameter d [24, 25].

Corresponding to the general formula (5) of the factorized K-BKZ model, the DE model differs by the expressions 
of the memory and damping functions which are defi ned on the basis of the reptation theory [26, 27]
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The DE-model′s parameters ( 0
NG  and τd) involved in expression (15) for a concrete viscoelastic fl uid are found 

experimentally by taking the dependences of the elastic G′ and loss G″ moduli on the frequency ω [24]. Figure 1 gives the 
plots of G′(ω) and G″(ω) for monodisperse polybutadiene with a molar weight of 99,060 g/mole at a temperature of 40oC. 
As we can see from the plots, the polymer in question, even when monodisperse, is not a Maxwellian fl uid whose loss-
modulus curve G″(ω) has the characteristic dome shape ([1], Fig. 2). Here the loss modulus has the local minimum min .G′′  
The parameter 0

NG  (plateau modulus) involved in the equations of the DE model is the value of the storage modulus G′ of 
the viscoelastic fl uid at the loss modulus G″ = min ,G′′  and the reptation time τd is the reciprocal of the frequency ω1 at which 
the G′(ω) and G″(ω) curves intersect for the fi rst time (τd = 1/ω1). The second intersection of these curves determines the time 
of fast relaxation τe = 1/ω2.

Fig. 1. Determination of parameters of the Doi–Edwards model from the moduli G′ and 
G″ as functions of the strain frequency ω [24, Fig. 1].

545



The Mead–Larson–Doi (MLD) model [28] takes account of the effects of stretching of a linkage tube and the release 
of a polymer chain from the linkage tube due to convective motion (convective constraint release (CCR)), which tends to 
change the shape of the polymer chain. As a result of the above effect, the equilibrium polymer-chain length l0 corresponding 
to a quiescent state increases to the quantity l [29] (Fig. 2).

The equation of the MLD model in the adopted notation is of the form [30]
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is the partial orientation tensor. A comparison of the expression Q(t – t′ ) with expressions (16) shows that the damping 
functions of the MLD models are analogous to the functions h1 and h2 of the DE model. The memory function of the MLD 
model differs from an analogous functions of the DE model by the presence of the parameter ε2 which is the function of time.

According to the MLD model, the total relaxation (reptation) time τ is [31]
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where τe and τd are the times of internal relaxation and reptation of the polymer chain. Formula (18) yields that at ε = 1, the 
relaxation time is τ = τd, and at ε > 1, τ > τd, i.e., in the absence of the extension of the polymer chain, reptation times in the 
DE and MLD models turn out to be identical, and with increase in the degree of extension it becomes longer than 
the analogous time in the DE model. This is an agreement with the physics of the process of motion of a polymer chain: the 
relaxation time grows with its elongation.

In [32], the reptation and convective release of polymer chains from the linkage tube in shear and biaxial extension of 
two samples of bidisperse polystyrene was investigated on the basis of a comparison of their damping functions hi determined 
experimentally and calculated according to the MLD model. Experimental values of the damping functions were determined 
as the ratio of the relaxation moduli in the nonlinear G(t, γ) and linear G(t) regions of strain of the polystyrene samples. The 
obtained experimental and calculated values of the damping function turned out to be in good mutual agreement.

Thixotropy and Rheopexy in Viscoelastic Fluids. The phenomenon of thixotropy involves the reduction in the 
effective viscosity of a fl uid with time at a constant strain rate and is caused by its destructuring. In the case of rheopexy, strains 
tend to structurize the fl uid and to increase its viscosity. The time of establishment of the fi nal value of the viscosity of fl uids 
may reach tens and hundreds of minutes [33, 34]. Thixotropy and rheopexy are revealed in a loop test, i.e., taking successively 
the ascending and descending branches of a fl uid-fl ow curve which form a hysteresis loop [35–37]. The amplitude of the 

Fig. 2. Diagram of release of the polymer chain from the linkage tube: 1) macromolecules 
forming the linkage tube and 2) polymer chain [29, Fig. 1].
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hysteresis loop (difference of the stresses of the ascending and descending branches of the fl ow curve at a given shear rate)
is affected by the duration of the stress measurement. We can give, as an example, results of the loop test of silicone oil 
DMS T25 [38] (Fig. 3): increase in the measurement time from 4 to 40 s noticeably expands the hysteresis loop, which is due 
to the ordering of the internal structure of the oil and to the decline in its fi nal viscosity which is proportional to the length of 
the action of shear stresses.

The procedure of taking the hysteresis loop is carried out by a controlled-shear-rate rheometer (CR-rheometer) with 
linear increase in the shear rate for the time t1 and its reduction for the time t2 [39]. At small t1 and t2 values, when the fl uid′s 
structure is not fully destroyed, a cycle of rise and reduction in the shear rate is implemented to determine the maximum 
amplitude of the hysteresis loop, with each subsequent cycle beginning from the point of completion of the previous one 
(Fig. 4a). To the full destructuring of the fl uid, there corresponds the coincidence of the ascending and descending branches 
of the fl uid-fl ow curves of the last cycle (the third in Fig. 4a). Another variant is that upon the rise in the shear rate, it remains 
maximum for the same t3 until the fl uid′s structure is fully destroyed, and thereafter the shear rate is reduced to zero (Fig. 4b). 
The ascending and descending branches of the fl ow curve, which form the maximum-amplitude hysteresis loop, determine 
the upper and lower values of effective viscosity of the viscoelastic fl uid for each shear rate. In this case the loop test is meant 
to be an assessment for the range of variation in the effective viscosity of such a fl uid, which is suffi cient for determining the 
basic integral parameters of its motion (velocity, fl ow rate, pressure difference, etc.).

The area of the hysteresis loop is proportional to the energy consumed by the destructuring of the fl uid. The size of 
this area obtained when the fl uid′s structure is fully destroyed is the basic characteristic of its thixotropic properties. To assess 
the degree of thixotropy, the so-called thixotropic index Ti has proposed which is the ratio of the initial μI and steady-state μS 
viscosity at a constant shear rate to the value of the steady-state viscosity [36]
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As follows from formula (19), the value of the index is positive for a thixotropic fl uid, negative for a rheopexic fl uid, and 
equal to zero for a rheologically stationary one. At a small absolute value of the index (small width of the hysteresis loop), 
the rheological properties of the medium can be described by a fl ow curve which is the averaging of the ascending and 
descending branches of the hysteresis loop. Notice that to assess the degree of pseudoplasticity and dilatancy of rheologically 
stationary fl uids, use is made of an analogous ratio of the initial μ0 and fi nal μ∞ viscosities with variation in the shear rate from 
the infi nitely small rate to a limiting one at which μ∞ becomes constant.

Fig. 3. Thixotropic loops at different durations tL (loop time) of taking the fl ow curves:
tL = 4 (1), 10 (2), and 20 (3), and 40 (4) [38, Fig. 7]. Curves 2–4 are shifted for visual 
clarity vertically by 500, 1000, and 2000 Pa respectively.
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One of the most fruitful approaches to description of the rheological properties of the thixotropic and rheopexic 
system is the use of a structural-kinetics model according to which the degree of structuring is characterized by a scalar 
parameter ξ ranging from zero (absence or a full destruction of the internal structure) to unity (maximum development of the 
structure of the fl uid′s volume). Equations of the model include the dependences τ(γ) at ξ = const and ξ = f (t) [40]:

 0 1 0 1( ) ( ,) nK Kτ = τ + τ + + ξ γ  (20)

 (1 ) .d a b
dt

εξ
= − ξ − ξγ  (21) 

Here τ0 and K0 are the initial shear stress and the measure of consistency of the fl uid, τ1 and K1 are the components of the 
shear stress and of the measure of consistency of the fl uid, which are linearly dependent on the quantity ξ, and a, b, and ε are 
the kinetic constants of the fl uid [41–43]. Equation (21) is similar to the equation of a reversible chemical reaction: the terms 
a(1 – ξ ) and bξγε characterize the rate of formation and destruction of the fl uid′s structure.

The structural-kinetics model was used to describe the viscosity of volcanic lava representing a porous silicate 
melt [44]. The parameter ξ was taken to be equal to the ratio of the minimum diameter of gas pores to the diameter of an 
undeformed sphere with an equivalent volume. It has been established that the manifestations of thixotropy appear as the 
temperature and crystallization of the lava melt decrease (at a temperature higher than 1120oC, basaltic lavas are characterized 
by the regular Newtonian viscosity [45]). Another, probably, a more signifi cant reason for the thixotropy of volcanic lava is 
the strain of its internal pores (bubbles). Assuming, under the stresses, the shape of ellipsoids, the bubbles stretch streamwise, 
which decreases the lava viscosity irrespective of the concentration of crystallizing particles.

Conclusions. Among the integral models of rheologically nonstationary fl uids, a leading role has been played by 
the K-BKZ model for longer than half the century. The number of citations of the pioneering studies [12] and [13] has only 
grown thus far: thus, in 2010, they were cited 220 times, which is more than in any of the earlier years [46]. The model′s 
idea of subdivision of the function characterizing the physical properties of a viscoelastic medium into two parts, one of 
which refl ects the dependence of these properties on time (memory function), and the other, on the amplitude of acting 
strain (damping function), ensured the possibility for the fairly accurate calculations of viscoelastic-fl uid fl ows in the region 
of nonlinear strain.

The trend of recent decades has been the "enrichment" of the initially phenomenological K-BKZ model with 
propositions of a molecular-kinetic theory of polymer (primarily, with the reptation theory). On this basis, we have the 
development of the K-BKZ model through the creation of its numerous modifi cations with various expressions of memory 

Fig. 4. Thixotropic test with the CR rheometer: a) multiple rise (t1) and reduction (t2) in 
the shear rate (three successive cycles) and b) single rise (t1), the action of the maximum 
shear rate (t3), and the reduction (t2) in the shear rate [39, Fig. 116].
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and damping functions giving the distinctive features of the morphology and movement of polymer chains. This close 
connection of the development of rheological models to the polymer theory is attributed to the fact that establishing a 
quantitative relationship between the molecular structure of a polymer and the manifestation of its rheological properties is 
of great practical importance for many technological processes.

Note that in contrast to the integral models known earlier, in the K-BKZ model and its modifi cations, the relaxation 
properties of the viscoelastic fl uid are expressed by a single integral, which makes the numerical calculations much simpler 
and faster. This is precisely why the model has become widespread at present and is used, e.g., by the producers of software 
to model the molding of plastics, rubber mixes, and others.

A characteristic property of viscoelastic fl uids is thixotropy or a more rare rheopexy. These properties are caused 
by the lag of the reaction of response of the viscoelastic fl uids to the external action and are physically explained by 
the fi nite rate of destruction and restoration of their supramolecular structure. The basic characteristic of thixotropic and 
rheopexic properties is the maximum amplitude of a hysteresis loop, which is obtained as a result of the loop test using the 
CR rheometer. The above characteristic is meant to be a quantitative measure of the most important parameters of fl ow of 
viscoelastic fl uids.

NOTATION

B and B–1, direct and inverse Finger strain tensors; D, strain-rate tensor, s–1; G, dynamic (complex) modulus of 
the viscoelastic fl uid, Pa; G′ and G″, storage (elastic) and energy-loss (dissipation) moduli of the viscoelastic fl uid, Pa;

0 ,NG  storage modulus of the viscoelastic fl uid on a horizontal portion of the G′(ω) curve (plateau modulus), Pa; N1 and 
N2, fi rst and second differences of normal stresses of the viscoelastic fl uid, Pa; P, pressure, Pa; T, stress tensor, Pa; t, time, 
s; δ, Kronecker symbol (unit tensor); λ, relaxation constant of the viscoelastic fl uid, s; ω, angular velocity (frequency), s–1.
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