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REVIEWS

DIFFERENTIAL MODELS OF RHEOLOGICALLY NONSTATIONARY FLUIDS

O. M. Sokovnin, N. V. Zagoskina, and S. N. Zagoskin  UDC 532.135+51-72:532

An analysis has been made of basic differential models of rheologically nonstationary (viscoelastic) fl uids as well as 
of their development and interrelation. The considered models cover a rich variety of viscoelastic media: polymer 
solutions and melts, natural formations (glaciers), and others. Among these models, a key role is played by the 
Maxwell upper convection model: it provides a theoretical basis for experimental determination of the dynamic 
characteristics of viscoelastic fl uids and for development of new rheological models. It has been shown that to improve 
the reliability of results obtained with the aid of a complex rheological model, it is expedient to ensure a possibility of 
reducing it to the existing models and thus fi nding analytical solutions for a number of the simplest fl ows. Examples 
of use of the models in question when results of rheometric investigations are approximated and viscoelastic-fl uid 
fl ows are calculated have been given. Special emphasis has been placed on an analysis of the correspondence of the 
derived solutions to the physical essence of the described processes, and also of the correctness of interpretation of 
some results or others.

Keywords: mathematical models, viscoelastic fl uids, determination of dynamic characteristics.

Introduction. Among the non-Newtonian media occurring widely in nature and technology, it is common practice 
to recognize stationary (non-Newtonian purely viscous and viscoplastic media) and rheologically nonstationary (viscoelastic) 
media [1–3]. The fi rst are characterized by the one-to-one relationship of the stress and the rate of strain (in the simplest case 
of shear); their ratio which is called the effective viscosity μef of a medium remains constant with time at a constant value of

 ef ef ( ) .μ = μ γ   (1)

For the second, the effective viscosity depends, in addition to the shear rate, on the time t of action of applied stresses

 ef ef ) .,( tμ = μ γ   (2)

Information on purely viscous and viscoplastic non-Newtonian media is widely presented in foreign scientifi c 
literature [4–6] and in the monographs published in the Russian language [7, 8] alike, but actively developing models of 
viscoelastic media are of the greatest interest.

Note that a change in the fl uid′s viscosity is associated with a number of hydrodynamic and physicochemical 
processes (orientation of particles of the dispersed phase in the fl ow, the disruption and restoration of bonds between them, 
etc.) and always takes some time. However, if the time of this reconstruction is shorter than the relaxation time, such fl uids 
may be considered stationary. Thus, low-molecular-weight fl uids at strain frequencies as low as 106 s–1 exhibit no viscoelastic 
properties; the time of their relaxation is shorter than 106 s, but at higher frequencies (to 3·108 s–1), relaxation phenomena 
appear in them, too [9]. Thus, the notion of viscoelasticity is relative: as long as strains manage to follow stresses, no 
viscoelastic properties of the fl uid are manifested, but with increase in the frequency of external actions or decrease in the 
mobility of macromolecules of the fl uid with temperature strains begin to lag behind the actions and relaxation possesses 
appear in the fl uid medium.

Rheological models of a viscoelastic fl uid always constrain the time parameter. Mathematically, they can be 
subdivided into two groups: differential models relating instantaneous values of stresses to the gradient of the fl uid′s velocity 
and integral ones refl ecting the dependence of stresses in the fl uid on the prehistory of fl ow.
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Differential Models. In the general case the differential rheological model is of the following form [10]:

 
( , ) Td f

dt
λ + + ∇ = μ(∇ + ∇ ) .

T T U T U U   (3)

Here ( , )f ∇U T  is the nonlinear function which is invariant to the coordinate system.
Maxwell convection models. Expression (3) is a nonlinear generalization of Maxwell′s linear theory of viscoelasticity. 

A concrete form of the rheological law must satisfy the principle of material frame indifference, i.e., the independence of the 
properties of a fl uid from the selection of a coordinate system. It yields two natural rheological models [11]:

the Maxwell lower convection model

 
( )T Td

dt
⎛ ⎞+ λ + ∇ ⋅ + ⋅ ∇ = μ ∇ + ∇⎜ ⎟
⎝ ⎠

TT U T T U U U   (4)

and the Maxwell upper convection model

 
( ) .T Td

dt
⎛ ⎞+ λ − ∇ ⋅ + ⋅ ∇ = μ ∇ + ∇⎜ ⎟
⎝ ⎠

TT U T T U U U   (5)

In actual practice, much wider use is made by the second model, since results obtained with it are in better agreement with 
experimental data and with the molecular theory of viscosity [12].

In the case of one-dimensional strain Eqs. (4) and (5) are reduced to the linear equation

 

1 .d d
dt G dt
ε τ τ

γ = = +
μ

  (6)

A physical analog of Eq. (6) represents a shock absorber and a spring connected in series and allowing for unlimited strain 
(of fl ow), which corresponds to a fl uid dispersion medium with elastic dispersed-phase elements. When the values of the 
parameters μ and G are constant Eq. (6) has analytical solutions. Thus, with the initial condition τ(0) = τ0 and the strain
ε(t) = ε0 = const, we have

 0 exp ( / ) .tτ = τ − λ   (7)

With the same initial condition and a constant strain rate dε/dt = γ0 = const, the integration of Eq. (6) yields

 0 0 0( ) exp ( / ) .tτ = μγ + τ − μγ − λ   (8)

In Eqs. (7) and (8), λ = μ/G is the relaxation constant of the viscoelastic fl uid. As follows from (7) and (8), under the 
instantaneous strain ε0, the initial stress τ0 in a Maxwell fl uid decreases exponentially to zero with time, and in the case of 
constant strain with a rate γ0, to the quantity μγ0 which is proportional to this rate (Fig. 1).

Fig. 1. Variation in the stress in the Maxwell viscoelastic fl uid under constant strain (1) 
and at a constant strain rate (2).
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The Maxwell model provides a theoretical basis for determination of the dynamic characteristics of a viscoelastic 
fl uid. Substitution, into (6), of the expression of the harmonic strain ε = ε0 sin ωt produced in a rotary rheometer during its 
operation in an oscillatory regime yields the following solution to the indicated equation [13, 14]:

 

2

2 2
( ) sin cos .

1 ( ) 1 ( )
G t G tλω λω

τ = ω + ω
+ λω + λω

  (9)

Here the amplitudes of harmonic functions are the elastic (storage) G′ and loss (dissipation) G″ moduli of the energy of the 
viscoelastic fl uid:

 

2

2 2
( )( ) and ( ) .

1 ( ) 1 ( )
G G G Gλω λω′ ′′ω = ω =

+ λω + λω
  (10)

Their geometric sum determines the value of the complex or dynamic modulus

 
2 2 .G G G′ ′′= +   (11)

Figure 2 gives the plots of the relative value of the moduli G′ and G″ versus the frequency ω at different values of the 
relaxation constant λ.

As we can see from Fig. 2, with growth in λ the G′(ω) and G″(ω) curves shift symbatically to a low-frequency region, 
i.e., viscous properties are more pronounced at a low frequency, whereas elastic ones, at high frequencies. For each fi xed λ 
value, the moduli G′ and G″ vary with frequency in different directions: with increase in the frequency, the elastic modulus 
grows monotonically tending to a value of the dynamic modulus, whereas the loss-modulus curve is symmetric about the 
vertical axis and has a pronounced maximum. The intersection of the G′ and G″ curves yields the condition of determination 
of the relaxation constant λ of the viscoelastic fl uid: setting the function G′(ω) equal to the function G″(ω), we obtain

 
1/ .G G′ ′′=λ = ω   (12)

The frequency at which G″(ω) peaks is found from the condition

 / 0 .G′′∂ ∂ω =   (13)

Substituting the expression of the function G′(ω) into (13), on rearrangements we have

 max
1/ .G G′′ ′′=ω = λ   (14)

Fig. 2. Plots of G′(ω) and G″(ω) for the Maxwell fl uid with a varying relaxation time: 
λ = 0.001 (1), 0.1 (2), and 10 (3).
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Here, the value itself of the loss modulus will be

 max 0.5 ,G G′′ =   (15)

i.e., the loss modulus of the Maxwell fl uid peaks at a frequency reciprocal of its relaxation constant and its value is equal to 
half the dynamic modulus.

According to the theory of periodic functions, the tangent of the displacement angle δ resulting from the summation 
of two harmonic oscillations of the same frequency, which are phase-shifted by 90o from each other, is analytically determined 
as the ratio of the amplitudes of these oscillations. In this case for the shear stress expressed by Eq. (9) we have

 tan / 1/ .G G′′ ′δ = = λω   (16)

In actual practice, the components of the dynamic modulus of the Maxwell fl uid can be computed from the measured value 
of the displacement angle δ. The dynamic modulus G itself is defi ned as the ratio of the measured amplitudes of the stress τ0 
and the strain ε0 [13, 9]
 0 0/ .G = τ ε   (17)

The above equations correspond to an ideal (homogeneous) Maxwell viscoelastic fl uid with one relaxation constant λ. 
Conversely, actual viscoelastic fl uids which are a multicomponent inhomogeneous system as a rule, demonstrate a more 
complex dependence of viscous and elastic properties on the frequency of acting strains. A mechanical model of such fl uids 
can be provided by the model of a generalized Maxwell fl uid, which is a number of parallel-connected viscoelastic elements, 
each characterized by the eigenvalue of the relaxation constant λi = μi/Gi [1, 13, 15]. In this model, the strain ε (harmonic in 
this case) is the same for all the parallel elements, and the stress τ is equal to the sum of the stresses on the elements [13, 9]

 

2

2 2
1 1

( ) sin cos .
1 ( ) 1 ( )

N N
i i

i i
i i i i

G t G t
= =

λ ω λ ω
τ = ω + ω

+ λ ω + λ ω
∑ ∑   (18)

For the spectrum of relaxation times λi, each corresponding to its own dynamic modulus Gi, the expressions of the 
moduli G′(ω) and G″(ω) will take the form

 

2

2 2
1 1

( ) and .
1 ( ) 1 ( )

N N
i i

i i
i i i i

G G G G
= =

λ ω λ ω′ ′′= =
+ λ ω + λ ω

∑ ∑   (19)

Here, the value of the dynamic modulus itself will be equal to

 1
.

N

i
i

G G
=

= ∑   (20)

Notice that the relaxation spectrum is a set of the moduli Gi to be calculated and relevant ,iG′  ,iG′′  and δi at assigned 
values and the number λi [16]. The parameters (λi and Gi) have been called adjustable parameters in [16], which stresses their 
artifi cial nature. The objective of obtaining the relaxation spectrum is to simplify computations due to the representation of 
the complex function G(ω) of an actual viscoelastic fl uid as a superposition of a fi nite number of simpler functions.

Frequency characteristics of viscoelastic fl uids, which are used as the initial data of many rheological models (in 
particular, of those considered below), are determined on the basis of Maxwell models. Thus, in [17], using the Papanastasiou–
Scriven–Macosko (PSM) model, a numerical study has been made of capillary-extrusion fl ow of a fl uoropolymer melt; these 
model′s constants λi and Gi were determined from oscillation-test data by the method of nonlinear regression analysis. The 
same parameters involved in the storage function m(t) of the Wagner model were determined in [18] experimentally from 
the results of oscillatory shear fl ow of a polyethylene melt at frequencies of 0.1 to 200 Hz, from which values for the moduli 
G′ and G″ were obtained.

In [19], the generalized Maxwell model was used to determine constants of the relaxation function in simulating 
the viscoelastic response of angle ligaments to a cyclic external action. In [20], a study has been made of the viscoelastic 
properties of aqueous solutions of erucyl bis (2-hydroxyethyl) methylammonium chloride (EHAC) and their mixtures with 
hydrophobized polyacrylamide (PAA). The data obtained for EHAC solutions were in good agreement with the Maxwell 
model with one relaxation time, whereas their mixtures with PAA had more complex properties and spectrum of relaxation 
times similarly to semidiluted polymer solutions. In [21], the elastic and loss moduli of EHAC solutions were determined in 
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the frequency range 0.01–100 rad/s at a temperature of 25oC, and also were calculated from Eqs. (10) of the Maxwell model 
with one constant λ. Good agreement was obtained between experimental and calculated results ([21], Fig. 2).

Oldroyd models follow, respectively, from the Maxwell lower and upper convection models (Oldroyd-A and 
Oldroyd-B models):

 2 ,T T Td d
dt dt

⎡ ⎤⎛ ⎞ ⎛ ⎞+ λ + ∇ ⋅ + ⋅ ∇ = μ + θ ⋅+ ⋅ ∇ + ∇⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

T DT U T T U D D U U D  (21)

 2 .T T Td d
dt dt

⎡ ⎤⎛ ⎞ ⎛ ⎞+ λ − ∇ ⋅ − ⋅ ∇ = μ + θ ⋅− ⋅ ∇ − ∇⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

T DT U T T U D D U U D  (22)

For a one-dimensional fl ow, nonlinear equations (21) and (22) are reduced to the linear one-dimensional Jeffreys model [22]

 
.d d

dt dt
τ γ⎛ ⎞τ + λ = μ γ + θ⎜ ⎟

⎝ ⎠
  (23)

The physical meaning of the delay time θ is that on stress relieving, shear rates will decrease proportionally 
to exp (–t/θ). At θ = 0, Oldroyd and Maxwell models turn out to be identical. Just as for Maxwell models, in actual practice, 
more frequent use is made of the Oldroyd upper convection model. In [23], a new differential-difference model of a viscoelastic 
fl uid with a constant relaxation time has been proposed; the model gives a fi n velocity of propagation of perturbations and is 
in good agreement with Maxwell and Oldroyd models.

In [24], a numerical study has been made of the notion of bubbles in a polymer solution whose rheological properties 
were described by the Oldroyd-B model. The total viscosity of the solution μ0 at a low shear rate was represented as the sum 
of the viscosities of the solvent μs and the polymer μp

 0 s p s( )1 .cμ = μ + μ = + μ   (24)

The introduction of the parameter c = μp/μs made it possible to relate the time of relaxation λ and delay θ:

 / 1( ) .cθ = λ +   (25)

The calculation results confi rmed the existence of the critical volume of a bubble in which its velocity sharply grows, and the 
afterbody acquires a pointed shape, which was repeatedly observed experimentally [25]. Also, of interest are the results of 
calculation of the velocity of bubbles in an unsteady regime (Fig. 3).

It has been shown that the bubble velocity reverses its direction for a short period (0.025–0.045), after which tends 
to a constant positive value. The phenomenon is attributed to the change in the velocity fi eld near the bubble on reaching 
a precritical dimension by it when at some instant there occurs fl uid motion past the bubble, which is reverse with respect to 
the lift, and is confi rmed by experimental data [26, 27].

The Coleman–Noll model represents the general equation of state of a viscoelastic fl uid with fading memory by the 
asymptotic series [28, 29]

 1 2( ) ( ) ( ) .– nP= + + + … +T S U S U S Uδδ   (26) 

Here Si(U) are the nonlinear components of the stress tensor [30]

1

1
2 1

1 1

1

1

1 ( 1)

( 1)

( )

,

.................................................. ,

( 1)
( 1) !

,

.

T

n n

n n n

t

n t

− −

− −

= μ ∇ + ∇ = μ

∂
+ α

∂

− ∂
= +

− ∂

=

S U U A

AS S

S S A

Another form of representation of Eq. (26) is of the form [31]

 
1 1

1 ( )

0 ( )
1

.
n k

k k
k

dP
dt

−

=

= − + α + α∑T A Aδ   (27)
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The constants αk characterize the rheological properties of the fl uid (in particular, α0 = μ, i.e., the shear viscosity), and the 
tensor A1 is coincident up to a numerical coeffi cient with the strain-rate tensor D: A1 = 2D.

Since each term of series (26) and (27) that follows makes a smaller contribution to the value of the stress tensor, it is 
expedient to limit the number of terms without loss of the model′s substantial properties, primarily, the refl ection of a nonzero 
difference of the normal-stress components. Following on from this idea, we propose a number of viscoelastic-fl uid models 
preceding the Coleman–Noll generalization.

The Rivlin–Ericksen model uses the series of fi rst terms of Eq. (27) to describe the rheological properties of the so-
called second-order fl uids [32]

 
2

1 2 11 2 ,P= − + μ + μ + μT A A Aδδ   (28)

where μ, μ1, and μ2 are the shear viscosity, the extensional viscosity, and the cross viscosity of a fl uid respectively and 

A2 = 1d
dt
A  + A1· T∇ + ∇U U ·A1 is the Rivlin–Ericksen tensor [33]. The constants μ1 and μ2 are the scalar functions of 

the invariants of the strain-rate tensor: A1. At μ2 = 0 (absence of viscoelastic properties), Eq. (28) becomes identical to the 
equation of the Reiner–Rivlin model of a stationary non-Newtonian fl uid [9]. The Rivlin–Ericksen model gives the basic 
properties of a viscoelastic fl uid: the nonzero difference of the components of normal stresses and the delay of the change in 
the strain rate on stress relieving [28].

By the values of μ–μ2, there are expressed the shear stress τ12 and the differences of the components of normal 
stresses τ11, τ22, and τ33 of the viscoelastic fl uid [30]

 12 ,τ = μγ  (29)

 2
11 22 1 12 ,Nτ − τ = = − μ γ  (30)

 2
22 33 2 1 2( .2 )Nτ − τ = = μ + μ γ  (31)

The values of the rheological constants μ–μ2 of a second-order fl uid are bounded by the relations following from the 
thermodynamic condition of the minimum free energy in an equilibrium state [33]

 1 1 20, 0, 0 .μ ≥ μ ≥ μ + μ =  (32)

Fig. 3. Variation in the velocity U(t) of bubbles of radius R in the viscoelastic fl uid: 
μ0 = 1.025 Pa·s, λ = 0.1 s, and c = 19.5 [24, Fig. 20].
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However, experimental data demonstrate that in many viscoelastic fl uids, the values of μ1 and μ2 do not satisfy the constraints 
(32). Thus, it was shown in [34] that if μ1 + μ2 > 0, the condition μ1 < 0 is not observed, and a theorem was also proved that 
the condition
 1 1 20, 0, 0μ > μ < μ + μ ≠  (33)

confi rmed by experiments yields results not detectable in any fl uids at all.
The Rivlin–Ericksen model was used in calculating the fl ow of a viscoelastic polymer out of the extruder onto 

a horizontal plane [35]. It has been established that the stresses drop with distance from the extruder axis, and the growth 
in the μ1/μ ratio (i.e., in the viscoelastic properties) causes the polymer layer to thicken. Here, the cross viscosity μ2 does 
not affect the velocity fi eld, but affects the pressure distribution in the layer. Using such a model, an analytical solution was 
obtained for gentle fl ow of a viscoelastic medium in a curved rectangular duct [36].

The constants of the Rivlin–Ericksen model for polycrystalline ice were determined in experiments on compression 
of its samples initiating creeping ice mass fl ow: μ = 4.5·1013 Pa·s, μ1 = –1.0·1019 Pa·s2, and μ2 = 3.4·1021 Pa·s2 [37]. 
A calculation of the creep of an ice mass from a steep slope using the obtained data showed a decrease in the compression of 
the ice at the boundaries of the duct and a growth in its stretching. The formation of crevasses is contributed to by the normal 
stresses N1 and N2, with the angle of their action on the duct boundary decreasing, which leads to a slight turn of the direction 
of formation of crevasses.

Unsteady motion of a Rivlin–Ericksen fl uid over an inclined plane when its free surface is acted upon by the tangential 
force for a fi nite time has been investigated in [38]. Analytical expressions have been obtained for the fl uid velocity as 
a function of time. In the absence of viscoelasticity, the velocity at the end of the calculation portion tended to zero, and in 
the presence of it became negative, with the absolute values of the velocity growing with viscoelasticity. This is attributable 
to the action of internal forces "pulling" the viscoelastic fl uid back once the external shearing force ceases to act.

In [39], a modifi cation of the Rivlin–Ericksen model has been proposed in which the rheological coeffi cients μ1 and 
μ2 are dependent in a power-law manner on the shear rate γ:

 
2

1 2 1
1

1 2| | ( ) .nP K −= − + μ + γ μ + μT A A Aδδ   (34)

Equation (34) was used in investigating numerically one-dimensional fl ow of a viscoelastic fl uid in a circular pipe of constant 
cross section. For a transient regime of fl ow, the relation between the pressure gradient on the pipe′s end portion and the 
volume fl ow rate of the fl uid was obtained.

Another modifi cation of the Rivlin–Ericksen model has been proposed for description of a mass of crystal ice 
creeping over the plane with a uniform slope under gravity [40];

 
2

1 1 2 1( ) ( .) ( )P= − + μ + α + + βT A A A A E Eδ   (35)

Here μ(A1) = 
2

2
1

1 tr
2

n

K ⎛ ⎞Α⎜ ⎟
⎝ ⎠

 is the shear viscosity of the ice, Pa·s, α = μ1 = –μ2 is the rheological coeffi cient refl ecting, with 

account of condition (33), the viscoelasticity and cross viscosity of the ice, Pa·s2, ( )β E  = β0 exp 21 tr
2

c⎛ ⎞−⎜ ⎟
⎝ ⎠

E  is the variable 

shear modulus, Pa, E  = E – 1
3

tr E δ is the deviator of the strain tensor, and β0 and c are the empirical constants characterizing 

the initial rigidity and rate of damping of elastic strains of the ice [40]. Nonlinear differential algebraic equations of ice 
motion were solved by the fi nite-element method. It has been established that model (35) is capable of refl ecting complex 
rheological properties of a moving ice mass that are observed under actual conditions.

The Giesekus model is based on a network theory of polymers and takes account of the relation of the strain of 
polymer molecules to their mobility of a polymer chain [41, 42]:

 
2 ( ) .T Td

dt
αλ⎛ ⎞+ λ − ∇ ⋅ − ⋅ ∇ + = μ ∇ + ∇⎜ ⎟ μ⎝ ⎠

TT U T T U T U U   (36)

In one-dimensional shear fl ow, expression (36) takes the form

 

2 .d
dt
τ αλ

τ + λ + τ = μγ
μ

  (37)

Here 0 < α < 1 is the dimensionless factor of anisotropy of the polymer. At α = 0, Eqs. (36) and (37) become Eqs. (5) and (6) 
of Maxwell models.
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The Giesekus model refl ects qualitatively the existing properties of viscoelastic fl uids: reduction in the viscosity 
after the shear, the nonzero second difference of the normal stresses N2, and growth in the stress during the shear fl ow. Notice 
that the quantity N2 depends on the structure of the polymer chain: for the linear orientation of polymer molecules, we have 
N2 = 0, and for their entanglement to form loops, N2 ≠ 0 [43].

Shear and elongational or extensional fl ows of a polymer solution with wormlike micelles have been presented 
in [21]. The hysteresis of viscosity observed at different temperatures and concentrations of the salt (NH4Cl) was manifested 
as the presence of a portion with negative viscosity (dτ/dγ < 0) on the fl ow curves, which corresponded to an unstable state 
of the solution′s internal structure ([21], Fig. 1). The obtained rheometry data were compared with the theoretical prediction 
of the rheological properties of the solution on the basis of the Giesekus model. Experimental and calculated dependences 
of the stress on the shear rate are given in Fig. 4. As we can see, the model quite aptly describes the solution′s rheological 
properties, in particular, thixotropy.

Also, the model refl ects the expansion of a jet at exit from the nozzle, which is characteristic of viscoelastic fl uids. 
With growth in the velocity of the fl uid at entry into the nozzle, the exit expansion of the jet grows; here, for shorter nozzles, 
the jet expansion turns out to be higher, which is in complete agreement with numerous experimental data [44, 45]. This is 
due to the fact that when a pre-compressed viscoelastic fl uid leaves the nozzle the stored elastic-strain energy is liberated. In 
short nozzles, the fl uid better keeps "memory" of the previous velocity fi eld (the outfl ow time is shorter or comparable with 
the relaxation period λ). Therefore, the expansion turns out to be greater.

The Johnson–Segalman model is based on the hypothesis on the presence of two mechanisms of strain in polymer 
media due to the motion of polymer and solvent molecules. The fi rst mechanism enhances strains, and the second smoothes 
them out; here, the total strain of the medium can be nonaffi ne-type [46]. The two motions (of the polymer and of the solvent) 
are integrated into the state equation 

 

1 ( ) ( ) ( ) .
2

T T T Td a
dt

−⎧ ⎫⎡ ⎤+ λ − ∇ ⋅ − ⋅ ∇ + ∇ + ∇ + ∇ + ∇ = μ ∇ + ∇⎨ ⎬⎣ ⎦⎩ ⎭

TT U T T U T U U U U T U U   (38)

We know of various forms of representation of the equation of the Johnson–Segalman rheological model, in particular, 

using the upper 
∇

T  and lower 
Δ

T  convection derivatives of the stress tensor T [47, 48]

 
1 ( ) .

2 2
T⎡ ξ ξ ⎤⎛ ⎞+ λ − + = μ ∇ + ∇⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

T T T U U   (39)

On the substitution of the expressions of 
∇

T  and 
Δ

T  into (39) and rearrangements, we have

Fig. 4. Stress ( ∗τ  = τ/G0) vs. shear rate ( ∗γ  = γλ) of the polymer solution E1: circles/
rhombs, experiment on the rise and reduction in the shear rate; solid curve, calculation 
from the Giesekus model [21, Fig. 5b].
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1 ( ) ( ) ( ) .

2 2
T T Td

dt
⎡ ξ ξ ⎤⎛ ⎞+ λ − − ∇ ⋅ + ⋅ ∇ + ∇ + ⋅ ∇ = μ ∇ + ∇⎜ ⎟⎢ ⎥⎝ ⎠⎣

⋅
⎦

TT U T T U U T T U U U   (40)

The parameters a or ξ in Eqs. (38) and (39) are called slip parameters. They are taken to be a measure of nonaffi nity 
of strain manifested as the stretching (slip) of a polymer chain relative to the fi eld of continuum fl ow. For reduced forms of 
representation of the model, we have |a| < 1 and 0 ≤ ξ ≤ 2. Boundary values of the parameters a and ξ reduce the Johnson–
Segalman model to Maxwell convection models: to the lower model at a = –1 or ξ = 0 and to the upper one at a = 1 or ξ = 2. 
In this case the strain nonaffi nity disappears and the motions of the polymer and solvent molecules are coincident. At |a| < 1 
or 0 < ξ < 2, the polymer chains are "shifted" from the dispersion medium and the viscosity change becomes nonmonotonic. 
On the stationary fl ow curve, this corresponds to the portion with negative differential viscosity.

As noted in [49], the Johnson–Segalman model is the simplest model which gives the nonmonotony of the curve of 
fl ow of micellar polymer solutions and is in agreement with the observed phenomenon of their shear banding [50].

Using Eq. (39), an analytical dependence has been obtained in [47] for dimensionless components of normal and 
shear stresses occurring in one-dimensional shear fl ow of a viscoelastic fl uid. This dependence has local extrema, which 
corresponds to the presence of a maximum and a minimum on the stationary curve of viscoelastic-fl uid fl ow. Thus, the model 
refl ects the nonstability of fl ow of polymer solutions on their internal restructuring.

A sharp growth in the velocity of fl ow of micellar polymer solutions (spurt effect), which is observed on fl ow-induced 
phase separation [50–52] was numerically modeled by the radial-basis-functions method [5]. The obtained results were in 
complete agreement with experiments in which a study was made of the velocity jump of a viscoelastic fl uid in fl owing 
through extrusion nozzles and correlate with the Johnson–Segalman hypothesis on the nonaffi ne strain of a viscoelastic 
medium.

Flow of a Johnson–Segalman fl uid in a sharply convergent axisymmetric channel (extrusion nozzle) at high shear 
rates was investigated numerically by the defect-correction method and the continuation method [54]. Stable equations were 
obtained at maximum values of the parameter λ of the order of 5 (defect-correction method) and of 10 (continuation method).

The Phan-Thien–Tanner model is based on a network theory of polymers and is represented in general form as [55, 56]

 
( ) (tr ) 2 .Td f

dt
⎡ ⎤+ λ − ∇ ⋅ − ⋅ ∇ + ξ ⋅ + ⋅ + = μ⎢ ⎥⎣ ⎦

TT U T T U T D D T T T D   (41)

The physical meaning and the range of variation of the parameter ξ (0 ≤ ξ ≤ 2) are in complete agreement with those of 
an analogous parameter of the Johnson–Segalman model. For slow fl ows at a low rate of strain of the polymer molecules 
ξ = 0 [57], the model itself is simplifi ed.

The function f(tr T) from Eq. (41) in the original study [55] is represented by the linear relation for the stress tensor T

 
(tr ) 1 tr ,f ελ

= +
μ

T T   (42a)

where ε is the dimensionless parameter of extensibility of the polymer (ε ≥ 0). The expression of the function f(tr T) in 
the form [56]

 
(tr ) exp trf ⎛ ⎞ελ

= ⎜ ⎟μ⎝ ⎠
T T  (42b)

has become a generalization of formula (42a). Use is also made of the quadratic approximation of the dependence f(tr T) [58]

 

2
1(tr ) 1 tr tr
2

.
ì

f
⎛ ⎞ελ ελ

= + + ⎜ ⎟μ ⎝ ⎠
T T T   (42c)

At ε = 0, in all the cases we have f(tr T) = 1 and the Phan-Thien–Tanner model is identical to the Johnson–Segalman model. 
The Phan-Thien–Tanner model is traditionally used in the calculation of polymer fl ows. Thus, with it, a comparison was 
made of the infl uence of the function f(tr T) defi ned by expressions (42a)–(42c) on the shear and extensional viscosities [58].
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Notice that although the shear and extensional viscosities alike represent the ratio of the stresses to the rate of strain 
of a medium, however, there is a fundamental difference between them: the fi rst is defi ned in the case of one-dimensional 
shear strain, and the second, under volume strain. In [58], the values of γ and dε/dt were calculated from the formula

 22 ,DIγ =   (43)

 3 2 ./ 3 /D Dd dt I Iε =  (44)

As we can see from Fig. 5, the linear an quadratic approximations of the function f (tr T) provide a good approximation 
in calculating the shear viscosity throughout the shear-rate range. At the same time, the linear approximation overstates the 
values of extensional viscosity by nearly two orders of magnitude with increase in the strain rate. The result is attributed to 
the distinctive features of the response of the viscoelastic fl uid to shear (one-dimensional) and volume (three-dimensional) 
strains. In the fi rst case the linear function quite accurately describes three-dimensional stresses arising in the fl uid. In the 
case of volume fl ow with a suffi cient velocity this approximation cannot take correct account of the nonlinear relation of 
nonisotropic stresses to the strain rate. Thus, selection of the form of the function f (tr T) in the Phan-Thien–Tanner model 
must be consistent with the character of viscoelastic-fl uid fl ow.

In [59], visualization of the velocity fi eld and numerical modeling with a simplifi ed Phan-Thien–Tanner model 
(the parameter ξ in Eq. (41) was taken to be zero) were used in the comparative investigation of fl ow of a viscoelastic 
fl uid (0.075% polyethylene oxide (PEO) solution in a glycerin/water mixture (60/40%)) in T-shaped microchannels of cross 
section 50 × 50 μm.

Determination of the constants of the Phan-Thien–Tanner model in [59] is of special interest. The value of μ 
was traditionally found from the fl ow curve as the value of viscosity before its decrease with growth in the shear rate 
(μPEO = 19.5 mPa·s at γ ≤ 15 s–1). The relaxation time λ was determined by the method of capillary longitudinal rheometry 
(λPEO = 66 ± 4 ms), and also from the fl ow curve from the shear rate γ at the beginning of viscosity reduction (λPEO = 1/γ = 
1/15 ≈ 67 ms). The model′s third parameter, i.e., the extensibility of a polymer ε which characterizes its extensional viscosity 
was evaluated from the representation of polymer chains as thinning fi bers whose radius decreases linearly with time when 
their full extension is attained. The range of variation in the values of the parameter ε was determined by the laser-micrometry 
method and was 0 ≤ ε ≤ 7.0·10–6 [59].

Fig. 5. Variation in the shear μ(γ) (a) and extensional μ1(dε/dt) viscosities of the Phan-
Thien–Tanner fl uid in linear (1), quadratic (2), and exponential (3) approximations of 
the f (Tr T) function. The rheological parameters are ε = 1, ξ = 0, and We = 200 [58, 
Figs. 2d and 3d].
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Not only are numerical solutions of viscoelastic-fl uid fl ows found using the Phan-Thien–Tanner model, but also 
analytical ones [57, 60–65], which makes it possible to assess the correctness of results of numerical calculations. Thus, 
steady-state fl ow in a plane channel and a pipe was calculated in [60, 63] at the linear and exponential function f (tr T). It has 
been shown that shear stresses on channel walls are substantially lower than those for a Newtonian or viscoelastic fl uid whose 
properties are approximated by the Maxwell upper convection model.

In [61, 62], consideration was given to annular fl ows of a viscoelastic fl uid using the linear function f (tr T). 
Expressions have been obtained for the axial velocity, the shear and normal stresses, and the dynamics of their change in the 
radial direction with account taken of the fl ow rate of the fl uid and its rheological parameters, and also of the geometry of 
the fl ow zone.

Steady-state fl ow of a Phan-Thien–Tanner fl uid in the gap between rotating coaxial cylinders was considered 
in [64]. The obtained velocity fi eld takes account of the ratios of the radii of the inner and outer cylinders and of their angular 
velocities. It has been established that a growth in the fl uid′s elasticity (parameter ε) increases the gradient of tangential 
velocity in the inner cylinder and reduces the value of the viscosity μ, i.e., the fl uid exhibits pseudoplasticity.

The problem of fl ow of a Phan-Thien–Tanner fl uid between plane plates arranged at a small angle has been solved 
analytically in [65]. A motive force of the fl ow was provided by the movement of the lower horizontal plate with a constant 
rate, which is characteristic of friction assemblies of a number of mechanisms. The obtained results point to the strong 
infl uence of viscoelastic properties of the fl uid on the profi le of horizontal velocity and on the variation in the pressure 
gradient along the channel length. Also, the pressure gradient is dependent on the angle of mutual inclination of the plates: 
when they are parallel it is equal to zero and it grows with inclination angle and has, along the channel length, a maximum 
shifting from the center of the channel to its convergent end [65, Fig. 3].

Conclusions. Differential models of rheologically nonstationary fl uids, which refl ect an instantaneous relation of the 
stresses to the strain rate, were historically developed on the basis of the phenomenological approach for a certain "universal" 
viscoelastic fl uid (Maxwell and Coleman–Noll models). Today′s differential models of rheologically nonstationary fl uids are 
being developed more specifi cally for concrete types of viscoelastic fl uids (primarily, polymer melts and solutions). These 
models (of Giesekus, Johnson–Segalman, Phan-Thien–Tanner, and others), preserving a traditional mathematical form, are 
based on a network theory of polymers and take account of the mechanisms of strain of macromolecules in polymer media 
through the introduction of additional parameters. The above trend is due to the increasing and growing use of polymer and 
composite materials; this requires that the processes and technologies of their processing with conversion into products be 
upgraded and accordingly the theory, in particular, of rheological models of polymers, be developed [66].

On the whole, the development of differential models of rheologically nonstationary fl uids follows the path of their 
complication, which makes it possible to allow for increasingly subtler effects. Here, it is expedient to ensure the possibility 
of reducing a complex rheological model to existing models and thus fi nding analytical solutions for a number of the simplest 
fl ows. This approach ensures the verifi cation of the novel model and improves the reliability of results obtained with it.

NOTATION

D, strain-rate tensor, s–1; E, Cauchy–Green strain tensor; G, dynamic (complex) modulus of the viscoelastic fl uid, Pa; 
G′ and G″, storage (elastic) and energy-loss (dissipation) moduli of the viscoelastic fl uid, Pa; I2D and I2T, second invariants 
of the strain-rate (s–2) and stress (Pa2) tensors; K, measure of consistency of a non-Newtonian fl uid, Pa·sn; N1 and N2, fi rst 
and second difference of normal stresses of the viscoelastic fl uid, Pa; n, index of non-Newtonian fl uid fl ow; P, pressure, 
Pa; T, stress tensor, Pa; ∇U  and ∇ TU , velocity-gradient tensor and its conjugate tensor, s–1; t, time, s; We, Weber number;
γ, shear rate (one-dimensional analog of the strain-rate tensor), s–1; δ, Kronecker symbol (unit tensor); δ, angle of displacement 
of the stresses from the strain of the viscoelastic fl uid, rad; ε, relative strain; λ and θ, constants of relaxation and delay of the 
viscoelastic fl uid, s; μ coeffi cient of dynamic viscosity of a Newtonian fl uid, Pa·s; τ, shear stress (one-dimensional analog of 
the stress tensor), Pa; τ0, initial shear stress, Pa; ω, angular velocity, s–1.
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